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Supplementary Methods 

Stimuli: Stimuli comprised four symbols chosen from Ndjuká syllabary (Figure 1a) that were 

highly discriminable from each other and were unfamiliar to the participants. Each symbol 

subtended 8.5o of visual angle and was presented in black on a mid-grey background. 

Experiments were controlled using Matlab and the Psychophysics toolbox 31,2. For the 

behavioural training sessions, stimuli were presented on a 21-inch CRT monitor (ViewSonic 

P225f 1280 x 1024 pixel, 85 Hz frame rate) at a distance of 45 cm. For the test sessions, stimuli 

were presented using a projector and a mirror set-up (1280 x 1024 pixel, 60 Hz frame rate) at 

a viewing distance of 67.5 cm. The physical size of the stimuli was adjusted so that the angular 

size was constant during training and test sessions. 

 

Sequence design: We generated probabilistic sequences by using a temporal Markov model 

and varying the memory length (i.e. context length) of the sequence, following our previous 

work3. The model consists of a series of symbols, where the symbol at time i is determined 

probabilistically by the previous ‘k’ symbols. We refer to the symbol presented at time i, s(i), 

as the target and to the preceding k-tuple of symbols (s(i-1), s(i-2), … , s(i-k)) as the context. 

The value of ‘k’ is the order or level of the sequence: 

P (s(i) | s(i-1), s(i-2), … , s(1)) = P (s(i) | s(i-1), s(i-2), … , s(i-k)), k<i 

 In our study, we used three levels of memory length; for k=0,1,2. The simplest k=0th 

order model is a memory-less source. This generates, at each time step i, a symbol according 

to symbol probability P(s), without taking into account the context (i.e. previously generated 

symbols). The order k=1 Markov model generates symbol s(i) at each time i conditional on the 

previously generated symbol s(i-1). This introduces a memory in the sequence; i.e. the 

probability of a particular symbol at time i strongly depends on the preceding symbol s(i-1). 

Unconditional symbol probabilities P(s(i)) for the case k=0 are now replaced with conditional 



ones, P(s(i)|s(i-1)). Similarly, an order k=2 Markov model generates a symbol s(i) at each time 

i conditional on the two previously generated symbols s(i-1), s(i-2): P(s(i)|s(i-1),s(i-2)). 

At each time the symbol that follows a given context is determined probabilistically, 

thus generating stochastic Markov sequences. The underlying Markov model can be 

represented through the associated context-conditional target probabilities (Figure 1b). We 

used 4 symbols that we refer to as items A, B, C and D. The correspondence between items 

and symbols was counterbalanced across participants. Note, that we designed the stochastic 

sources from which the sequences were generated so that the memory-conditional uncertainty 

remains the same across levels. In particular, for the zero-order source, only two symbols are 

likely to occur most of the time; the remaining two symbols have very low probability (0.05); 

this is introduced to ensure that there is no difference in the number of symbols across levels. 

Of the two dominant symbols, one is more probable (probability 0.72) than the other 

(probability 0.18). This structure is preserved in Markov chain of order 1 and 2, where 

conditional on the previous symbols, only two symbols are allowed to follow, one with higher 

probability (0.80) than the other (0.20). This ensures that the structure of the generated 

sequences across levels differs mainly in the memory length (i.e. context length) rather than 

the context-conditional probabilities. 

In particular, for level-0 (zero-order), the Markov model was based on the probability 

of symbol occurrence: one symbol had a high probability of occurrence, one low probability, 

while the remaining two symbols appeared rarely (Figure 1b). For example, the probabilities 

of occurrence for the four symbols A, B, C and D were 0.18, 0.72, 0.05 and 0.05, respectively. 

Presentation of a given symbol was independent of the items that preceded it. For level-1 (first-

order) and level-2 (second-order), the target depended on one or two immediately preceding 

items, respectively (Figure 1b). Given a context, only one of two targets could follow; one had 

a high probability of being presented and the other a low probability (e.g., 80% vs. 20%). For 



example, when Symbol A was presented, only symbols B or C were allowed to follow, and B 

had a higher probability of occurrence than C. 

 Note, that we designed the stochastic sources from which the sequences were generated 

so that the memory-conditional uncertainty remains the same across levels. In particular, for 

the zero-order source (level-0), only two symbols are likely to occur most of the time; the 

remaining two symbols have very low probability (0.05); this is introduced to ensure that there 

is no difference in the number of symbols across levels. Of the two dominant symbols, one is 

more probable (probability 0.72) than the other (probability 0.18). This structure is preserved 

in Markov chain of order 1 (level-1) and 2 (level-2), where conditional on the previous 

symbols, only two symbols are allowed to follow, one with higher probability (0.80) than the 

other (0.20). This ensures that the structure of the generated sequences across levels differs 

mainly in the memory length (i.e. context length) rather than the context-conditional 

probabilities. 

 

Procedure: Participants were initially familiarized with the task through a brief practice session 

(8 minutes) with random sequences (i.e. all four symbols were presented with equal probability 

25% in a random order). Following this, participants took part in multiple behavioural training 

and test sessions that were conducted on different days. In addition, they participated in two 

brain imaging sessions, one before the first training session and one after the last training 

session. Participants were trained with structured sequences and tested with both structured 

and random sequences to ensure that training was specific to the trained sequences. 

 In the first test session (pre-training), participants were presented with level-0, level-1 

and level-2 sequences and random sequences. Participants were then trained with level-0 

sequences, and subsequently with level-1 and level-2 sequences. Training on level-0 sequences 

involves learning frequency statistics (i.e. participants are required to learn the occurrence 



probability of each symbol), whereas training on level-1 and level-2 sequences involves 

learning context-based statistics (i.e. participants are required to learn the probability of a given 

symbol appearing depends on the preceding symbol(s)). For each level, participants completed 

a minimum of 3 and a maximum of 5 training sessions (840-1400 trials). Each training session 

comprised five blocks of structured sequences (56 trials per block) and lasted one hour. 

Training at each level ended when participants reached plateau performance (i.e. performance 

did not change significantly for two sessions). Participants were given feedback (i.e. score in 

the form of Performance Index) at the end of each block, rather than per-trial error feedback, 

which motivated them to continue with training. A post-training test session followed training 

per level (i.e. on the following day after completion of training) during which participants were 

presented with structured sequences determined by the statistics of the trained level and random 

sequences (90 trials each). In contrast to the training sessions, no feedback was given during 

test. The mean time interval (±standard deviation) between the pre-training and the post-

training test sessions was 23.3 (±2.5) days. 

For each trial, a sequence of 8-14 symbols appeared in the center of the screen, one at 

a time in a continuous stream (Figure 1a). This variable trial length ensured that participants 

maintained attention during the whole trial. The end of each trial was indicated by a red dot 

cue. Following this, all four symbols were shown in a 2x2 grid. The positions of test stimuli 

were randomized from trial to trial. Participants were asked to indicate which symbol they 

expected to appear following the preceding sequence by pressing a key corresponding to the 

location of the predicted symbol. 

 

Psychophysical training: To ensure that sequences in each block were representative of the 

Markov model order per level, we generated 10,000 Markov sequences per level comprising 



672 items per sequence. To quantify how close the generated sequence was to the ideal Markov 

model, we estimated the Kullback-Leibler divergence (KL divergence) as follows: 
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for the level-1 and level-2 models, where P( ) refers to probabilities or conditional probabilities 

derived from the presented sequence and Q( ) refers to those specified by the ideal Markov 

model. KL divergence is a standard measure of distance between distributions and values close 

to 0 indicate small differences between the distributions. We selected fifty sequences with the 

lowest KL divergence (i.e. these sequences matched closely the Markov model per level). The 

sequences presented to the participants during the experiments were selected randomly from 

this sequence set. 

 For each trial, a sequence of 8-14 symbols appeared in the center of the screen, one at 

a time in a continuous stream, each for 300ms followed by a central white fixation dot (ISI) for 

500ms (Figure 1a). This variable trial length ensured that participants maintained attention 

during the whole trial. Each block comprised equal number of trials with the same number of 

items. The end of each trial was indicated by a red dot cue that was presented for 500ms. 

Following this, all four symbols were shown in a 2x2 grid. The positions of test stimuli were 

randomized from trial to trial. Participants were asked to indicate which symbol they expected 

to appear following the preceding sequence by pressing a key corresponding to the location of 

the predicted symbol. Participants learned a stimulus-key mapping during the familiarization 

phase: key ‘8’, ‘9’, ‘5’ and ‘6’ in the number pad corresponded to the four positions of the test 

stimuli —upper left, upper right, lower left and lower right, respectively. After the participant’s 

response, a white circle appeared on the selected item for 300ms to indicate the participant’s 



choice, followed by a fixation dot for 150ms (ITI) before the start of the next trial. If no 

response was made within 2s, a null response was recorded and the next trial started. 

 

Test sessions: The pre-training test session (Pre) included nine runs (i.e. three runs per level), 

the order of which was randomized across participants. Test sessions after training per level 

included nine runs of structured sequences determined by the same statistics as the 

corresponding trained level and random sequences. Each run comprised five blocks of 

structured and five blocks of random sequences presented in a random counterbalanced order 

(2 trials per block; a total of 10 structured and 10 random trials per run), with an additional two 

16s fixation blocks, one at the beginning and one at the end of each run. Each trial comprised 

a sequence of 10 stimuli which were presented for 250ms each, separated by a blank interval 

during which a white fixation dot was presented for 250ms. Following the sequence, a response 

cue (central red dot) appeared on the screen for 4s before the test display (comprising four test 

stimuli) appeared for 1.5s. Participants were asked to indicate which symbol they expected to 

appear following the preceding sequence by pressing a key corresponding to the location of the 

predicted symbol. A white fixation was then presented for 5.5s before the start of the next trial. 

 

Performance index: We assessed participant responses in a probabilistic manner. We computed 

a performance index per context that quantifies the minimum overlap (min: minimum) between 

the distribution of participant responses and the distribution of presented targets estimated 

across 56 trials per block by: 

PI(context) = ∑ min (Presp(st|contextt), Ppres(st|contextt)) 

where t is the trial index and the target s is from the symbol set A, B, C and D. 

 The overall performance index is then computed as the average of the performance 

indices across contexts, PI(context), weighted by the corresponding context probabilities: 



PI = ∑ PI(context) · P(context). 

 To compare across different levels, we defined a normalized PI measure that quantifies 

relative participant performance above random guessing. We computed a random guess 

baseline; i.e. performance index PIrand that reflects participant responses to targets with a) equal 

probability of 25% for each target per trial for level-0 (PIrand = 0.53); b) equal probability for 

each target for a given context for level-1 (PIrand = 0.45) and level-2 (PIrand = 0.44). To correct 

for differences in random-guess baselines across levels, we subtracted the random guess 

baseline from the performance index (PInormalized = PI − PIrand). 

 

Strategy choice and strategy index: To quantify each participant’s strategy, we compared 

individual participant response distributions (response-based model) to two baseline models: 

(i) a probability matching model, where probabilistic distributions of possible outcomes are 

derived from the Markov models that generated the presented sequences (Model-matching), 

and (ii) a probability maximization model, where only the most likely outcome is allowed for 

each context (Model-maximization). We used KL divergence to quantify how close the 

response distribution is to matching and maximization distributions. KL divergence close to 0 

indicates small difference between the distributions. KL is defined as follows: 
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for the level-1 and level-2 models, where R( ) and M( ) denote the probability distribution or 

conditional probability distribution derived from the human responses and the models (i.e. 

probability matching or maximization) respectively, across all the conditions. 



 We quantified the difference between the KL divergence from the response-based 

model to Model-matching and the KL divergence from the response-based model to Model-

maximization. We refer to this quantity as strategy choice indicated by ∆KL(Model-

maximization, Model-matching) and it reflects the participant’s preference towards matching 

or maximization. We then derived an individual strategy index by calculating the integral of 

each participant’s strategy curve across trials and subtracting it from the integral of the exact 

matching curve across trials, as defined by Model-matching. We defined the integral curve 

difference (ICD) between individual strategy and exact matching as the individual strategy 

index. That is, strategy index close to zero indicates a strategy closer to matching, while higher 

positive values indicate deviation from matching towards maximization. 

 Supplementary Figure 1 illustrates how the response probability distributions may 

yield negative or positive strategy index values. For example, for level-1, Table A shows the 

context-target probability distribution that defines the matching model; a participant response 

distribution matching this model would indicate exact matching strategy. Table B represents 

the exact maximization model; that is, a participant whose response distribution follows this 

model chooses consistently the most probable outcome. Table C represents a random response 

model; that is, the participant chooses all context-target contingencies with equal probability. 

Participants may demonstrate this random distribution of responses at the beginning of learning 

before they have extracted the structure of the sequence or the exact context-target 

contingencies. Following training, participants may show response distributions closer to 

matching or deviating from matching towards maximization. Underestimating the probability 

of the most probable context-target contingency (e.g. Table D) will result in response 

distributions between the matching and the random model and yield a negative strategy index. 

In contrast, overestimating the probability of the most probable context-target contingency (e.g. 



Table E) will result in response distributions between the matching and maximization models 

and yield a positive strategy index. 

 Further, response distributions during training (i.e. strategy choice per block: 

∆KL(Model-maximization, Model-matching)) from three representative participants are 

shown in comparison to these models (matching, maximization, random) (Supplementary 

Figure 1c). Note that the strategy index is computed as the integral between the values of 

participant strategy choice and the matching model across blocks. As a result, calculating the 

strategy index for a participant that starts with a strategy closer to random and then deviates 

closer to the matching model may result in a negative (e.g. participant A) or a positive value 

(e.g. participant B). For example, data from a participant A that underestimates the probability 

of the most probable context-target contingency during most of the training blocks yield a 

negative strategy index. However, data from a participant B that overestimates the probability 

of the most probable context-target contingency in some of the training blocks yield a positive 

strategy index, as the integral becomes positive when the participant strategy crosses the 

matching model curve. In contrast, strategy choice data for a participant C that deviates from 

matching towards maximization yields a higher positive strategy index. 

 Further, we provide a mathematical description of strategy index variability. In 

particular, we generated synthetic response data from a virtual participant and present a two-

parameter model characterizing the participant response distribution. Response distribution 

(denoted as P) is described as the mixture of two components, P1 and P2. To control the 

contribution of these two components, we define a parameter β as the weight of the two 

components (0≤β≤1): P = β P1 + (1-β) P2. The first component is the random model (i.e. equal 

probabilities for all context-target contingencies). Participants may follow this random model 

of responses at the beginning of training before they have learned the sequence structure and 

relative probabilities. The second component reflects the probability distribution of the items 



in the sequence presented to the participant, e.g. P2 = [0.2, 0.8, 0, 0]. This specification assumes 

that (1) only two items have non-zero probability; (2) the high probable target is four times 

more frequent than the less probable target. To capture how the participants learn these 

contingencies, we parameterized this distribution as follows: P2 = [1-α, α, 0, 0], where 0≤ α≤1. 

In particular, for (i) α = 1, the participant predicts always the most probable target (i.e. 

maximization); (ii) α = 0.8, the participant responses match the target distribution (i.e. 

matching); (iii) α = 0.5, the participant predicts equally the two possible (non-zero probability) 

targets; (iv) α < 0.5, the participant predicts the less probable target more frequently than the 

more probable target. In sum, we formulate our synthetic response model as follows: P = β 

[0.25, 0.25, 0.25, 0.25] + (1-β) [1-α, α, 0, 0].  

 To illustrate how the strategy index varies with parameters α and β, we computed the 

strategy index for all possible combinations of α and β values, where α and β vary between 0 

and 1. This generated a strategy index surface as a function of α and β (Supplementary Figure 

2). In particular, for β = 1 the strategy index is invariant to the parameter α and reflects equal 

responses for all targets (i.e. random model); yielding a strategy index value of -0.26. For β = 

0, the model is reduced to P = [1-α, α, 0, 0] and is fully described by the P2 component (see 

above). Therefore, (i) for α = 1 the model describes a maximization response (i.e. strategy index 

= 0.63), (ii) for α = 0.8 it describes a matching response (i.e. strategy index = 0), (iii) for α = 

0.5 it describes a random response between the two possible targets (i.e. strategy index = -0.26) 

and (iv) for α < 0.5 it describes predictions of the less probable target more frequently than the 

more probable target (i.e. strategy index < -0.26). Further, for 0.5<α<0.8 the participant would 

underestimate the probability of the most probable target and yield a strategy index between -

0.26 and 0; whereas for 0.8<α<1 the participant would overestimate the probability of the most 

probable target and yield a strategy index between 0 and 0.63. Note that the strategy index 

increases monotonically with α for a fixed β. 



 Supplementary Figure 2 presents data from three representative participants based on 

this two-parameter model. In particular, we present the evolution of their strategy index across 

training blocks as a walk on the model surface. That is, we fitted the two-parameter model on 

the participants’ response data per block and estimated the parameters α and β per participant 

and block. We then computed the participant strategy index as the difference between the 

participant strategy choice and the matching model. In particular, we observed that all 

participants started close to the random model (β≈1) and then deviated towards higher α and 

lower β values. However, the trajectory and end point of the individual participants varied and 

therefore yielded different strategy index values. That is, participant A showed 0.5<α<0.8 

throughout most of the training blocks (i.e. underestimated the highly probable targets) while 

α≈0.8 (i.e. close to matching) at the end of the training, yielding a negative strategy index. In 

contrast, participant B showed α≈0.8 consistently across blocks and therefore yielded a strategy 

index close to 0 (i.e. matching). Finally, participant C overestimated the highly probable targets 

(i.e. 0.8<α<1) and yielded a higher positive strategy index (i.e. closer to maximization). 

 

MRI data acquisition: Scanning was conducted using a 3T Philips Achieva MRI scanner with 

a 32-channel head coil. T1-weighted anatomical data (175 slices; 1×1×1 mm3 resolution) were 

collected during the first scanning session. Resting-state echo-planar imaging (EPI) data 

(gradient echo-pulse sequences) were acquired in both scanning sessions (whole brain 

coverage; 180 volumes; TR=2s; TE=35ms; 32 slices; 2.5x2.5x4 mm3 resolution; SENSE). The 

benefit of non-isotropic resolution is acquisition speed; that is, faster acquisition of fewer slices 

at higher in-plane resolution (keeping voxel volume constant and signal-to-noise ratio similar). 

This is advantageous for resting-state fMRI (rs-fMRI) that requires relatively high temporal 

resolution. We employed standard pipelines (i.e. SPM) that have been extensively used to 

model fMRI data at non-isotropic resolution. We employed a well-established volumetric 



analysis (i.e. Group Independent Component Analysis-GICA) to investigate functional 

connectivity at rest that has been developed and validated on non-isotropic data4–8. Finally, a 

recent study9 has shown highly similar ICA results between isotropic and anisotropic datasets. 

 We collected rs-fMRI from three runs that each lasted for 6 minutes. Participants were 

instructed to keep their eyes open and maintain fixation to a white dot presented at the center 

of the screen. Diffusion Tensor Imaging (DTI) data were also collected in both scanning 

sessions and the acquisition consisted of 60 isotropically-distributed diffusion weighted 

directions (b=1500 smm-2; TR=9.5s; TE=78ms; 75 slices; 2x2x2 mm3 resolution; SENSE) plus 

a single volume without diffusion weighting (b=0 smm-2, denoted as b0). The DTI sequence 

was repeated twice during each session, once following the Anterior-to-Posterior phase-

encoding direction and once the Posterior-to-Anterior direction. This acquisition scheme was 

implemented to allow correction of susceptibility-induced geometric distortions10. 

 

DTI connectivity-based segmentation of striatum: Previous work across species11,12 has shown 

that dissociable cortical projections from anatomically-defined striatal subdivisions mediate 

distinct brain functions. To investigate learning-dependent changes in these corticostriatal 

connections, we defined the striatum (i.e. caudate and putamen) anatomically from the 

Automated Anatomical Labeling (AAL) atlas13. We then conducted a DTI connectivity-based 

segmentation to segment the striatum into finer subdivisions (i.e. segments) based on their 

whole-brain connectivity profile14. 

 We pre-processed and analyzed the DTI data in FSL 5.0.8 (FMRIB Software Library, 

http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/). We first corrected the data for susceptibility distortions, 

eddy currents and motion artifacts (FSL topup and FSL eddy)15 and rotated the gradient 

directions (bvecs) to correct for the estimated motion rotation16,17. We generated a distribution 

model in each voxel using FSL BedpostX18 with default parameters. 



 To simulate tracts from a seed defined in MNI space, we computed the transformation 

matrix from MNI to native space per participant (FSL flirt). We followed a 4-step registration 

procedure: (a) aligned the non-weighted diffusion volume (b0) of each session to their 

midspace and create a midspace-template (rigid-body)19,20, (b) aligned the midspace-template 

to the anatomical (T1) scan (affine), (c) aligned the T1 image to the MNI template (affine) and 

(d) inverted and combined all the transformation matrices of the previous steps to obtain the 

MNI-to-native registration. The results of each step were visually inspected to ensure that the 

alignment was successful. 

 We then simulated tracts (i.e. probabilistic streamlines) starting from the seed area (i.e. 

striatum) to the rest of the brain (i.e. target area) using the ProbtrackX algorithm21. Following 

a hypothesis-free classification method22, we down-sampled the target area (AAL atlas 

excluding the seed: bilateral caudate and putamen) to 4x4x4 mm3 resolution. As the seed areas 

were in MNI space, we provided the MNI-to-native transformation matrix and used the 

omatrix2 option to create a seed-by-target connectivity matrix (the ProbtrackX algorithm 

transforms the seed from MNI to native space and performs the probabilistic tractography 

simulation in native space; the results are then transformed back into MNI space). We used a 

mid-sagittal exclusion mask to prevent tracts from crossing hemispheres21 and length 

correction to account for the distance-from-the-seed bias towards shorter connections22. The 

parameters we used in ProbtrackX are: 5000 samples per voxel, 2000 steps per sample until 

conversion, 0.5mm step length, 0.2 curvature threshold, 0.01 volume fraction threshold and 

loopcheck enabled to prevent tracts from forming loops. We repeated this procedure for each 

hemisphere (Supplementary Figure 3). 

 This analysis generated a connectivity matrix from each voxel in the seed area to every 

voxel in the target area. Defining the seed in the MNI space guaranteed the same number of 

voxels in the seed across participants (after the data were transformed back from native to MNI 



space), alleviating differences in individual brain size. Subsequently, we concatenated the 

connectivity matrices across participants and groups and correlated the connectivity values 

from and to each voxel in the seed; generating a seed-by-seed correlation matrix. We then 

performed k-means clustering on the correlation matrix for 2 to 8 classes (squared Euclidean 

distance). Lastly, we converted each class to a binary mask in MNI space to create the striatal 

segments and down-sampled them to the resting-state resolution (3x3x4 mm3) for further 

analysis. 

 To find the optimal number of clusters, we computed the mean silhouette value per 

clustering by averaging the values across voxels23. The silhouette value shows how similar 

each voxel is to voxels of its class compared to voxels of other classes. Therefore, we selected 

the highest number of clusters that shows the maximum mean silhouette value averaged for the 

two hemispheres. This method resulted in 4 striatal segments per hemisphere (average 

silhouette value of 0.4) that corresponded to known anatomical subdivisions of the striatum 

(Figure 3a, Supplementary Table 1). 

 

Resting-state data pre-processing: We pre-processed the resting-state data in SPM12.2 

software package (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) following the optimized 

pipeline described in recent work5. We first processed the T1-weighted anatomical images by 

applying brain extraction and segmentation (SPM segment). From the segmented T1 we 

created a white matter (WM) mask and a cerebrospinal fluid (CSF) mask. For each resting-

state run, we corrected the EPI data for slice scan timing (i.e. to remove time shifts in slice 

acquisition, SPM slice timing) and motion (least squares correction, SPM realign). We co-

registered all EPI runs to the first run per participant (rigid body) and subsequently to the T1 

image (rigid body, resliced to 1 x 1 x 1 mm3) and calculated the mean CSF and WM signal per 

volume (SPM coregister & reslice). We then aligned the T1 image to the MNI space (affine) 



and applied the same transformation to the EPI data (SPM normalise). We resliced the aligned 

EPI data to 3 x 3 x 4 mm3 resolution and applied spatial smoothing with a 5mm isotropic 

FWHM Gaussian kernel (SPM smooth). Finally, we despiked any secondary motion artifacts 

using the Brain Wavelet Toolbox24, regressed out the signal from CSF and the motion 

parameters (translation, rotation and their squares and derivatives25) and applied linear 

detrending26. Note that the pipeline we followed5 does not include the global signal as a 

nuisance regressor, consistent with a recent review27 suggesting that global signal regression 

may not be appropriate for comparisons between sessions and groups. 

 

Independent Component Analysis (ICA): We used spatial GICA6,28 to extract participant- and 

session-specific hemodynamic source locations using the Group ICA fMRI Toolbox (GIFT) 

(http://mialab.mrn.org/software/gift/). Pre-processed EPI data from both groups (i.e. training, 

no-training control) from both sessions (i.e. Pre, Post) were included in the GICA. Following 

pre-processing of each run, the mean value per voxel was removed and dimensionality 

reduction was performed. We used the Minimum Description Length criteria (MDL)29 to 

estimate the dimensionality and determine the number of independent components. We used a 

two-level dimensionality reduction procedure using Principal Component Analysis (PCA); 

first at the participant level and then at the group level. The ICA estimation (Infomax 

algorithm) was run 20 times and the component stability was estimated using ICASSO30. 

 This procedure resulted in 22 spatially independent components. We then generated 

participant-specific spatial maps for each component using GICA3 back reconstruction4. 

Lastly, participant and group spatial maps were scaled to z maps for further analysis31. We then 

used a quantitative method, as described in previous work32, to remove components of non-

neuronal origin. We first thresholded the group spatial maps at z=1.0 and calculated the spatial 

correlation of each component with CSF and grey matter (GM) probabilistic maps (as extracted 



from the MNI template). We rejected any component with a spatial correlation of R2 > 0.025 

with CSF or of R2 < 0.025 with GM. To supplement this method, we visually inspected all 

rejected components to verify that they were not of neuronal origin. This method resulted in 5 

rejected components: 2 components had high spatial correlations with CSF and 3 components 

had low spatial correlations with GM. 

 We correlated the thresholded maps of the remaining components with known network 

templates and labeled each component based on its highest correlation value to these 

templates7,33. We selected 7 components (Figure 3b, Supplementary Table 2) that showed 

high correlation with templates of cortical regions involved in executive, motor, visual and 

motivational networks11,12. 

 To extract the resting-state time course for each cortical ICA-based component and 

DTI-based striatal segment, we used an autoregressive AR(1) model (SPM first-level analysis) 

on the pre-processed data before ICA to treat for serial correlations34. Following the whole-

brain modeling, we extracted the time course per voxel per component (SPM VOI extraction), 

as defined by participant-specific spatial maps thresholded at z=2.576 (p=0.01). We then 

applied a 5th order Butterworth band-pass filter, between 0.01 and 0.08 Hz to remove effects 

of scanner noise and physiological signals (respiration, heart beat)35. In addition, we extracted 

the first eigenvariate across all voxels in each component to derive a single time course per 

component for subsequent connectivity analysis. 

 

Graph analysis: To construct a functional connectivity matrix for each participant, we followed 

the same processing steps as for the extrinsic connectivity analysis. We extracted the first 

eigenvariate across all voxels in each AAL region (90 areas; excluding Cerebellum and 

Vermis) and constructed a 90x90 correlation matrix by correlating the time course of each AAL 

region with every other AAL region. We then standardized the correlation coefficients using 



Fisher z-transform and averaged the z-values across the three rs-fMRI runs to derive a single 

functional connectivity matrix for each participant and session. 

To construct a structural connectivity matrix for each participant, we simulated tracts 

(i.e. probabilistic streamlines) from each AAL area (i.e. seed mask) to any other AAL area (i.e. 

termination masks; excluding Cerebellum and Vermis) in native space using the Probabilistic 

Tracking algorithm (FSL ProbtrackX)21. The parameters we used in ProbtrackX are: 5000 

samples per voxel, 2000 steps per sample until conversion, 0.5mm step length, 0.2 curvature 

threshold, 0.01 volume fraction threshold and loopcheck enabled to prevent tracts from forming 

loops. To control for differences in volume across seeds and participants, we normalized the 

tract count (i.e. the number of streamlines reaching area j when seeded from areas i) by the 

total number of tracts started from the seed region36. Finally, we averaged the normalized tract 

count from area i to area j and from area j to area i to create a symmetric structural connectivity 

matrix for each participant and session. 

We then constructed participant-specific binary graphs based on the connectivity 

matrices for each modality (i.e. rs-fMRI, DTI). We first generated the Minimum Spanning 

Tree37 per matrix to create a connected graph for each participant and session. We then 

iteratively added the strongest edges irrespective of the sign (i.e. using the absolute functional 

connectivity value), until we reached a certain density level. Previous work in a similar-sized 

parcellation38 has shown that density lower than 15% may result in sparse graphs and higher 

than 25% in graphs without small-world topology. Thus, we generated graphs at 20% density 

and then evaluated the stability of our findings in a range of density levels: from 10 to 30% in 

increments of 5. We used the Brain Connectivity Toolbox39 to calculate graph metrics per 

participant and modality. 

We note that the DTI and rs-fMRI metrics used in our graph analysis were derived by 

data pre-processed at native vs. standard space. In particular, DTI tractography is typically 



performed in the native space to achieve best performance of the tracking algorithms21, whereas 

rs-fMRI data are typically normalized to a standard space (e.g. MNI) before computing 

functional connectivity5. Following previous studies, we analyzed the DTI data in native space, 

while the rs-fMRI data in standard space (i.e. data were normalized to MNI), as these data 

needed to be in a common space for group analysis across participants. While some recent 

studies recommend performing the rs-fMRI analysis in native space to minimize the effect of 

interpolation and improve localization40,41, others have found no difference with and without 

the inclusion of the normalization step42. Further, our analysis approach makes it unlikely that 

these differences in interpolation between data types (i.e. rs-fMRI, DTI) have a significant 

effect on our results. First, we selected brain regions for both the rs-fMRI and DTI graph 

analysis based on the AAL parcellation, resulting in larger size brain regions. This makes it 

unlikely that small differences in the interpolation step would significantly affect the 

connectivity values estimated across all voxels in each brain region. Second, for the rs-fMRI 

data we computed the first eigenvariate when we extracted the time course per brain region 

and computed functional connectivity from these values. This step extracts the most 

representative time course from all the voxels in each brain region based on their common 

variance; therefore, it minimizes the effects of noise and interpolation43. Third, for each 

imaging modality (i.e. rs-fMRI, DTI) we generated binary graphs and compared the 

connectivity values to select the strongest connections within-modality rather than comparing 

connectivity across modalities. That is, we created binary graphs at 20% density level by 

selecting the edges with the top 20% connectivity values, for each modality and session. We 

computed degree and clustering coefficient from these graphs per modality and used these 

metrics in the PLS regression to combine data from both modalities. 

 



Partial Least Squares (PLS) modeling: control analyses: Results in the main text are presented 

for a network density of 20%. Here we show the robustness of these results in a range of 

densities (10%-30%) typically used in brain network analyses38. We calculated degree and 

clustering for 10% to 30% density in increments of 5% per session (Pre, Post). We computed 

the difference between the two curves (Post minus Pre) for each metric (degree, clustering 

coefficient)44 and performed the same PLS regression analysis as before. We tested for model 

significance using permutation testing (10,000 permutations) and then correlated the estimated 

PLS components and bootstrapped weights (1,000 samples) with the components and weights 

estimated for 20% density as shown in the main text. We found that the first PLS component 

across densities was significant compared to the null (p=0.05) and showed a high correlation 

with the PLS-1 component for 20% density (r(19)=0.94, p<0.001, CI=[0.85, 0.98]). Further, 

the predictor weights across densities showed a high correlation with the weights for 20% 

density (r(46)=0.84, p<0.001, CI=[0.67, 0.93]). PLS-2 across densities was not significant in 

comparison to the null model; however, it showed a high correlation with the PLS-2 component 

and its weights for 20% density (component: r(19)=0.89, p<0.001, CI=[0.75, 0.95]; weights: 

r(46)=0.89, p<0.001, CI=[0.83, 0.94]). Similarly, PLS-3 across densities was not significant 

compared to the null and showed weaker correlations with the PLS-3 component for 20% 

density (component: r(19)=0.77, p<0.001, CI=[0.63, 0.88]; weights: r(46)=0.48, p<0.001, 

CI=[0.11, 0.71]). We therefore restricted the main analysis to the first two components. 

Supplementary Figure 6 summarizes the weights (combinations of nodes and metrics) for 

PLS-1 and PLS-2 for the average metrics (10% to 30% density). 

 Further, to test whether our findings generalize to other parcellation schemes than the 

AAL atlas, we created graphs at 20% density using the Shen45 and Brainnetome46 atlases that 

provide a finer whole brain parcellation. We selected nodes that corresponded to the same 

anatomical areas as the selected AAL nodes and performed a similar PLS regression analysis. 



We found that both atlases yielded significant results (Shen: first three components; 

Brainnetome: first four components). Moreover, we found that the first two components for 

these atlases were highly similar to our results when using the AAL atlas (Shen: PLS-1: 

r(19)=0.75, p<0.001, CI=[0.42, 0.92], PLS-2: r(19)=0.83, p<0.001, CI=[0.53, 0.93]; 

Brainnetome: PLS-1: r(19)=0.73, p<0.001, CI=[0.44, 0.89], PLS-2: r(19)=0.87, p<0.001, 

CI=[0.68, 0.94]). Note that the Brainnetome atlas provides a parcellation of the striatum (i.e. 

ventral caudate, dorsal caudate, dorsolateral putamen and ventromedial putamen) that is 

comparable to our DTI-based segmentation (Figure 3a). Further, the significant predictors for 

PLS-1 were: a) degree change in right ventral caudate (rs-fMRI), left dorsal caudate (rs-fMRI), 

left ACC (DTI) and left postcentral (rs-fMRI); b) clustering change in right ventral caudate 

(DTI) and left postcentral (rs-fMRI); whereas for PLS-2 were: a) degree change in right MFG 

(DTI) and left postcentral (DTI); b) clustering change in left ACC (DTI), right dorsolateral 

putamen (rs-fMRI) and right ACC (rs-fMRI). Taken together, these findings suggest that our 

graph analysis is robust across parcellation schemes that segment the striatum at different 

scales, making it unlikely that our results were confounded by the selected parcellation atlas. 

 Finally, we tested whether our findings generalize to other graph metrics that relate to 

global and local integration. In particular, we tested: a) the average shortest path length (i.e. 

average number of a node’s transitions via graph edges to any other node in the network) and 

betweenness centrality (i.e. number of shortest paths that traverse through a certain node) as 

measures of global integration47,48, b) the local efficiency (i.e. how efficiently a node’s 

neighbors communicate if this node is removed) as measure of local integration49. These 

measures have been previously shown to relate to learning and brain plasticity50–52.We 

conducted similar PLS regression analyses as for our main model (i.e. Model-1: degree and 

clustering coefficient) for the following models based on combinations between global and 

local integration metrics: a) Model-2: average shortest path length and clustering coefficient, 



b) Model-3: average shortest path length and local efficiency, c) Model-4: degree and local 

efficiency, d) Model-5: betweenness centrality and clustering coefficient, e) Model-6: 

betweenness centrality and local efficiency. All models showed significant results when tested 

for 10,000 permutations (Model-2: first component, p=0.010; Model-3: first two components, 

p=0.044; Model-4: first three components, p=0.012; Model-5: first three components, p=0.026; 

Model-6: first component, p=0.022). Further, the first two components for these models were 

highly correlated to the components of the main model (Model-1) including degree and 

clustering coefficient (Supplementary Table 5). Thus, our findings showing that learning-

dependent plasticity in corticostriatal networks predicts individual behaviour (i.e. decision 

strategy) are not limited only to selected measures of global or local integration. 

Further, including all the above graph metrics in the same PLS model (Model-7: degree, 

average shortest path length, betweenness centrality, clustering coefficient and local 

efficiency), the model was significant for the first three PLS components compared to a null 

model (p=0.045, 10,000 permutations). In addition, the first two components for this model 

were highly correlated to the components of Model-1 (Supplementary Table 5), generalizing 

our results to a larger number of metrics that characterize whole-brain network connectivity. 

 

No-training control experiment: Scanning for the no-training control experiment was 

conducted using a 3T MRI scanner with a 32-channel head coil. T1-weighted anatomical data 

(175 slices; 1×1×1 mm3 resolution) were collected during the first scanning session. Resting-

state EPI data (gradient echo-pulse sequences) were acquired in both scanning sessions with 

the same sequence as the one used in the training experiment (whole brain coverage; 180 

volumes; TR=2s; TE=30ms; 36 slices; 2.5x2.5x4 mm3 resolution; GRAPPA). We collected rs-

fMRI from three runs that each lasted for 6 minutes. DTI data were also collected in both 

scanning sessions and the acquisition parameters were matched as closely as possible to the 



training group: 60 isotropically-distributed diffusion weighted directions (b=1500 smm-2; 

TR=8.9s; TE=91ms; 72 slices; 2x2x2 mm3 resolution; GRAPPA) plus a single volume without 

diffusion weighting (b=0 smm-2). The DTI sequence was repeated twice during each session, 

once following the Anterior-to-Posterior phase-encoding direction and once the Posterior-to-

Anterior direction. 

 To ensure that the data quality was similar between the two groups (training vs. no-

training control) that were tested using highly similar sequences and scanning parameters, we 

tested for differences related to a) head movement and b) spikes for the rs-fMRI data, and a) 

head movement and b) diffusion tensor model fit for the DTI data. For the rs-fMRI data, we 

calculated the maximum root mean square (rms) movement per run (based on x,y,z motion 

parameters estimated by SPM realign) and the maximum number of spikes per run (based on 

the Spike Percentage output of the Brain Wavelet toolbox24). For the DTI data, we calculated 

the root mean square (rms) movement per session (based on eddy’s restricted_movement_rms 

output) and the sum of squared errors (sse) from diffusion tensor model fit18. No significant 

differences were observed between groups for head movement (rs-fMRI: F(1,40)=0.31, 

p=0.578, ηp
2=0.008; DTI: F(1,40)=1.84, p=0.182, ηp

2=0.044), number of spikes (F(1,40)=1.19, 

p=0.283, ηp
2=0.029) or diffusion tensor model fit for the seed areas, the whole brain and the 

white-matter (F(1,40)=0.77, p=0.386, ηp
2=0.019). Thus, these analyses suggest that it is 

unlikely that differences in connectivity between groups could be due to differences in data 

quality. 
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Supplementary Tables 

Supplementary Table 1: Striatal segments. Four striatal segments for each hemisphere were 

estimated by a DTI connectivity-based and hypothesis-free classification method. The size of 

the segments and the MNI coordinates of their center of gravity are shown. 

Hemisphere Name voxels 
Center of gravity 

x y z 

Left 

ventral striatum 102 -13 13 -9 

caudate head, anterior putamen 117 -16 14 -1 

caudate body/tail 120 -16 7 13 

posterior putamen 208 -27 -1 5 

Right 

ventral striatum 99 14 13 -8 

caudate head, anterior putamen 126 17 15 -1 

caudate body/tail 129 14 6 15 

posterior putamen 197 27 1 4 

  



Supplementary Table 2: ICA components. Clusters within the 7 selected components are 

extracted from the group maps (z=1.96, p=0.05) and are organized into known functional 

groups7,33. The table shows the number of voxels within each cluster (clusters smaller than 20 

voxels are not included), the MNI coordinates, the label of the corresponding AAL area and 

the t-statistic of the peak voxel. 

Network Component Cluster voxels x y z t-value 

Executive 

CP_9 (RCEN) 

R MFG 718 39 23 50 3.87 
R IPL 477 48 -49 54 4.64 
L Cerebellum 39 -36 -70 -42 2.61 
R Cingulate 38 3 35 38 3.01 
R MTG 27 66 -25 -10 2.23 

CP_14 (LCEN) 

L IFG triangular 510 -51 17 30 4.55 
L IPL 413 -33 -70 50 3.81 
L MFG 55 -27 17 58 2.8 
L MTG 47 -60 -49 -10 2.46 
L SFG medial 25 -3 29 42 2.71 

Motor 
CP_4 (Sensorimotor) R SMA 853 0 -22 58 3.92 

CP_5 (Lateral Motor) R Postcentral 368 51 -25 54 3.55 
L Postcentral 330 -51 -31 54 3.8 

Visual 
CP_2 (Secondary) 

R MOG 726 33 -82 22 3.42 
L MOG 406 -24 -88 22 2.88 

CP_12 (Early) R Calcarine 606 12 -97 -2 3.39 
Motivational CP_15 (ACN) R ACC 620 0 44 -2 4.38 



Supplementary Table 3: Intrinsic and extrinsic connectivity correlations with strategy 

index. Semipartial Pearson skipped correlations are reported for (a) intrinsic connectivity 

change (post minus pre-training) and (b) extrinsic connectivity change with strategy index for 

frequency and context-based statistics. Significant correlations are determined based on 

bootstrapped confidence intervals (CI) and denoted in bold. The r-value and 95% CI are shown 

for each statistical test (n=21). 

a. Intrinsic connectivity analysis 

Network 
frequency statistics context-based statistics 

r CI r CI 
ACN 0.12 [-0.32, 0.51] 0.35 [0.04, 0.63] 

RCEN -0.17 [-0.61, 0.33] -0.16 [-0.57, 0.33] 

LCEN -0.01 [-0.39, 0.41] 0.42 [0.01, 0.68] 

Secondary Visual -0.09 [-0.43, 0.29] -0.49 [-0.74, -0.10] 

Early Visual -0.32 [-0.73, 0.16] -0.03 [-0.44, 0.40] 

Sensorimotor 0.20 [-0.13, 0.53] 0.23 [-0.22, 0.59] 

Lateral Motor 0.77 [0.60, 0.89] -0.07 [-0.50, 0.39] 

b. Extrinsic connectivity analysis 

Corticostriatal pathways 
frequency statistics context-based statistics 

r CI r CI 
ACN - right ventral striatum -0.09 [-0.45, 0.28] -0.15 [-0.43, 0.12] 

ACN - left ventral striatum -0.31 [-0.65, 0.12] -0.14 [-0.53, 0.27] 

RCEN - right caudate head, anterior putamen -0.05 [-0.40, 0.36] 0.13 [-0.26, 0.42] 

RCEN - left caudate head, anterior putamen 0.34 [-0.03, 0.66] -0.14 [-0.41, 0.10] 

LCEN - right caudate head, anterior putamen 0.17 [-0.31, 0.52] 0.22 [-0.19, 0.52] 

LCEN - left caudate head, anterior putamen 0.03 [-0.34, 0.40] 0.01 [-0.35, 0.33] 

Secondary Visual - right caudate body/tail 0.15 [-0.38, 0.57] 0.38 [-0.09, 0.72] 

Secondary Visual - left caudate body/tail 0.19 [-0.25, 0.56] 0.21 [-0.28, 0.58] 

Early Visual - right caudate body/tail -0.04 [-0.50, 0.41] 0.05 [-0.41, 0.45] 

Early Visual - left caudate body/tail -0.19 [-0.60, 0.25] -0.46 [-0.83, -0.13] 

Sensorimotor - right posterior putamen -0.14 [-0.49, 0.26] 0 [-0.35, 0.35] 

Sensorimotor - left posterior putamen 0.01 [-0.55, 0.45] 0.03 [-0.37, 0.43] 

Lateral Motor - right posterior putamen 0.51 [0.20, 0.74] -0.19 [-0.59, 0.29] 

Lateral Motor - left posterior putamen 0.13 [-0.41, 0.65] 0.03 [-0.50, 0.46] 

  



Supplementary Table 4: PLS weights of the first two components: for (a) predictors and 

(b) response variables. Asterisks denote significant weights (|z|>2.576, p=0.01). 

a. Weights for predictors 

Node Graph 
metric 

PLS-1 PLS-2 

rs-fMRI DTI rs-fMRI DTI 

L Caudate Degree 1.79 -0.97 0.64 -2.84* 
L Caudate Clustering 1.18 1.05 -0.22 3.99* 
R Caudate Degree 2.30 -0.89 0.77 3.21* 
R Caudate Clustering 2.07 -0.10 0.03 -0.66 
L Putamen Degree 1.78 4.60* 1.38 -0.67 
L Putamen Clustering 0.29 -2.13 0.96 1.37 
R Putamen Degree 1.35 -2.06 0.31 0.34 
R Putamen Clustering -0.40 -0.03 1.24 -0.27 
R MFG Degree 0.41 -0.22 0.39 2.67* 
R MFG Clustering -1.92 -1.94 -0.49 -0.49 
L IFG triangular Degree 2.83* 1.50 0.11 1.24 
L IFG triangular Clustering 1.72 2.05 -0.57 1.32 
L Postcentral Degree -1.86 -2.01 -1.69 -0.90 
L Postcentral Clustering 0.20 2.66* -1.38 -0.44 
R Postcentral Degree -0.74 0.15 -1.11 -0.69 
R Postcentral Clustering -1.15 -1.71 -1.24 0.65 
L Calcarine Degree -0.39 1.46 -0.23 -1.64 
L Calcarine Clustering 0.95 0.50 1.96 0.64 
R Calcarine Degree 0.40 3.58* -0.67 0.02 
R Calcarine Clustering -1.04 -1.67 2.18 -0.95 
L ACC Degree 0.39 -0.27 1.38 3.67* 
L ACC Clustering 0.34 -0.52 2.84* 1.12 
R ACC Degree -0.18 2.16 2.55 1.21 
R ACC Clustering -0.56 -3.45* 1.44 -0.30 

 

b. Weights for response variables 

Behaviour PLS-1 PLS-2 

Strategy 0 -2.85* 2.01 
Strategy 1&2 3.28* 2.47 

  



Supplementary Table 5: PLS results across graph metrics. Pearson correlation of the first 

two PLS components between models (Model-1 is the reference model for the comparisons). 

Model comparison PLS-1 PLS-2 

Model-2 vs. Model-1 r=0.94, CI=[0.81, 0.98] r=0.89, CI=[0.75, 0.95] 
Model-3 vs. Model-1 r=0.88, CI=[0.58, 0.97] r=0.86, CI=[0.66, 0.96] 
Model-4 vs. Model-1 r=0.99, CI=[0.96, 0.99] r=0.98, CI=[0.94, 0.99] 
Model-5 vs. Model-1 r=0.95, CI=[0.90, 0.98] r=0.93, CI=[0.82, 0.97] 
Model-6 vs. Model-1 r=0.92, CI=[0.80, 0.97] r=0.89, CI=[0.73, 0.97] 
Model-7 vs. Model-1 r=0.98, CI=[0.92, 0.99] r=0.97, CI=[0.90, 0.99] 
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Supplementary Figure 1: Examples of participant responses for level-1 sequences. (a) Response tables for 

model-matching (Table A), model-maximization (Table B) and a random model (i.e. equal responses to all context-

target contingencies; Table C). (b) Table D shows example responses for underestimating the probability of the most 

probable contingency (i.e. responses between random and model-matching). Table E shows example responses for 

overestimating the probability of the most probable contingency (i.e. responses between model-matching and model-

maximization). (c) Participant strategy choice across training blocks  for three representative participants (blue: 

participant A; red: participant B; green: participant C) against the three models (solid black line: model-matching; 

dashed black line: model-maximization; dashed grey line: random model). We computed the strategy index as the 

integral between the values of participant strategy choice and the model-matching across blocks. 



Supplementary Figure 2: Two-parameter model of participant response distribution. 

The surface of a two-parameter model depicted here describes the strategy index of a virtual 

participant as a function of α and β (P = β [0.25, 0.25, 0.25, 0.25] + (1-β) [1-α, α, 0, 0]). α 

describes participant preference for the more over the less probable target: (i) α=1 indicates 

maximization, (ii) α=0.8 indicates matching, (iii) α=0.5 indicates equal responses to the two 

possible targets, (iv) α<0.5 indicates participant preference of the less probable target. β 

describes participant preference for the random model: (i) β=1 indicates random model of 

responses (i.e. equal responses for all targets), (ii) β=0 indicates no random responses (i.e. the 

model is described by the probabilities of the two probable targets). Colder colours (e.g. blue) 

denote lower strategy index values, whereas warmer colors (e.g. yellow) denote higher 

strategy index values. Individual data of three representative participants are displayed as 

walks on the surface (blue: participant A; red: participant B; green: participant C). Individual 

data points start from the right (i.e. β≈1) and deviate towards the left of the surface (i.e. β≈0) 

showing three distinct behaviours: participant A underestimates the highly probable targets 

(i.e. negative strategy index close to matching), participant B matches the target distribution 

(i.e. zero strategy index close to matching) and participant C overestimates the highly 

probable targets (i.e. positive strategy index close to maximization). 
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Supplementary Figure 3: DTI tractography for striatal segmentation. Striatal segments 

were estimated using a DTI connectivity-based and hypothesis-free classification method. 

Connection probability maps are displayed for each segment on the MNI template 

(neurological convention: left is left). Maps are thresholded at 0.1% of total tracts and 

averaged across groups and sessions. Whole brain tractography was computed separately for 

the left and right hemisphere and the maps were combined for visualization purposes (x=-20, 

y=-12, z=-2). 
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Supplementary Figure 4: Intrinsic connectivity analysis – supplementary results. 

Skipped Pearson correlations (two-sided, n=21) showed a magically significant relationship 

of intrinsic connectivity change (post- minus pre-training) in the Left Central Executive 

(LCEN) and Anterior Cingulate (ACN) networks with strategy index for frequency statistics 

(LCEN: r(19)=0.42, p=0.059, CI=[0.01, 0.68]; ACN: r(19)=0.35, p=0.121, CI=[0.04, 0.63]). 

Open circles in the correlation plots denote outliers as detected by the Robust Correlation 

Toolbox. Intrinsic connectivity was positive for all participants and sessions (pre-training, 

post-training); therefore, the sign of the change (Post minus Pre) indicates an increase (if 

positive) or a decrease (if negative) in the connectivity. In all but 5 cases (3 for posterior 

putamen - Lateral Motor connectivity; 2 for caudate body/tail - Early Visual connectivity) 

extrinsic connectivity change (Post minus Pre) had the same sign as the absolute connectivity 

change (|Post| minus |Pre|). Therefore, we interpret these correlations based on the change of 

the actual connectivity values (that is, Post>Pre is interpreted as increased connectivity). 

Performing the extrinsic connectivity analysis using the absolute connectivity change (|Post| 

minus |Pre|) showed similar results. That is, we found a) increased connectivity between the 

right posterior putamen and the Lateral Motor network correlated positively with strategy 

index for frequency statistics (r(16)=0.62, p=0.006, CI=[0.38, 0.79]), b) increased 

connectivity between the left body/tail of caudate and the Early Visual network correlated 

negatively with strategy index for context-based statistics (r(16)=-0.38, p=0.120, CI=[-0.74, -

0.02]). 
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Supplementary Figure 5: Goodness of fit of PLS regression. Top panel shows variance 

explained in the response variables as a function of PLS components. Bottom panel shows 

the significance of the PLS model as a function of PLS components. Significance was 

determined by permutation testing (10,000 permutations); p-values below 0.05 indicate 

significant results. 
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Supplementary Figure 6: PLS results across a range of density levels (from 10% to 

30%). Scatterplot of PLS-1 and PLS-2 weights for change (i.e. post- minus pre-training) in 

(a) degree and (b) clustering coefficient. PLS predictor weights for each selected node are 

indicated by symbols separately for DTI (circles) and rs-fMRI (squares) data. The colour of 

the symbols corresponds to nodes in cortico-striatal circuits (Figure 5): caudate and putamen 

(magenta), right MFG and left IFG (red), postcentral gyrus (cyan), calcarine sulcus (blue), 

and ACC (yellow). PLS predictor weights with |z|>2.576 (p=0.01) are marked by an asterisk 

to denote significant predictors for the respective PLS component. 
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Supplementary Figure 7: PLS components related to strategy index. Illustration of the 

first two PLS components in relation to strategy index for frequency and context-based 

statistics (n=21). (a) Scatterplot of PLS-1 score with strategy index showing opposite patterns 

for frequency vs. context-based statistics. (b) Scatterplot of PLS-2 score with strategy index 

showing a similar pattern for frequency and context-based statistics. Note that the scatterplots 

between PLS components and strategy index are shown here for illustration purposes only. 

No further statistics were conducted to avoid circularity, as these two PLS components were 

shown to be significant predictors of the strategy index (Figure 7a, Supplementary Table 

4b). 
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b. PLS-2 component
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