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Abstract  

Alzheimer’s Disease (AD) drug discovery has been hampered by patient heterogeneity, and the lack 

of sensitive tools for precise stratification. Here, we demonstrate that our robust and interpretable AI-

guided tool (predictive prognostic model, PPM) enhances precision in patient stratification, 

improving outcomes and decreasing sample size for a failed AD clinical trial. The AMARANTH trial 

of lanabecestat, a BACE1 inhibitor, was deemed futile, as treatment did not change cognitive 

outcomes, despite reducing β-amyloid.  Employing the PPM, we re-stratify patients precisely using 

baseline data and demonstrate significant treatment effects; that is, 46% slowing of cognitive decline 

for slow progressive patients at earlier stages of neurodegeneration. In contrast, rapid progressive 

patients did not show significant change in cognitive outcomes. Our results provide evidence for AI-

guided patient stratification that is more precise than standard patient selection approaches (e.g. β-

amyloid positivity) and has strong potential to enhance efficiency and efficacy of future AD trials. 
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Introduction 

Dementia presents a major global healthcare challenge, affecting more than 55 million individuals 

around the world, with a projected threefold increase over the next 50 years 1. Alzheimer’s disease 

(AD), the predominant cause of dementia accounts for 60-80% of dementia cases2. Effective treatments 

to prevent the onset, delay the progression, or modify the course of AD are urgently needed to reduce 

the global burden 3. Despite decades of research and development, clinical trials of potential disease-

modifying treatments for dementia have been largely unsuccessful. Cumulative expenditure on clinical-

stage AD research and development is estimated to have reached $42.5 billion since 19954,5 and the cost 

to develop a treatment for AD from the preclinical stage to FDA approval is estimated to be $5.7 billion6. 

Recruitment and patient selection from diverse and qualified pools of volunteers 7,8 often cause 

significant delays and contribute to the high failure rates of these trials4,5. 

Recent positive phase three clinical trial results (i.e. lecanemab, donanemab)9,10 highlight the need for 

interventions earlier in the progression of disease when treatments may be maximally effective11,12 and 

have potential to enhance patient outcomes. Yet, we still lack effective tools for precise stratification 

of patients at risk or early disease stages for inclusion in clinical trials. In particular, patient selection 

often relies on biomarkers (e.g. β-Amyloid) that are limited in predicting AD progression and treatment 

outcomes due to variability in amyloid binding and immune activation 3,4,13,14. Further, up to a third of 

patients at early Mild Cognitive Impairment (MCI) stages may be misdiagnosed due to lack of sensitive 

tools for early diagnosis. Including patients with symptoms due to comorbidities (e.g. anxiety or mood-

related disorders) rather than dementia pathology in clinical trials may impact trial efficiency and costs 

(i.e. larger numbers of patients and longer recruitment are necessary), as well as confound efficacy 

signals due to increased heterogeneity in the patient sample. Further, including patients who have 

progressed to advanced disease stages may reduce the potential of targets (e.g. amyloid removal 

targets) to be effective3,3,15–17. 
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Recent developments in Artificial Intelligence (AI) based on machine learning (ML) algorithms 

provide a turning point in precise patient stratification in early dementia stages. We have developed 

and validated a robust and interpretable predictive prognostic model (PPM) that extends beyond binary 

patient classification approaches and predicts not only whether but also how fast individuals at early 

stages of the disease (MCI) or even pre-symptomatic stages (Cognitive Normal, CN) may progress to 

AD 18,19. PPM has been tested on independent real-world patient data from memory clinics and validated 

against longitudinal clinical outcomes20. PPM delivers an AI-guided marker of future cognitive health 

that predicts progression to AD more precisely than standard clinical assessments (i.e. cognitive data, 

MRI scan)20 and biomarkers typically used for patient inclusion in clinical trials (i.e. β-Amyloid 

positivity)19, offering potential to reduce misdiagnosis and optimize patient stratification.  

Here, we test whether employing the PPM to improve patient stratification may change the outcome and 

efficiency of a failed randomized phase 2/3 clinical trial (AMARANTH, NCT02245737). 

AMARANTH tested the effect of lanabecestat (AZD3293, LY3314814), a brain-permeable inhibitor 

of human beta-site amyloid precursor protein-cleaving enzyme 1 (BACE1/β-secretase)21. BACE1 was 

considered to be a promising therapeutic target for slowing disease progression in AD by preventing 

the generation of Aβ peptides, reducing the effects of Aβ toxicity and the formation of amyloid plaques 

in the brain. The objective of the trial was to test the efficacy of lanabecestat in slowing cognitive 

decline in patients diagnosed with MCI due to AD or mild AD. Despite lanabecestat reducing β-

amyloid, the readout of the trial was deemed unsuccessful and the trial was terminated early due to lack 

of significant changes in primary cognitive outcomes.  

We employed the PPM— trained on research data (ADNI) —to re-stratify individuals in the 

AMARANTH trial data (independent test data) into slow vs. rapid progressive based on baseline data 

(i.e. week 1, before treatment). In contrast to the futility assessment, we demonstrate significant 

treatment effects on primary trial outcomes. In particular, we test the effect of lanabecestat (20mg vs. 
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50mg) on outcomes (β-amyloid, cognition: CDR-SOB, ADAS-Cog13) separately for slow vs. rapid 

progressive individuals. Our results demonstrate 46% slowing of cognitive decline (as measured by 

CDR-SOB) for the slow rather than the rapid progressive group following treatment with lanabecestat 

50mg compared to placebo. That is, patients stratified by the PPM as slow progressive at earlier stages 

of neurodegeneration, showed slowing of cognitive decline related to β-amyloid reduction due to 

treatment. Further, we show that using PPM for patient stratification decreases substantially the sample 

size necessary for identifying significant changes in cognitive outcomes. Our results suggest that using 

PPM to stratify patients for clinical trials has strong potential to enhance their efficiency (faster and 

cheaper) and efficacy (more reliable outcomes), as the right patients are included in the trials at the right 

time.  

Results 

PPM trained on ADNI stratifies clinically stable vs. declining individuals  

PPM adopts a trajectory modelling approach based on Generalized Metric Learning Vector 

Quantization (GMLVQ)18,19 that leverages multimodal data to make predictions about future cognitive 

decline at early dementia stages by iteratively adjusting class-specific prototypes and learning class 

boundaries (Supplementary Material: Predictive prognostic model). GMLVQ incorporates a full 

metric tensor to provide a robust distance measure (metric) tuned to the classification task. We trained 

the PPM on baseline data from ADNI (n = 256) to discriminate Clinically Stable (n = 100) from 

Clinically Declining (n = 156) patients, using β-Amyloid, APOE4, and medial temporal lobe (MTL) 

GM density. Employing ensemble learning with cross-validation and majority voting showed 91.1% 

classification accuracy (0.94 AUC: Area Under Curve) with sensitivity of 87.5% and specificity of 

94.2% (Table S1; Precision: 93.8%, F1 score: 90.5%). Note that discriminating Clinically Stable vs. 

declining individuals comprises a finer classification task compared to previous work focusing on 

patient (AD) vs. healthy (cognitive normal) classifications22,36, where signals are more discriminable 
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and may result in higher model performance. The difference between sensitivity and specificity is 

likely due to weaker signals for the clinically declining compared to the stable class. Thus, achieving 

higher than 90% accuracy and precision provides evidence for PPM robustness. 

Further, the PPM architecture is transparent and interpretable. First, interrogating the metric tensors 

allows us to understand the contribution of each feature to the model’s prediction (Figure 1A). In 

particular, the metric tensors indicate that β-amyloid burden is the most discriminative feature 

compared to MTL GM density and APOE4. This is consistent with the role of β-amyloid and MTL 

atrophy as markers of Alzheimer’s pathology, consistent with the NIA-AA 2018 diagnostic framework 

of AD23 

Second, interrogating the off-diagonal terms of the metric tensor allows us to understand the feature 

interactions that contribute to the model’s prediction. In particular, we observed a positive interaction 

between baseline β-amyloid burden and APOE 4, while a negative interaction between baseline β-

amyloid burden and MTL GM density, consistent with the role of β-amyloid and APOE 4 as risk 

factors for progression to AD.   

Third, the PPM prototypes (one per class: clinically stable, progressive) indicate the most 

discriminative class representatives and allow us to predict an individual’s trajectory. That is, using 

the GMLVQ-Scalar Projection method, we estimate the distance (based on the learnt metric tensor) of 

an independent test dataset from the Clinically Stable prototype and determine the PPM-derived 

prognostic index for each individual, allowing individualized prognosis beyond binary clinical labels 

(Figure 1B; Supplementary Material: GMLVQ-Scalar Projection). In particular, we extracted the 

PPM-derived prognostic index for each individual in an independent ADNI sample (out-of-sample 

validation, n = 419; cognitive normal individuals n = 119, patients with MCI n = 150, patients with 

AD n = 150). We then used multinomial logistic regression to capture the relationship of the PPM-

derived prognostic index to the rate of future tau accumulation and determine boundaries for quartile 

classes that differ in likelihood of disease progression. We scaled the boundaries so that PPM-derived 
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prognostic index indicates individuals who are more likely to: 1) remain stable (PPM index values 

below 0 fall within the 20th percentile of the future tau accumulation slope), 2) experience rapid 

progression (PPM index values higher than 1 fall above the 60th percentile of future tau accumulation), 

3) experience slower progression (PPM index between 0 and 1)18,19. Our results (Figure 1B) showed 

that the PPM-derived prognostic index was significantly different across groups (Kruskal-Wallis H test 

χ(2) = 121.46, p <0.001) with significantly higher index (Bonferroni corrected) for AD vs. MCI and 

CN (p <0.001), MCI vs. CN (p <0.001). This validation against clinical outcomes (i.e. diagnosis) 

provides evidence that the PPM-derived prognostic score is clinically relevant.   

 

Figure 1: PPM trained on ADNI data (n = 256) classifies Clinically Stable vs. Clinically 
declining individuals. A. PPM metric tensor based on training the PPM on MTL Grey Matter (GM) 
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Density, β-Amyloid, and APOE 4 for model training. The color scale represents values for each cell 
in the metric tensor, with diagonal terms summing to 1. The diagonal terms show strong contribution 
of β-amyloid burden (weight: 0. 51) compared to Grey matter density (weight: 0. 34) and APOE 4 
(weight: 0. 15). B. PPM-derived prognostic index for an independent ADNI validation dataset 
(n=419): Box plots of PPM-derived prognostic index showing significant differences between 
Cognitive Normal: CN, Mild Cognitive Impairment: MCI, Alzheimer’s Disease: AD (Kruskal-Wallis 
H two-sided tests, p <0.001, Bonferroni corrected). Notches in the box plots indicate the median, 
solid black box represents the 25th to 75th percentile, the black horizontal lines represent the range 
of the data, black circles indicate outliers, and non-overlapping notches indicate significantly 
different medians (p <0.05). PPM-derived prognostic index below 0 indicates stable, above 1 
indicates rapid progressive, and between 0 and 1 indicates slow progressive individuals. Dashed lines 
indicate boundaries between stable vs. slow progressive (red) and rapid progressive (green) based on 
a multinomial logistic regression testing the relationship of the PPM-derived prognostic index to the 
rate of future tau accumulation. Source data are provided as a Source Data file. 

 
 
PPM-guided stratification in the AMARANTH trial using baseline data 

We used the PPM trained on ADNI data to extract the PPM-derived prognostic index from 

AMARANTH patients (Tables S2, S3 for sample sizes) with: APOE4 at week 1, structural MRI (MTL 

GM density), florbetapir PET (β-amyloid) scans at three time points (week 1, 52, 104), and cognitive 

measures (CDR-SOB, ADAS-Cog13) at three time points (week 1, 52, 104). In particular, using the 

GMLVQ-Scalar Projection method, we estimated the distance of each patient in the AMARANTH 

dataset at baseline (week 1) from the Clinically Stable prototype, determined the PPM-derived 

prognostic index for each individual in the AMARANTH sample and stratified individuals as slow vs. 

rapid progressive based on baseline (week 1) data (Figure 2A; the sample size for stable was small 

(n=5) and these data were excluded from further analysis). There were no significant differences in the 

PPM-derived prognostic index between treatment groups at baseline (Kruskal-Wallis H test χ(2) = 

2.9733, p = 0.2261; Figure 2B). Interestingly, individuals in the slow progressive group showed lower 

β-amyloid burden (t  (330.22) = 11.833, p < 0.001), higher MTL GM density (t (326.33) = -17.351, p 

< 0.001) and better performance in cognitive tests (i.e. lower CDR-SOB (t(911.03) = 6.38, p < 0.001) 

and ADAS-Cog13 (t (806.77) = 5.23, p < 0.001)) compared to the rapid progressive group at baseline. 

These results suggest that individuals stratified as slow progressive by the PPM were at earlier stages 

of neurodegeneration and cognitive decline compared to individuals stratified as rapid progressive, 
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corroborating the link of the PPM-derived prognostic score to cognitive decline and disease 

progression. Note that only 7.5% of the patients included in the trial had β-amyloid less than 50 

centiloid, indicating intermediate or high likelihood of AD, and making it harder to stratify into 

subgroups based on β-amyloid alone. However, training the PPM on multimodal data (rather than β-

amyloid alone) allowed a more precise stratification to subgroups at earlier vs. later disease progression 

stages. 
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Figure 2: PPM-based stratification of patients in the AMARANTH trial using baseline data. A. 
Scatter plot of β-Amyloid against MTL GM density for AMARANTH baseline data (week 1) for 
placebo, lanabecestat 20mg, lanabecestat 50mg. Red dots indicate data for Slow progressive; green 
dots indicate data for Rapid progressive individuals. Individuals with higher β-Amyloid and lower 
GM density are stratified as Rapid progressive by the PPM model. Individuals with lower β-Amyloid 
and higher GM density are stratified as Slow progressive by the PPM model. B. PPM-derived 
prognostic index for AMARANTH data at baseline (week 1): Box plots showing no significant 
differences in the PPM-derived prognostic index between treatment groups (placebo, lanabecestat 
20mg, lanabecestat 50mg) at baseline (sample size: Table S2, Table S3). Notches in the box plots 
indicate the median, solid black box represents the 25th to 75th percentile, the black horizontal lines 
represent the range of the data, black circles indicate outliers. PPM-derived prognostic index below 
0 indicates stable, above 1 indicates rapid progressive, and between 0 and 1 indicates slow progressive 
individuals. Dashed lines indicate boundaries between stable vs. slow progressive (red) and rapid 
progressive (green) based on a multinomial logistic regression testing the relationship of the PPM-
derived prognostic index to the rate of future tau accumulation. Source data are provided as a Source 
Data file. 

 
PPM-guided stratification in the AMARANTH trial shows treatment effects on β-Amyloid 

We tested whether stratifying the AMARANTH dataset based on the PPM-derived index at baseline 

(week 1) shows treatment effects on β-Amyloid. In particular, we used a mixed model for repeated 

measures (MMRM; Table S4), to test Treatment (placebo, 20 mg, 50mg) effects across timepoints 

(week 1, 52, 104) for each PPM-stratified group (Slow vs. Rapid progressive).  

We observed (Figure 3A) a significant decrease in β-Amyloid for lanabecestat 20mg and lanabecestat 

50mg treatment compared to placebo over time (week 104 compared to week 1). This decrease in β-

Amyloid was observed for both PPM-stratified groups (Slow, Rapid progressive). In particular, 

MMRM analysis including fixed effects for treatment, timepoint, PPM-stratified group showed 

significant main effect of Timepoint (F(2, 485.43) = 37.01, p < 0.001) and PPM-stratified group (F(1, 

489.19) = 84.04, p < 0.001), significant interactions for Treatment × Timepoint (F(4, 484.87) = 10.27, 

p < 0.001) and PPM-stratified group x Timepoint (F(2, 485.46) = 8.38, p < 0.001). Post-hoc 

comparisons showed that this PPM-stratified group x Timepoint interaction was significant for the 

lanabecestat 20mg (F(2, 184.22) = 5.36, p < 0.01) and lanabecestat 50mg (F(2, 146.80) = 3.47, p < 

0.05) but not the placebo (F(2,152.76) = 1.20, p = 0.3033) group. 
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Further, computing change in β-Amyloid burden over time (week 104 minus week 1) corroborated 

these results showing significantly higher reduction in β-Amyloid for lanabecestat 20mg and 

lanabecestat 50mg compared to placebo for both the slow and rapid progressive group (Figure 3B). In 

particular, we observed significantly higher reduction of β-Amyloid for a) lanabecestat 20mg vs. 

placebo (Welch’s Two Sample t-test: Slow progressive group: t(55.289) = 2.95, p < 0.001; Rapid 

progressive group: t(154.29) = 4.10, p <0 0.001 ) b) lanabecestat 50mg vs. placebo (Welch’s Two 

Sample t-test: Slow progressive group: t(62.362) = 3.86, p < 0.001, Rapid progressive group: 

t(112.53)= 5.00, p < 0.001). Further, we observed stronger reduction in β-Amyloid due to treatment 

for the rapid (21.91 % change) than slow (17.14 % change) progressive group (Welch’s Two Sample 

t-test: lanabecestat 20mg: t(73.062) = 3.31, p < 0.01; lanabecestat 50mg: t(94.62) = 2.54, p = 0.013). 

This result was potentially due to the higher β-Amyloid burden for the rapid compared to slow 

progressive group at baseline (week 1; t(330.22) = 11.83, p < 0.001).  

Finally, similar analyses in the All Progressive group (n= 434, including individuals from the slow and 

rapid progressive groups) showed significant reduction in β-Amyloid due to treatment over time 

compared to the placebo group. In particular, MMRM analysis showed significant main effect of 

timepoint (F(2,482.33) = 55.65, p < 0.001) and significant interactions of treatment x timepoint 

(F(4,481.95) = 12.87, p < 0.001). Comparing Least-square means (LSM) for treatment effects over 

time (week 104 vs. week 1) across progressive groups showed lower LSM for the Rapid progressive 

than the All Progressive group for treatment (lanabecestat 20mg, lanabecestat 50mg) compared to 

placebo (Table S5). In particular, we observed the lowest LSM for lanabecestat 50mg for the Rapid 

Progressive group (LSM = -25.38, SE = 3.28; placebo group: LSM = -3.71, SE = 2.90) compared to 

the Slow Progressive group (LSM = -14.04, SE = 3.10; placebo group: LSM = 3.48, SE = 3.21) and 

All Progressive group (LSM = -19.674, SE = 2.43), consistent with the result previously reported for 

the AMARANTH trial21 (LSM = -19.74, SE = 1.97). 
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Taken together, these results suggest that PPM-derived stratification provides a more sensitive tool for 

assessing treatment effects, showing stronger β-Amyloid reduction due to lanabecestat treatment in 

the rapid progressive group than across all progressive individuals or the whole sample considered in 

the AMARANTH trial.  

 

 

 
Figure 3: Treatment with lanabecestat in the AMARANTH trial decreases significantly β-
Amyloid load for both the slow and rapid progressive individuals. A. Mean β-Amyloid levels over 
time for Slow, Rapid, and All Progressive individuals (sample size: Table S2) in the placebo (grey 
dashed), lanabecestat 20mg (blue), and lanabecestat 50mg (purple). Error bars indicate the standard 
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error of the mean across individuals (SEM). B. Box plots of change in β-Amyloid levels (week 104 
minus week1) for Slow, Rapid, and All Progressive (sample size: Table S2). Black lines in the box 
plots indicate the median for placebo (grey), lanabecestat 20mg (blue), and lanabecestat 50mg (purple), 
solid black box represents the 25th to 75th percentile, the black vertical lines represent the range of the 
data, black circles indicate outliers. Asterisks indicate significant differences between treatment groups 
and placebo. Source data are provided as a Source Data file. 
 

PPM-guided stratification in the AMARANTH trial shows treatment effects on cognitive outcomes 

 We tested whether stratifying the AMARANTH dataset based on the PPM-derived index at baseline 

(week 1) shows treatment effects on cognitive outcomes (CDR-SOB, ADAS-Cog13). In particular, we 

used a mixed model for repeated measures (MMRM; Table S4), to test Treatment (placebo, 20 mg, 

50mg) effects across timepoints (week 1, 52, 104) for each PPM-stratified group (Slow vs. Rapid 

progressive).  

We observed an overall increase in CDR-SOB scores over time (week 104 vs. week 1), suggesting 

progression in dementia symptoms (Figure 4A). However, for the Slow progressive group, we 

observed a significant decrease in CDR-SOB scores for lanabecestat 50mg compared to placebo at 

week 104, suggesting slowing down of dementia progression (Figure 4A). In particular, MMRM 

analysis showed: a) significant interactions: PPM-stratified group x Treatment x Timepoint (F(4, 

2173.3) = 2.62, p < 0.05), Treatment × Timepoint (F(4, 2172.8) = 2.20, p = 0.067), PPM-stratified 

group x Treatment (F(2, 1866.4) = 2.51, p = 0.08), PPM-stratified group x Timepoint  (F(2, 2163.7) = 

14.72, p < 0.001); b) significant main effects of PPM-stratified group (F(1, 1809.1) = 35.70, p < 0.001), 

Treatment (F(2, 1870.5) = 3.00., p = 0.05), Timepoint (F(2, 2190.7) = 24.08, p < 0.001). Post-hoc 

comparisons showed that PPM-stratified group x Timepoint interaction was significant for the 

lanabecestat 20mg (F(2, 716.64) = 4.301, p = 0.014) and lanabecestat 50mg (F(2, 709.67) = 15.28, p 

< 0.001) but not the placebo (F(2, 720.26) = 0.96, p= 0.38) group. 

Further, computing change in CDR-SOB scores over time (week 104 minus week 1) corroborated 

these results showing significant reduction in CDR-SOB scores (Welch's Two Sample t-test, t (84.762) 

= 2.4475, p = 0.016) for lanabecestat 50mg compared to placebo for the slow progressive group (Figure 
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4B). In particular, the slow progressive group showed 33.64 % change in CDR-SOB scores over time 

compared to higher change in the a) Rapid progressive (80.84%) in the lanabecestat 50mg group, b) 

the Slow (77.13%) and Rapid (70.41 %) in the placebo group. That is, the slow progressive group 

treated with lanabecestat 50mg showed 46% reduction in cognitive decline compared to the placebo 

group, suggesting slowing of dementia progression for individuals stratified by the PPM as slow 

progressive. In contrast, no significant differences in CDR-SOB scores were observed for a) 

lanabecestat 50mg compared to placebo in the rapid progressive group  t(153.96) = -0.26, p = 0.80, b) 

lanabecestat 20mg compared to placebo in the slow (t(66.073) = 0.41, p = 0.68)  or rapid (t (186.19) = 

-0.53, p = 0.60) progressive group.  

Similar MMRM analyses for the All Progressive group (n= 1354, including individuals in the slow 

and rapid progressive groups) showed significant main effects of Timepoint (F(2,2195.0) = 23.68, p < 

0.001) and Treatment (F(2,1883.7) = 3.68, p = 0.03), but no significant Treatment x Timepoint 

interaction (F(4, 2176.9) = 2.00, p = 0.09). Further, we did not observe significant changes in CDR-

SOB scores over time (week 104 minus week 1) for lanabecestat 20mg (Welch's Two Sample t-test, t 

(266.93) = -0.35, p = 0.72) nor lanabecestat 50mg (Welch's Two Sample t-test, t (242.09) = 1.16, p = 

0.25) compared to placebo. These results are consistent with lack of significant slowing of cognitive 

decline due to treatment, as previously reported for the AMARANTH trial21.  

Comparing Least-square means (LSM) for treatment effects over time (week 104 vs. week 1) across 

progressive groups showed lower LSM for the Slow progressive than the Rapid and All Progressive 

group for treatment compared to placebo (Table S5). In particular, we observed the lowest LSM for 

lanabecestat 50mg in the Slow Progressive group (LSM = 1.03, SE = 0.25; placebo group LSM = 2.21, 

SE = 0.24), compared to the Rapid Progressive group (LSM = 2.86, SE = 0.20); placebo group LSM 

= 2.74, SE= 0.18) and the All Progressive group (LSM = 1.97, SE = 0.16), consistent with the result 

observed when the whole clinical trial sample was previously analyzed (LSM = 3.17, SE = 0.18).  
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Finally, MMRM analyses showed similar reduction (39%) in ADAS-Cog13 scores for the slow 

progressive group compared to placebo (Figure S1A). In particular, we observed a significant PPM-

stratified group x Timepoint interaction (F(2, 2162.8) = 10.37, p < 0.001) but no other significant 

interactions (Table S4). Post-hoc comparisons showed that PPM-stratified group x Timepoint 

interaction was significant across all groups (lanabecestat 20mg: F(2, 719.95) = 3.31, p = 0.03, 

lanabecestat 50mg: F(2, 706.74) = 6.83, p < 0.001, placebo: F(2, 720.14) = 4.53, p=0.011), suggesting 

that the lack of significant treatment effect may be due to differences over time in ADAS-Cog13 in 

the placebo group. For lanabecestat 50mg, computing change in ADAS-Cog13 scores over time (week 

104 minus week 1) showed lower change (18.62 %) for the Slow progressive group than the Rapid 

progressive (42.99 %) and for Slow (30.77%) and Rapid (33.62%) in the placebo group; that is, for 

the Slow progressive group we observed similar treatment effects as for CDR-SOB. However, this 

reduction in ADAS-Cog13 scores (39% reduction compared to placebo) was not statistically 

significant (Welch's Two Sample t-test, t (78.854) = 0.90, p = 0.37) for lanabecestat 50mg compared 

to placebo for the slow progressive group (Figure S1B).  

Considering LSM for treatment effects over time (week 104 vs. week 1) showed similar results with 

the analysis of CDR-SOB. That is, LSM was lower for the Slow progressive than the Rapid 

progressive, All Progressive group and the whole clinical trial sample for lanabecestat 50mg compared 

to placebo (Table S5). Taken together these results suggest that PPM-derived stratification provides a 

more sensitive tool for assessing treatment effects, providing evidence for slowing of cognitive decline 

in the slow rather than the rapid progressive group; that is, lanabecestat 50mg may slow disease 

progression at earlier stages of neurodegeneration.  
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Figure 4: Treatment with lanabecestat in the AMARANTH trial decreases significantly CDR-
SOB scores for the slow but not the rapid progressive individuals. A. Mean CDR-SOB over time 
for Slow, Rapid, and All Progressive individuals (sample size: Table S3) in the placebo (grey dashed), 
lanabecestat 20mg (blue), and lanabecestat 50mg (purple).  Error bars indicate the standard error of 
the mean across individuals (SEM). B. Box plots of change in CDR-SOB (week 104 minus week1) 
for Slow, Rapid, and All Progressive (sample size: Table S3). Black lines in the box plots indicate 
the median for placebo (grey), lanabecestat 20mg (blue), and lanabecestat 50mg (purple), solid black 
box represents the 25th to 75th percentile, the black vertical lines represent the range of the data, 
black circles indicate outliers. Asterisks indicate significant differences between slow progressive 
individuals in the 50mg treatment group vs. placebo. Source data are provided as a Source Data file. 
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PPM-guided stratification in the AMARANTH trial changes with treatment 

We asked whether treatment has an effect on PPM-guided stratification; that is, whether patients 

stratified as slow progressive using the PPM-derived prognostic score at baseline (week 1) remain in 

the slow progressive or transition to the rapid progressive group when stratified based on the PPM-

derived prognostic score at week 104. For placebo, we expected that individuals will transition from 

the slow to the rapid progressive group due to neurodegeneration. We reasoned that treatment may 

slow dementia progression, resulting in a lower number of individuals in the slow group transitioning 

to rapid progression.  

Our results showed that treatment decreased the PPM-derived score compared to placebo, suggesting 

that treatment slowed cognitive decline (Figure 5). In particular, a three-way ANOVA on the PPM-

derived scores showed a significant Treatment x Timepoint interaction (F(2, 562) = 3.16, p < 0.05) but 

not a significant PPM-stratified group x Treatment x Timepoint x (F(2, 562) = 0.08, p = 0.92). That is, 

we observed higher increase in the PPM-derived scores in the placebo group rather than the treatment 

(lanabecestat 20mg, lanabecestat 50mg) groups over time. In particular, for the placebo group, 60% of 

individuals in the slow progressive group transitioned to rapid progressive, consistent with increased 

neurodegeneration over time. Treatment with lanabecestat 20mg decreased this to 44.4% (χ² (1) = 7.36, 

p < 0.01) while lanabecestat 50mg to 33.3% (lanabecestat 50mg vs. placebo: χ² (1) = 7.36, p < 0.001). 

In contrast, individuals in the placebo group stratified as rapid progressive at baseline (week 1) 

remained mostly in this group rather than transitioning to the slow progressive group; that is, the 

percentage of individuals that remained in the rapid progressive group across weeks (week 1, 104) 

were 98.5% for the placebo, 95.8% for the lanabecestat 20mg and 96.2% for the lanabecestat 50mg 

group. Taken together, these results provide additional evidence that lanabecestat 50mg may slow 

dementia progression at earlier stages of neurodegeneration, that is for individuals stratified by the 

PPM at baseline as slow rather than rapid progressive.  
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Figure 5: Alluvial plot illustrating changes in PPM-guided stratification due to lanabecestat 
treatment in the AMARANTH trial. Percentage of patients in each treatment group (placebo, 
lanabecestat 20mg, lanabecestat 50mg) transitioning between PPM-stratified groups (slow vs. rapid 
progressive) from baseline to week 104. There is a reduction in the percentage of patients transitioning 
from the slow progressive group (red) at baseline to rapid progressive group (green) at week 104 
compared to placebo. Conversely, there is an increase in the percentage of patients transitioning from 
the rapid progressive group at baseline to slow progressive at week 104 compared to placebo. Source 
data are provided as a Source Data file. 

 



19  

PPM-guided stratification in the AMARANTH trial decreases sample size necessary for treatment 

effects on cognitive outcomes 

In light of our findings showing that lanabecestat 50mg may slow dementia progression as measured 

by decrease in CDR-SOB scores in the slow progressive group, we asked whether PPM-guided 

stratification reduces the sample size necessary for future clinical trials. We conducted power 

calculations to estimate the sample size needed when comparing lanabecestat 50mg to placebo (i.e. 

decrease in CDR-SOB change between week 104 and week 1). Figure 6 shows that including slow 

progressive individuals based on PPM-guided stratification, reduces drastically the sample size 

necessary.  

In particular, for the slow progressive group we observed a significant moderate effect size (Cohen’s 

d = 0.51) for CDR-SOB change in lanabecestat 50mg vs. placebo (t(84.76) = 2.45; p = 0.016). We 

estimated that for this effect size, a sample size of n=82 per group (lanabecestat 50mg vs. placebo) 

would be required for 90% power at alpha 0.05, (n=117 at alpha =0.01, n= 164 at alpha 0.001). In 

contrast, power calculations for all progressive group (i.e. including both slow and rapid progressive 

individuals) showed that a sample size of n =762 per group would be required for a small effect size 

(Cohen’s d = 0.15); i.e. significant change in lanabecestat 50mg vs. placebo and 90% power at alpha 

0.05 (n=1198 at alpha =0.01, n= 1760 at alpha 0.001).  This is consistent with the lack of significant 

treatment effect on cognitive outcomes that was observed in the AMARANTH trial (n=1380 for both 

lanabecestat 50mg and placebo). Redesigning the AMARANTH trial to include only individuals 

stratified by the PPM at baseline as slow progressive would result to 90.00% reduction in sample size 

at alpha 0.01 (lanabecestat 50mg vs. placebo at week 104), compared to the sample size for the all 

progressive group included in the AMARANTH trial. 



20  

 

Figure 6: Power calculations show decreased sample size for detecting reduction in cognitive 
decline with lanabecestat treatment in the AMARANTH trial. Power (1-beta) of detecting a 
significant treatment effect (lanabecestat 50mg vs. placebo) for CDR-SOB change (week 104 minus 
week 1) at different sample sizes and alpha level of 0.05. Smaller sample size (90% redcution) is 
needed to detect treatment effects on cognitive outcomes for the Slow (red; effect size: Cohen’s 
d=0.51) compared to the All Progressive (blue; effect size: Cohen’s d=0.15) group. Source data are 
provided as a Source Data file. 
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Discussion 

Recruiting the right patients at early disease stages is key to efficient clinical trials, maximizing the 

potential to reveal treatment effects. Patient heterogeneity and lack of sensitive tools for stratification 

at early stages of dementia pose a major challenge for AD drug discovery. To address this challenge, 

we built a robust and interpretable clinical-AI tool (PPM) based on a multimodal machine learning 

approach that supports feature extraction, precise patient classification to clinically stable vs. 

progressive and trajectory modelling to derive individualized patient prognosis. We have previously 

shown that PPM predicts progression to AD at early dementia stages more precisely than standard 

clinical markers (i.e. grey matter atrophy, cognitive decline, β-amyloid positivity) or clinical 

diagnosis18–20. Here, we demonstrate that PPM provides a robust tool for patient stratification and 

inclusion/exclusion in clinical trials with strong potential impact for drug discovery in the following 

key respects. 

First, we demonstrate that PPM provides a more sensitive tool for patient stratification than standard 

approaches used for patient selection in clinical trials (e.g. β-amyloid positivity). It is important to 

know that the PPM was pretrained on research data (ADNI) and tested on the AMARANTH data 

(independent sample), supporting its utility as patient stratification tool for clinical trials. Using the 

PPM to re-stratify the patients included in the AMARANTH trial showed treatment effects on 

outcomes, despite the fact that the trial had been deemed futile. In particular, the PPM predicted whether 

patients would progress to AD slowly vs. rapidly based on baseline data (i.e. week 1 before treatment). 

Testing the effect of treatment over 24 months (lanabecestat 20mg vs. lanabecestat 50mg) provides 

evidence that the slow progressive group showed not only reduction in β-amyloid but importantly 46% 

reduction in cognitive decline (i.e. decrease in CDR-SOB) compared to placebo. This is in contrast to 

the rapid progressive group that showed higher reduction in β-amyloid but no significant difference in 
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cognitive outcomes compared to placebo. We observed similar slowing of cognitive decline (39%) for 

ADASCog-13, consistent with previous trials suggesting that ADAS-Cog may be less sensitive in 

capturing cognitive decline at early dementia stages24. Our results are consistent with the findings 

from—recently FDA and MHRA approved—anti-amyloid antibody target (lecanemab, donanemab) 

phase 3 trials 9,10; e.g. lecanemab was shown to slow the rate of cognitive decline by 27%9. Although 

these are independent trials that cannot be directly compared, our results suggest that our AI-guided 

patient stratification has strong potential to enhance the efficacy of trials and aid the discovery of new 

treatments. 

Second, individuals stratified by the PPM as slow progressive were shown to be at earlier stages of 

neurodegeneration based on baseline measurements (i.e. higher grey matter density, lower β-amyloid 

and better cognitive scores) compared to individuals in the rapid progressive group. AD develops 

gradually involving a cascade of pathophysiological events beginning with the deposition of β-amyloid 

that may promote widespread pathological tau protein accumulation, leading to neurodegeneration and 

cognitive impairment 25. It is likely that individuals in the rapid progressive group had progressed to 

later stages of neurocognitive decline, when it was too late for the lanabecestat treatment to be effective 

in slowing cognitive decline, despite the fact that it resulted in β-amyloid reduction. Interestingly, most 

patients in the trial were stratified by the PPM as rapid progressive; therefore, when all individuals in 

the trial were considered the results were similar to the rapid progressive group; that is, reduction in 

β-amyloid but no significant changes in cognitive decline were observed. This is consistent with recent 

work suggesting that the timing of β-amyloid removal during a clinical trial is key for the trial success. 

If patients are too advanced at the start of the trial, or underlying disease has progressed to a more 

advanced stage during the course of treatment because β-amyloid was not removed early enough, 

treatments may be less effective3. Evidence from previous trials of both successful and unsuccessful 

anti-β-amyloid therapies suggest that there is little clinical effect of amyloid removal if patients 
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progressed past the mild dementia phase16,26. Further, recent clinical trial results (i.e. lecanemab, 

donanemab) 9,10  showing decline in cognitive symptoms highlight the importance for treatments earlier 

in disease progression before damage has settled in the brain and when treatments may be more likely 

to be effective27,28. Finally, previous phase II and III trials of BACE inhibitors have shown a robust 

relationship between dose and degree of β-amyloid reduction, suggesting that lower dose may be more 

effective at early stages of the disease29. Our results showing slowing of cognitive decline for the 

higher lanabecestat dose (50mg vs. 20mg) for the slow progressive group suggest that higher dose of 

BACE inhibition may be more effective over a 24 month treatment period, as in the AMARANTH 

trial.  

Our modelling approach has the potential to redefine inclusion/exclusion criteria for clinical trials 

reducing patient heterogeneity that is known to hamper statistical power30. We have previously 

shown20 that our multimodal clinical AI marker (i.e. PPM-derived prognostic index) that captures the 

multivariate relationships across predictors is more sensitive in early prediction and prognosis of AD 

than standard clinical markers (β-amyloid, grey matter atrophy, cognitive scores). This is consistent 

with previous work demonstrating the benefit of integrating multimodal biomarkers for predicting 

future changes in cognition31–36. Further, PPM implements a trajectory modeling approach extending 

beyond binary classifications22 based on clinical labels (e.g. CN vs AD) that are poorly constrained; 

that is, individual patients at the class boundary that differ only slightly in their trajectory may be 

misclassified37. In contrast, our PPM-derived clinical AI marker provides a continuous index of future 

cognitive health from baseline data, reducing misdiagnosis associated with clinical labels and aiding 

patient stratification based on prognosis (i.e. predicted progression to AD).  

Third, the GMLVQ framework with ensemble learning that we adopt in our PPM enables us to develop: 

a) robust models38,39by combining data from multiple disease-relevant modalities, rather than 

considering single data types, b) interpretable models for early dementia prediction and prognosis, 
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that is key for trusted clinical-AI solutions. In particular, interrogating the model metric tensors allows 

us to assess the contribution of different features (i.e. predictors and their interactions) to patient 

stratification and determine the most predictive data types to include in clinical trials. Further, 

estimating the distance (based on the trained PPM metric tensors) of an independent test dataset 

(AMARANTH sample) from the Clinically Stable prototype allows us to predict individual patient 

trajectories, re-stratify the trial sample and test treatment effects in slow vs. rapid progressive groups. 

This has potential to accelerate clinical trials and reduce the costs associated with data collection by 

a) focusing on key data types to be collected for patient stratification and treatment outcome 

assessment, b) tailoring treatment targets to the right patient groups at different stages of disease 

progression. Integrating novel markers (e.g. blood biomarkers, digital markers from wearable 

technologies) for dementia diagnosis into our multimodal modeling approach provides the potential 

to move to less-invasive and more cost-effective clinical trials. 

Finally, we show that using PPM for patient stratification substantially decreases the sample size 

necessary for identifying significant changes in treatment outcomes. Recruitment and retention of a 

large number of qualified, diverse volunteers to participate in clinical research studies remain key 

barriers to the successful completion of AD clinical trials7,8. Thus, identifying the right patients at 

earlier stages for neurodegeneration to include in clinical trials decreases sample heterogeneity and 

size with strong potential to enhance trial efficiency (faster and cheaper). A possible limitation is that 

the PPM was trained with biomarker data (β-amyloid, grey matter density) from PET and MRI scans. 

We have previously shown that PPM reliably predicts cognitive decline when trained with cognitive 

data alone; yet, adding biomarker data enhances the precision of patient18–20. Future work is needed 

to test whether training the PPM with less-invasive and cost-effective data types (e.g. blood markers, 
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cognitive tests) would provide a reliable stratification tool, reducing further costs and patient burden, 

and enhancing the efficiency of AD clinical trials.  

In sum, there is increasing interest in adopting AI tools for clinical trial optimization and drug 

discovery40–45. With trials lasting around 18 months for dementia that typically spans decades, 

enriching clinical trials with the right patients for specific targets is fundamental to clinical trial 

outcomes, may account for past failures 46 and inform go / no-go decisions 47. Clinical AI tools have 

potential to play a key role in improving trial design by assisting trial enrichment with the right 

patients classified prior to enrolment based on AI-guided stratification. Further, including data from 

underrepresented groups that may be disproportionately affected by dementia is key for tackling the 

global dementia challenge and developing precision medicine interventions. Our vision is to scale-up 

our predictive prognostic modelling approach to a responsible AI-guided stratification system that will 

support smarter multi-arm multi-stage trials, accelerating new target discovery for dementia 

treatment.  

Methods 

PPM training and test samples 

We used data from: 1) a research cohort (the Alzheimer’s Disease Neuroimaging Initiative, ADNI) 

for PPM training with within-sample cross-validation (n = 256) and independent test (n = 419), 2) a 

Randomized Clinical Trial cohort (AMARANTH, n = 1354), as independent test dataset for out-of-

sample validation (see Supplementary Material for more information on ADNI and AMARANTH 

samples, including Patients, Randomization, and Blinding). All data were collected in accordance 

with ethics approvals at each site and following ethical guidelines (Declaration of Helsinki) including 

informed consent from participants and approved by the ethics committees at each site. 



26  

AMARANTH is a phase 2/3, multicenter, randomized, double-blind, placebo-controlled, global 

clinical trial of Drug Substance: lanabecestat 21. Lanabecestat is a brain-permeable inhibitor of human 

Beta-site amyloid precursor protein-cleaving enzyme 1 (BRACE1/β-secretase). Patients enrolled in 

the trial were diagnosed with MCI due to AD or mild AD. The objective of the trial was to test the 

efficacy of lanabecestat 20mg lanabecestat and lanabecestat 50mg (compared to placebo) in slowing 

AD decline at the end of the double-blind, placebo-controlled period compared to baseline. AD 

decline was measured by changes in cognition (primary outcome: ADAS-Cog13: 13-item Alzheimer 

Disease Assessment Scale–cognitive subscale; secondary outcomes: CDR-SB: Clinical Dementia 

Rating–sum of boxes, MMSE: Mini-Mental State Examination).  AMARANTH was terminated early 

(approximately 16 months prior to planned completion) due to futility analysis. Because of this early 

termination, we included data from the placebo-controlled periods of the study (weeks: 1, 52, 104; 

Table S2, S3) from patients with: APOE4 at week 1, structural MRI, florbetapir PET (β-amyloid) 

scans at three time points (week 1, 52, 104), and cognitive measures (CDR-SOB, ADAS-Cog13) at 

three time points (week 1, 52, 104). 

ADNI and AMARANTH datasets differ in patient demographics and data collection tools allowing 

us to test PPM interoperability across research cohort and clinical trial data.  In particular, for ADNI, 

patients were selected with specific criteria related to amnestic MCI and Alzheimer’s disease and 

MRI data were collected across MRI acquisition sites in the US. For AMARANTH data were 

collected from patients diagnosed with early AD (i.e. patients with MCI; MCI due to AD) and patients 

diagnosed with mild dementia of the Alzheimer’s type in Australia, Belgium, Canada, USA, France, 

Germany, United Kingdom, Italy, Japan, Poland. We have previously demonstrated PPM 

interpretability across diverse research and clinical cohort data collected across sites and countries 20.  

Predictive Prognostic modelling 
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We have developed a trajectory modelling approach based on Generalized Metric Learning Vector 

Quantization (GMLVQ)18–20 that leverages multimodal data to make predictions about future 

cognitive decline at early dementia stages by iteratively adjusting class-specific prototypes and 

learning class boundaries (Supplementary Material: Predictive Prognostic Model).  

Generalized Learning Vector Quantization (GLVQ) is a supervised classification method that 

iteratively modifies class-specific prototypes to identify boundaries between discrete classes. The 

GLVQ classifiers are defined by a set of vectors known as class prototypes that represent the classes 

within the input space. During the training phase, the prototypes are updated iteratively based on the 

training examples. For each training example, the GLVQ classifier determines the closest prototype 

for each class. The prototypes are then adjusted so that the prototype representing the same class as 

the input example (the closest 'correct' prototype) is moved closer to the example, while the closest 

prototype among the prototypes representing different classes (the closest 'incorrect' prototype) is 

moved further away. During training, for each class, the GLVQ algorithm aims to minimize the 

distances between the training examples of the given class and the prototypes that share the same 

class label, while maximizing the distances to the prototypes of the other classes. This process helps 

to form class boundaries with large classification margins. Once the training is completed, the GLVQ 

classifier can be used for classifying test data. Given a previously unseen input vector, the classifier 

assigns to it the class label of the closest prototype.  

GMLVQ is an extension of the GLVQ algorithm that learns the metric to be used in the input space 

that enhances class separation. The learnt metric is determined through the corresponding metric 

tensor. GMLVQ incorporates a full metric tensor to provide a robust distance measure (metric) tuned 

to the classification task. This metric defines a distance that naturally groups together members of the 

same class, while separating the different classes away from each other. Mathematically, it provides 

specific feature scaling and quantifies pairwise task-conditional dependencies of the input features. 
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Diagonal elements of the metric tensor identify key predictors, while the off-diagonal terms reveal 

pairwise feature interactions contributing to the classification task.  

Following our previous work 18,19, we trained GMLVQ models to discriminate Clinically Stable (CN 

individuals who remain stable for 4+ years following baseline;  n= 100) vs. Clinically Declining 

(individuals have a baseline diagnosis (at date of FBP scan) of either CN (n = 17) or MCI (n = 139) 

but received a diagnosis of dementia in future clinical evaluation (i.e., progressed to dementia (n = 

75)), or had been diagnosed with dementia in a clinical evaluation prior to baseline (i.e., reverted (n 

= 81); n= 156) using ADNI data at baseline: medial temporal lobe grey matter (MTL GM) density18,19 

(see Supplementary Material: MRI analysis: extracting medial temporal grey matter density), β-

Amyloid and APOE4. All data were adjusted by regressing out potential confounding covariates (i.e. 

age, sex, and education). Following our previous work,18,19 we used the steepest descent method to 

minimize the cost function through online learning and performed hyper-parameter tuning for the 

model using a nested cross-validation approach 48, considering two hyper-parameters. To evaluate the 

model’s performance, we employed 10 iterations of a 10-fold cross-validation 48. To mitigate any 

potential biases due to class imbalance in the dataset (Clinically Stable, n = 100; Clinically Declining, 

n = 156), we resampled the data to generate balanced classes. For each training-fold, we repeatedly 

(n = 400) randomly down-sampled the majority class (i.e. Clinically Declining) to match the size of 

the minority class (i.e. Clinically Stable). Further, we used ensemble learning49,50, combining multiple 

models (n = 400) for robust learning of unbalanced classes. We selected the top 20% (n = 80) models 

based on their training set performance and estimated the class balanced accuracy based on a) majority 

vote, i.e. the class label that receives the most votes from the ensemble models is selected as the final 

prediction49, b) the average performance across the selected classifiers51. This ensemble learning 

approach with cross-validation helps mitigate potential individual model biases, resulting in more 

robust and accurate predictions38,39. 

PPM-derived prognostic index  
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Moving beyond binary classifications, we extended the GMLVQ framework to generate continuous 

predictions for each individual in the test dataset. In particular, we extracted a PPM-derived prognostic 

index employing a GMLVQ-Scalar Projection18,19 that extracts distance information (based on the 

learnt metric tensor) between the sample vector and the learnt class prototypes (representing Clinically 

stable vs. Declining). GMLVQ-Scalar Projection thus measures the distance as defined by the learnt 

metric tensor, between an individual and the prototype representing Clinically Stable along the 

direction separating Clinically Stable vs. Declining (the line connecting stable and progressive class 

prototypes). We extracted the scalar projection using the average prototypes and metric tensors of the 

selected top 20% classifiers to capture robust information across the ensemble of trained classifiers. 

The scalar projection yields a large positive value for Clinically Declining individuals and a zero or 

negative value for Clinically Stable individuals. That is, the scalar projection index captures 

information about how far an individual is from the Clinically Stable prototype, serving as an 

individualized PPM-derived prognostic index. We have previously shown that this index relates 

significantly to the rate of memory decline18 20and future tau accumulation19, allowing us to estimate 

how fast an individual progresses from MCI to AD. 

Following our previous work 18we next used multinomial logistic regression to test the relationship 

of the PPM-derived prognostic index to the rate of future tau accumulation (e.g. future Tau slope in 

fusiform gyrus that showed significant tau accumulation for Clinically Declining individuals) and 

determine quartile classes (based on boundaries) that represent different levels of progression. We 

estimated the probabilities of each quartile class for a range of boundary values and identified the 

boundaries based on the quartile class with the highest probability at each value. The lower boundary 

(at the 20th percentile of the future tau accumulation slope) indicates individuals who are more likely 

to experience slower progression (slow progressive), while the higher boundary (at the 60th percentile 

of future tau accumulation) indicates individuals who are more likely to experience faster progression 

(rapid progressive). This multinomial logistic regression model allows us to stratify individuals based 
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on their PPM-derived prognostic index (i.e. scalar projection score) and future tau accumulation 

slope. 

Statistics & Reproducability 

We extracted the PPM-derived prognostic index for each individual in ADNI test dataset and the 

AMARANTH dataset. All available data for the PPM input features were used (Table S2, S3 for 

sample size); no statistical method was used to pre-determine the PPM test sample size. We used 

Kruskal-Wallis non-parametric test (SPSS) for comparisons of the PPM-derived prognostic index 

across groups, as the index data were not normally distributed (Shapiro-Wilk test). 

To ensure direct comparison to the analysis previously performed on the AMARANTH data 21, we 

used a mixed model of repeated measures (MMRM), that is typically used in individual-randomized 

trials with longitudinal continuous outcomes and missing data. We tested the efficacy of lanabecestat 

20mg and lanabecestat 50mg (compared to placebo) across time points (week 1: baseline, week 52, 

week 104) on: a) biomarker outcome: β-amyloid, b) cognitive outcomes: CDR-SOB, ADAS-Cog13. 

We conducted this analysis separately for each group (slow progressive, rapid progressive) and for 

the full sample (All progressive: slow and rapid progressive) including fixed effects for treatment, 

timepoint, PPM-stratified group. We included the following covariates in the MMRM: covariates for 

disease status at baseline, age at baseline, APOE4 genotype, baseline outcome measure, AChEI use 

at baseline, and pooled country. We calculated Least-square means (LSM; emmeans R package) from 

the MMRM model (mmrm, lme4 R packages) that represent model-adjusted means, including fixed 

effects for treatment, timepoint and their interactions, while accounting for covariates and unbalanced 

data. Pairwise comparisons of LSM across treatment groups and timepoints were performed using 

post-hoc tests, correcting for multiple comparisons. This approach ensures that reported means 

accurately reflect treatment effects while accounting for within-subject correlations and repeated 

measurements over time. We repeated these analyses with non-parametric ANCOVA tests (same 
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fixed effects and covariates as for MMRM analyses) to account for deviations from normality (Figure 

S2, Supplementary Material: Non-parametric Statistical analysis), with similar results as the MMRM 

analyses.  

Further, for each group (slow progressive, rapid progressive) we computed change in outcomes (β-

amyloid, cognitive data) at week 104 from baseline (i.e. week 104 minus week 1). We used Welch’s 

t-test to test for differences in outcomes across groups (i.e. lanabecestat 20mg, lanabecestat 50mg vs. 

placebo), as it does not assume equal variances between the groups and allows adjusting the degrees 

of freedom used in the test to accommodate differences in variance. MMRM, post hoc comparisons 

and Welch’s t-tests were conducted in R.  

Finally, we conducted power analysis, using the `pwr.t.test` function (pwr package in R), to estimate 

sample size for change in CDR-SOB (week 104 minus week 1) for lanabecestat 50mg vs. placebo. A 

power level of 0.90 (1-β) was chosen to minimize the risk of Type II error, ensuring a high probability 

of detecting a true treatment effect. We used a standard significance threshold of α = 0.05, and more 

conservative estimates of α = 0.01, α = 0.001. 
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Data Availability: Data may be obtained in accordance with AstraZeneca’s data sharing policy 

described at: https://astrazenecagrouptrials.pharmacm.com/ST/Submission/Disclosure. The raw trial 

data are protected and are not available due to data privacy laws.  Anonymized processed data for 

studies directly listed on Vivli can be requested through Vivli at www.vivli.org. AstraZeneca Vivli 

member page is available outlining further details: https://vivli.org/ourmember/astrazeneca/. Data not 

listed on Vivli could be requested through Vivli at https://vivli.org/members/enquiries-aboutstudies-

not-listed-on-the-vivli-platform/. Source data for figures are provided with this paper and are available 

at the Cambridge University repository: https://doi.org/10.17863/CAM.117732 

Code Availability: Code for figures is available at the Cambridge University repository: 

https://doi.org/10.17863/CAM.117732 
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Figure captions 

Figure 1: PPM trained on ADNI data (n = 256) classifies Clinically Stable vs. Clinically declining 
individuals. A. PPM metric tensor based on training the PPM on MTL Grey Matter (GM) Density, β-
Amyloid, and APOE 4 for model training. The color scale represents values for each cell in the metric 
tensor, with diagonal terms summing to 1. The diagonal terms show strong contribution of β-amyloid 
burden (weight: 0. 51) compared to Grey matter density (weight: 0. 34) and APOE 4 (weight: 0. 15). 
B. PPM-derived prognostic index for an independent ADNI validation dataset (n=419): Box plots of 
PPM-derived prognostic index showing significant differences between Cognitive Normal: CN, Mild 
Cognitive Impairment: MCI, Alzheimer’s Disease: AD (Kruskal-Wallis H two-sided tests, p <0.001, 
Bonferroni corrected). Notches in the box plots indicate the median, solid black box represents the 
25th to 75th percentile, the black horizontal lines represent the range of the data, black circles indicate 
outliers, and non-overlapping notches indicate significantly different medians (p <0.05). PPM-derived 
prognostic index below 0 indicates stable, above 1 indicates rapid progressive, and between 0 and 1 
indicates slow progressive individuals. Dashed lines indicate boundaries between stable vs. slow 
progressive (red) and rapid progressive (green) based on a multinomial logistic regression testing the 
relationship of the PPM-derived prognostic index to the rate of future tau accumulation. Source data 
are provided as a Source Data file. 
 
Figure 2: PPM-based stratification of patients in the AMARANTH trial using baseline data. A. 
Scatter plot of β-Amyloid against MTL GM density for AMARANTH baseline data (week 1) for 
placebo, lanabecestat 20mg, lanabecestat 50mg. Red dots indicate data for Slow progressive; green 
dots indicate data for Rapid progressive individuals. Individuals with higher β-Amyloid and lower GM 
density are stratified as Rapid progressive by the PPM model. Individuals with lower β-Amyloid and 
higher GM density are stratified as Slow progressive by the PPM model. B. PPM-derived prognostic 
index for AMARANTH data at baseline (week 1): Box plots showing no significant differences in the 
PPM-derived prognostic index between treatment groups (placebo, lanabecestat 20mg, lanabecestat 
50mg) at baseline (sample size: Table S2, Table S3). Notches in the box plots indicate the median, 
solid black box represents the 25th to 75th percentile, the black horizontal lines represent the range of 
the data, black circles indicate outliers. PPM-derived prognostic index below 0 indicates stable, above 
1 indicates rapid progressive, and between 0 and 1 indicates slow progressive individuals. Dashed lines 
indicate boundaries between stable vs. slow progressive (red) and rapid progressive (green) based on 
a multinomial logistic regression testing the relationship of the PPM-derived prognostic index to the 
rate of future tau accumulation. Source data are provided as a Source Data file. 
 
Figure 3: Treatment with lanabecestat in the AMARANTH trial decreases significantly β-
Amyloid load for both the slow and rapid progressive individuals. A. Mean β-Amyloid levels over 
time for Slow, Rapid, and All Progressive individuals (sample size: Table S2) in the placebo (grey 
dashed), lanabecestat 20mg (blue), and lanabecestat 50mg (purple). Error bars indicate the standard 
error of the mean across individuals (SEM). B. Box plots of change in β-Amyloid levels (week 104 
minus week1) for Slow, Rapid, and All Progressive (sample size: Table S2). Black lines in the box 
plots indicate the median for placebo (grey), lanabecestat 20mg (blue), and lanabecestat 50mg (purple), 
solid black box represents the 25th to 75th percentile, the black vertical lines represent the range of the 
data, black circles indicate outliers. Asterisks indicate significant differences between treatment groups 
and placebo. Source data are provided as a Source Data file. 
 
Figure 4: Treatment with lanabecestat in the AMARANTH trial decreases significantly CDR-
SOB scores for the slow but not the rapid progressive individuals. A. Mean CDR-SOB over time 
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for Slow, Rapid, and All Progressive individuals (sample size: Table S3) in the placebo (grey dashed), 
lanabecestat 20mg (blue), and lanabecestat 50mg (purple).  Error bars indicate the standard error of 
the mean across individuals (SEM). B. Box plots of change in CDR-SOB (week 104 minus week1) 
for Slow, Rapid, and All Progressive (sample size: Table S3). Black lines in the box plots indicate the 
median for placebo (grey), lanabecestat 20mg (blue), and lanabecestat 50mg (purple), solid black box 
represents the 25th to 75th percentile, the black vertical lines represent the range of the data, black 
circles indicate outliers. Asterisks indicate significant differences between slow progressive 
individuals in the 50mg treatment group vs. placebo. Source data are provided as a Source Data file. 
 
Figure 5: Alluvial plot illustrating changes in PPM-guided stratification due to lanabecestat 
treatment in the AMARANTH trial. Percentage of patients in each treatment group (placebo, 
lanabecestat 20mg, lanabecestat 50mg) transitioning between PPM-stratified groups (slow vs. rapid 
progressive) from baseline to week 104. There is a reduction in the percentage of patients transitioning 
from the slow progressive group (red) at baseline to rapid progressive group (green) at week 104 
compared to placebo. Conversely, there is an increase in the percentage of patients transitioning from 
the rapid progressive group at baseline to slow progressive at week 104 compared to placebo. Source 
data are provided as a Source Data file. 
 
Figure 6: Power calculations show decreased sample size for detecting reduction in cognitive 
decline with lanabecestat treatment in the AMARANTH trial. Power (1-beta) of detecting a 
significant treatment effect (lanabecestat 50mg vs. placebo) for CDR-SOB change (week 104 minus 
week 1) at different sample sizes and alpha level of 0.05. Smaller sample size (90% reduction) is 
needed to detect treatment effects on cognitive outcomes for the Slow (red; effect size: Cohen’s 
d=0.51) compared to the All Progressive (blue; effect size: Cohen’s d=0.15) group. Source data are 
provided as a Source Data file. 
 
 
 
 


