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Abstract

In this paper, we explore the idea of modelling slack variables in Support Vector Ma-

chine (SVM) approaches. The study is motivated by SVM+, which models the slacks



through a smooth correcting function that is determined by additional (privileged) infor-

mation about the training examples not available in the testphase. In this paper we take

a closer look at the meaning and consequences of smooth modelling of slacks, as op-

posed to determining them in an unconstrained manner through the SVM optimization

programme. To better understand this difference we only allow the determination and

modelling of slack values on the same information - i.e. using the same training input in

the original input space. We also explore whether it is possible to improve classification

performance by combining (in a convex combination) the original SVM slacks with the

modelled ones. We show experimentally that this approach not only leads to improved

generalization performance, but also yields more compact,lower complexity models.

Finally we extend this idea to the context of ordinal regression, where a natural order

among the classes exists. The experimental results confirm principal findings from the

binary case.

1 Introduction

Support Vector Machines (SVMs) have gained wide popularityover the last decades.

They were shown to be effective for many problems on numerousapplications such as

digit recognition, face detection, speaker identificationand so on (Burges, 1998). For

binary classification, SVMs construct a separating hyperplane as the decision bound-

ary to separate the positive examples from the negative oneswith maximum margin.

To deal with the case of overlapping classes, SVM formulation utilizes non-negative

‘slack’ variables to tolerate misclassification in training data. Non-linear class separa-
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tion structure can be addressed through so-called ‘kernel trick’ - kernels map the input

data into a higher dimensional feature space where linear separation hyperplane can be

applied.

Recently, Vapnik and Vashist (2009) extended SVM framework to SVM+ by mod-

elling the slack variables of training points through so-called correcting functions to

incorporate an additional privileged information. The privileged information is avail-

able for inputs during training stage but unavailable in thetest phase. Modelling slacks

using privileged information is feasible, as the slacks areonly used in the training stage,

but not in the test phase. SVM+ can achieve superior performance when compared to

standard SVM trained without privileged information (Vapnik and Vashist, 2009).

In this paper, we explore the benefits of modelling slack variables in SVM from a

different perspective. We study the difference between determining the slack values as

in the original SVM and modelling them via a smooth correcting function. For a sys-

tematic study of this issue we need to make sure that the determination and modelling

of slack values are done using the same information - i.e. using the same training ex-

amples in the original input space. In other words, to obtainmodel-based slack values

we will employ the SVM+ model, but the domain of the correcting functions will be

the original input space, rather than the privileged information one.

Having obtained two sets of slack values on the same problem (i.e. the ones ob-

tained through a standard SVM optimization procedure and the ones obtained from the

correcting function), we further investigate in a data driven manner which kind of slack

construction is more preferable for the given problem. To that end we consider a new

set of slack values obtained as a convex combination of the ‘standard’ and model based
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slacks. The values of mixing coefficients in the convex combination indicate the pre-

ferred slack construction. We will refer to this approach asSVMvPand introduce a

principled (but costly), as well as a practical algorithm toimplement this idea.

Ordinal regression problems are multi-class classification problems where a natural

order among categories can be observed (Cardoso and Pinto da Costa, 2007) and they

are recently receiving considerable attention (Lin and Li,2012; Fouad and Tiňo, 2012;

Sánchez-Monedero et al., 2013; Seah et al., 2012). We extend the idea of modelling

slacks to ordinal regression problems on the basis of the Support Vector Ordinal Re-

gression with IMplicit constraints (SVORIM) (Chu and Keerthi, 2005). SVORIM con-

structs multiple parallel hyperplanes separating the adjacent classes (in the class order),

by stipulating that each hyperplane separates all the points in higher classes from all the

points in lower classes. As we do for binary SVM, we first modelthe slack variables

for each hyperplane using a correcting function (SVORIMP). We then derive a method

based on combining the slacks from the standard optimization procedure of SVORIM

and the slacks from the correcting functions with a mixing parameterv (SVORIMvP).

In summary, this paper explores the idea of modelling slack variables in SVM

framework. The contributions of this paper are three-fold:

• We investigate the differences between modelling slacks and obtaining their val-

ues in an unconstrained manner through the optimization programme. This is

done by slack modelling via a correcting function using the original information,

instead of privileged information.

• We introduce methodologies for obtaining slacks through a convex combination

of model based and optimized slack values, which, as will be shown, leads to
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lower model complexity and enhanced generalization performance.

• We extend these ideas to the case of ordered classes in the framework of ordinal

regression.

The paper has the following structure: Section 2 briefly describes SVM and SVM+.

The idea of modelling slack variables using original training inputs is presented in Sec-

tion 3 andSVMvPis demonstrated in Section 3.1. Section 4 extends the idea ofmod-

elling slack variables to ordinal regression. Section 5 presents the experimental results

and analysis. The main findings are discussed and summarizedin Section 6.

2 Background

2.1 Support Vector Machine (SVM)

In this section we briefly review SVMs for classification problems (for more details see

e.g. Vapnik, 1998; Burges, 1998).

Given a training set ofl examples, represented by input-output pairs (xi, yi), xi ∈

Rn, yi ∈ {−1, 1}, the aim is to construct a decision boundary (separating hyperplane)

that separates positive examples from the negative ones with maximum margin. This

can be formulated as the following constrained optimization problem:

min
1

2
‖ w ‖2 +C

l
∑

i=1

ξi

s. t. yi(w · Φ(xi) + b) ≥ 1 − ξi, ξi ≥ 0, ∀ i. (1)

where||w|| is the Euclidean norm ofw andΦ(·) is the feature mapping induced by

the associated kernelK(·, ·). Non-negative slack variablesξi are utilized to relax the
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constraints and allow some misclassification.C ≥ 0 is a hyper-parameter chosen by

user. This problem is usually transformed to its dual according to the Karush-Kuhn-

Tucker (KKT) conditions (Boyd and Vandenberghe, 2004):

max
α

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjK(xi,xj) (2)

s. t.
l

∑

i=1

αiyi = 0, 0 ≤ αi ≤ C, ∀ i.

Once optimalα’s are obtained, the decision function for a new input vectorx is given

by:

F (x) = sgn

(

l
∑

i=1

αiyiK(xi,x) + b

)

. (3)

2.2 Learning Using Privileged Information in SVM framework

Learning Using Privileged Information (LUPI) (Vapnik and Vashist, 2009), also known

as Learning Using Hidden Information (Vapnik et al., 2009),has been introduced to

deal with situations where additional (privileged) informationx∗ ∈ X∗ about training

examplesx ∈ X is known during training but is unavailable in the test phase. Priv-

ileged information appears in several application domains(Vapnik and Vashist, 2009;

Vapnik et al., 2009), for example, in the time series prediction, privileged information is

the behaviour of the time series in the future; in cancer prediction using biopsy images,

the privileged information is the pathologist’s report etc.

An extension of SVM learning algorithm, known as SVM+, has been suggested as

a candidate for LUPI in (Vapnik and Vashist, 2009; Vapnik et al., 2009). In SVM+, the

slack variables for inputs inX are determined by a correcting function operating in the
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privileged spaceX∗,

ξ(x∗) = w∗ · Φ∗(x∗) + b∗,

whereΦ∗ is the feature map induced by the kernel operating onX∗. Replacing the

slacks in (1) by the slack variable model defined above, the problem becomes:

min
w,w∗,b,d

1

2

[

‖ w ‖2 +γ(‖ w∗ ‖2)
]

+ C

l
∑

i=1

[w∗ · Φ∗(x∗

i ) + d]

s. t. (4)

yi[w · Φ(xi) + b] ≥ 1 − [w∗ · Φ∗(x∗

i ) + d], ∀ i,

w∗ · Φ∗(x∗

i ) + d ≥ 0, ∀ i.

whereγ is a hyper-parameter used to control the capacity for the correcting function in

X∗ space. The Lagrangian reads:

L(w,w∗, b, d,α,β) =
1

2
[‖ w ‖2 +γ(‖ w∗ ‖2)] + C

l
∑

i=1

[w∗ · Φ∗(x∗

i ) + d] (5)

−
l

∑

i=1

αi{yi[w · Φ(xi) + b] − 1 + [w∗ · Φ∗(x∗

i ) + d]} −
l

∑

i=1

βi[w
∗ · Φ∗(x∗

i ) + d],

with the corresponding dual:

max
α,β

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjK(xi,xj)

−
1

2γ

l
∑

i,j=1

(αi + βi − C)(αj + βj − C)K∗(x∗

i ,x
∗

j)

s. t. (6)

l
∑

i=1

(αi + βi − C) = 0,
l

∑

i=1

yiαi = 0, αi ≥ 0, βi ≥ 0, ∀ i.

K(xi,xj) andK∗(x∗

i ,x
∗

j) are kernels inX andX∗ spaces, respectively. SVM+ have

been successfully used on a variety of data sets with privileged information, (e.g. Ribeiro et al.,

2010; Liang and Cherkassky, 2007).
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2.3 SVM for Ordinal Regression - SVORIM

Support Vector Ordinal Regression with IMplicit constraints (SVORIM) (Chu and Keerthi,

2005) is a generalization of the binary SVM (Vapnik and Lerner, 1963; Vapnik, 1998;

Burges, 1998; Chang and Lin, 2010; Kotsiantis et al., 2006) to learning to rank or or-

dinal regression. While the key concept of the SVM classifier is to construct a hyper-

plane separating the positive examples from the negative ones with maximum margin,

SVORIM classifier extends this idea by constructing multipleparallel hyperplanes sep-

arating the adjacent classes (in the class order). In contrast to Support Vector Ordinal

Regression with EXplicit constraints (SVOREX) (also proposed by Chu and Keerthi

(2005) by enforcing an order on the adjacent thresholds explicitly), SVORIM ensures

the threshold order implicitly by stipulating that thej-th hyperplane (corresponding to

thresholdbj) separates all points from classes≤ j from all points of classes> j.

Consider an ordered set of classes{1, 2, ..., J}. In SVORIM (Chu and Keerthi,

2005), there are two sets of slack variablesξ and ν and the primal problem is for-

mulated as follows:

min
w,b,ξ,ν

1

2
‖ w ‖2 +C

J−1
∑

j=1





j
∑

k=1

nk

∑

i=1

ξ
j
ki +

J
∑

k=j+1

nk

∑

i=1

ν
j
ki



 ,

s.t. (7)

w · Φ(xk
i ) − bj ≤ −1 + ξ

j
ki, ξ

j
ki ≥ 0, k = 1, ..., j andi = 1, ..., nk,

w · Φ(xk
i ) − bj ≥ +1 − ν

j
ki, ν

j
ki ≥ 0, k = j + 1, ..., J, i = 1, ..., nk.

wherej runs over1 to J − 1. ξ
j
ki andν

j
ki are the ‘left’ and ‘right’ slacks, respectively,

for thei-th point in classk with respect to the separating hyperplane between classesj

andj + 1 andnk is the number of patterns of classk.
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Figure 1: Illustration of SVORIM. All the examples are mappedto their function values

w · Φ(x) along the horizontal axis.

Note that since in SVORIM there is a slack variable for each(data point, decision

boundary)pair, there is no need to have different notations for the ‘left’ and ‘right’

slacks,ξ andν, respectively. The left-right slacks are necessary for theexplicit con-

straint formulation, but not for the implicit one. The idea of SVORIM can be summa-

rized in Figure 1: for a thresholdbj, the function valuesw · Φ(x) of all examples from

all the lower categories should be less than the lower marginbj − 1 and the function

valuesw · Φ(x) of all examples from all the upper categories should be greater than

the upper marginbj + 1. Slacks of each example with respect to every threshold are

allowed to relax the constraints.

3 Modelling Slack Variables in SVM classification

Vapnik and Vashist (2009) have theoretically and empirically justified the idea of mod-

elling the slack variables using privileged information (SVM+). If the idea of modelling

slack variables (as opposed to obtaining their individual values through optimization

problem) is reasonable, then it makes sense to ask what happens if we build a slack

9



variable model using the original information. In other words, we would like to analyse

the modelling approach for determining slacks by imposingX = X∗ and using the

SVM+ framework:

ξi = ξ(xi) = w∗ · Φ∗(xi) + d. (8)

The proposed model, which is denoted bySVMP, formulates the slack model as kernel

regression and can thus be naturally incorporated into the SVM framework. The de-

cision rule and the correcting function are found by solvingthe following constrained

optimization problem:

min
w,w∗,b,d

1

2
[‖ w ‖2 +γ(‖ w∗ ‖2)] + C

l
∑

i=1

[w∗ · Φ∗(xi) + d]

s. t. (9)

yi[w · Φ(xi) + b] ≥ 1 − [w∗ · Φ∗(xi) + d], ∀ i,

w∗ · Φ∗(xi) + d ≥ 0, ∀ i.

The Lagrangian is constructed as in eq (5). By applying KKT conditions, we can

obtain an optimization problem only depending onα’s andβ’s:

max
α,β

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjK(xi,xj)

−
1

2γ

l
∑

i,j=1

(αi + βi − C)(αj + βj − C)K∗(xi,xj)

s. t. (10)

l
∑

i=1

(αi + βi − C) = 0,
l

∑

i=1

yiαi = 0, αi ≥ 0, βi ≥ 0, ∀ i.

Once the optimalα’s andβ’s are obtained, the decision function has the same form

as in eq. (3) and the corresponding correcting function reads:

ξ(x) =
1

γ

l
∑

i=1

(αi + βi − C)K∗(xi,x) + d, (11)
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where the biasd is computed fromw∗ · Φ∗(xi) + d = 0, for any training point with

βi > 0 and we take the average over all such points. The biasb in the decision function

can be computed from any point whose corresponding multiplierαi is greater than zero

from yi[w · Φ(xi) + b] − 1 + ξ(xi) = 0 (we take the average over all such points).

In the standard SVM construction the slacks are not constrained by any smooth

model, but are determined directly in the optimization procedure. We have shown how

the slack values can be obtained in a model based manner through correcting functions.

Next, we will combine the two kinds of slacks in a convex combination.

3.1 Convex Combination of Model Based and Optimized Slack Val-

ues (SVMvP)

In this section we propose to use slack values obtained from aconvex combination of

the slacks obtained in the SVM andSVMPframeworks. This proposal allows slack

values to be moved between modelled slacks and independently learned slacks so that

we can answer in a data-driven way what kind of slack values ispreferable for a given

task. This idea can be formulated as follows:

ri = (1 − v)ξi + vξ(xi), v ∈ [0, 1], ∀ i. (12)

We refer to the model operating with slacksri asSMPvP.
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Givenv, using the slacksri in (12), the problem can be formulated as:

min
w,w∗,b,d,ξ

1

2
[‖ w ‖2 +γ(‖ w∗ ‖2)] + C

l
∑

i=1

ri

s. t.

yi[w · Φ(xi) + b] ≥ 1 − ri, ∀ i,

ξi ≥ 0, w∗ · Φ∗(xi) + d ≥ 0, ∀i.

As before, we construct the Lagrangian:

L =
1

2
[‖ w ‖2 +γ(‖ w∗ ‖2)] + C

l
∑

i=1

{(1 − v)ξi + v[w∗ · Φ∗(xi) + d]

+
l

∑

i=1

αi{1 − (1 − v)ξi − v[w∗ · Φ∗(xi) + d] + yi[w · Φ(xi) + b]} (13)

−
l

∑

i=1

βi(Φ
∗(xi) + d) −

l
∑

i=1

θiξi

whereαi, βi andθi are non-negative Lagrangian multipliers. Again, we can transform

the problem into its dual:

max
α,β

l
∑

i=1

αi −
1

2

l
∑

i,j=1

αiαjyiyjK(xi,xj)

−
1

2γ

l
∑

i,j=1

(vαi + βi − vC)(vαj + βj − vC)K∗(xi,xj)

s. t.

l
∑

i=1

(vαi + βi − vC) = 0,
l

∑

i=1

yiαi = 0, 0 ≤ αi ≤ C, βi ≥ 0, ∀ i.

Once the optimalα’s andβ’s are obtained, we can use the following KKT complemen-

tary conditions

βi(w
∗Φ∗(xi) + d) = 0, (14)

αi{yi[w · Φ(xi) + b] − 1 + ri} = 0, (15)

θiξi = 0, (16)
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to compute the biasd = −w∗Φ∗(xi) using anyxi for which βi 6= 0. We take the

average over all such points. Once we have the biasd of the slack model, we can

compute biasb of the decision function through Equation (15), using anyxi for which

0 < αi < C. Again, we take the average over all such points.

The model introduced above has 5 hyper-parameters that needto be tuned (e.g. via

cross-validation), namely, kernel widths of the decision and slack model (correcting)

functions,σ andσ∗, respectively, regularization parametersC andγ, and coefficientv

of the slack convex combination. In practice, we obtain the slacksξi in standard SVM

and model slacksξ(xi) by runningSVMP, respectively. Having slacksξi, ξ(xi) and

combination coefficientv, we compute the new slacksri and recover the corresponding

decision boundary from the SVM model formulation by solving(ri are fixed):

min
1

2
‖ w ‖2

s. t.yi{w · Φ(xi) + b} ≥ +1 − ri, ∀ i. (17)

The Lagrangian has the following form:

L =
1

2
‖ w ‖2 −

l
∑

i=1

αi{yi[w · Φ(xi) + b] − 1 + ri}, (18)

The solution requires the following conditions to be met:

∂L

∂w
= w −

l
∑

i=1

αiyiΦ(xi) = 0, (19)

∂L

∂b
= −

l
∑

i=1

αiyi = 0. (20)

By substituting the solution of (19) - (20) into (18), we obtain the corresponding dual
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problem:

max
α

l
∑

i=1

(1 − ri)αi −
1

2

l
∑

i,j=1

αiαjyiyjK(xi,xj)

s. t.

l
∑

i=1

αiyi = 0, (21)

αi ≥ 0, ∀ i.

After findingα’s, the decision function is obtained as in standard SVM (section 2).

4 Modelling Slacks in SVM based Ordinal Regression

In this section, we extend the idea of modelling slacks in binary SVM to Support Vector

Ordinal Regression with IMplicit constraints (SVORIM) (Chu and Keerthi, 2005).

We chose SVORIM instead of the explicit one in Chu and Keerthi (2005), since in

SVOREX thej-th hyperplane (j = 1, 2, ...J − 1, whereJ is the number of classes) is

constrained only by the slacks of patterns from adjacent classes, whereas in SVORIM

it is constrained by the slacks of patterns from all classes.As the key aspect of our

method is modelling of slacks, the SVORIM framework can provide more flexibility

through greater number of correcting functions.

In this section, we present the detailed derivation of theSVORIMPalgorithm, which

models slack variables for each thresholdbj by a correcting function, as follows:

ξj(x) = w∗

j Φ
∗(x) + dj, (22)

wherej = 1, 2, ..., J − 1. Replacing the slack variables by the slack models (22) and

considering the primal in (7), we can formulate the following primal problem using
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correcting functions:

min
w,b,w∗,d

1

2
‖ w ‖2 +

γ

2

J−1
∑

j=1

(‖ w∗

j ‖2) + C

J−1
∑

j=1

J
∑

k=1

nk

∑

i=1

(w∗

j ·Φ
∗(xk

i ) + dj),

s.t. for everyj = 1, ..., J − 1, (23)

w · Φ(xk
i ) − bj ≤ −1 + (w∗

j ·Φ
∗(xk

i ) + dj), for k = 1, ..., j andi = 1, ..., nk,

w · Φ(xk
i ) − bj ≥ +1 − (w∗

j ·Φ
∗(xk

i ) + dj), for k = j + 1, ..., J andi = 1, ..., nk,

w∗

j ·Φ
∗(xk

i ) + dj ≥ 0. ∀ i, j, k.

As in the previous sections, we construct the Lagrangian:

L =
1

2
‖w‖2 +

γ

2
‖w∗

j‖
2 + C

J−1
∑

j=1

J
∑

k=1

nk

∑

i=1

(w∗

j ·Φ
∗(xk

i ) + dj)

−
J−1
∑

j=1

j
∑

k=1

nk

∑

i=1

{αj
ki(−1 + w∗

j ·Φ
∗(xk

i ) + dj − w · Φ(xk
i ) + bj)} (24)

−
J−1
∑

j=1

J
∑

k=j+1

nk

∑

i=1

α
j
ki(−1 + w∗

j ·Φ
∗(xk

i ) + dj + w · Φ(xk
i ) − bj)

−
J−1
∑

j=1

J
∑

k=1

nk

∑

i=1

β
j
ki(w

∗

j ·Φ
∗(xk

i ) + dj),

whereα
j
ki andβ

j
ki are non-negative multipliers. The KKT conditions for the primal

problem require the following conditions hold true:

∂L

∂w
= w +

J−1
∑

j=1

j
∑

k=1

nk

∑

i=1

α
j
kiΦ(xk

i ) −
J−1
∑

j=1

J
∑

k=j+1

nk

∑

i=1

α
j
kiΦ(xk

i ) = 0, (25)

∂L

∂w∗

j

= γw∗

j + C

J
∑

k=1

nk

∑

i=1

Φ∗(xk
i ) −

j
∑

k=1

nk

∑

i=1

α
j
kiΦ

∗(xk
i )

−
J

∑

k=j+1

nk

∑

i=1

α
j
kiΦ

∗(xk
i ) −

J
∑

k=1

nk

∑

i=1

β
j
kiΦ

∗(xk
i ) = 0, (26)

∂L

∂bj

= −

j
∑

k=1

nk

∑

i=1

α
j
ki +

J
∑

k=j+1

nk

∑

i=1

α
j
ki = 0, ∀ j, (27)

∂L

∂dj

=
J

∑

k=1

nk

∑

i=1

(αj
ki + β

j
ki − C) = 0,∀j. (28)
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By substituting the solutions of (25)-(28) into (24), we havethe following dual problem:

max
α,β

∑

k,i

(
J−1
∑

j=1

α
j
ki)

−
1

2

∑

k,i

∑

k′,i′

{

(
k−1
∑

j=1

α
j
ki −

J−1
∑

j=k

α
j
ki)(

k′
−1

∑

j=1

α
j
k′i′ −

J−1
∑

j=k′

α
j
k′i′)K(xk

i ,x
k′

i′ )

}

−
1

2γ

J−1
∑

j=1

∑

k,i

∑

k′,i

{

(αj
ki + β

j
ki − C)(αj

k′i′ + β
j
k′i′ − C)K(xk

i ,x
k′

i′ )
}

(29)

s. t.
j

∑

k=1

nk

∑

i=1

α
j
ki =

J
∑

k=j+1

nk

∑

i=1

α
j
ki,∀j,

J
∑

k=1

nk

∑

i=1

(αj
ki + β

j
ki − C) = 0,∀j,

α
j
ki ≥ 0, βj

ki ≥ 0,∀i,∀j.

Once the solution of the dual problem is found, the value of discriminant function at a

new inputx is:

F (x) =
∑

k,i

(
k−1
∑

j=1

α
j
ki −

J−1
∑

j=k

α
j
ki)K(xk

i ,x). (30)

The correcting functions for each threshold have the form,

ξj(x) = fj(x) + dj, (31)

wherefj(x) = 1

γ

∑J

k=1

∑nk

i=1
(αj

ki +β
j
ki −C)K∗(xk

i ,x), and the biasdj is computed by

averaging over−fj(x
k
i ) for all the points whichβj

ki > 0, j = 1, ..., J−1. The threshold

bj can be computed by anyαj
ki > 0, in the following way:

bj =















F (xk
i ) + 1 − ξj(xk

i ) k ≤ j,

F (xk
i ) − 1 + ξj(xk

i ) k > j.

(32)

The threshold is taken the average for these points. Then, the predictive ordinal decision

function is defined as:

arg min
i

F (x) < bi. (33)
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The time complexity of this algorithm isO((J − 1)3l3), and there are four hyper-

parameters need to be tuned.

4.1 Convex Combination of Model Based and Optimized Slack val-

ues in SVORIM (SVORIMvP)

This section demonstrates the algorithm denoted bySVORIMvP, which uses slack val-

ues from convex combination of slack values obtained from the correcting functions

and values from the standard SVORIM optimization procedure,as follows:

r
j
ki = (1 − v)ξj

ki + vξj(x
k
i ), (34)

where the mixing weight0 ≤ v ≤ 1 can be tuned through cross-validation. We ob-

tain the slacksξj
ki andξj(x

k
i ) by running SVORIM andSVORIMP, respectively. After

determining the combined slacks (34), the primal problem isformulated as:

min
w,b

1

2
‖ w ‖2

s.t.

w · Φ(xk
i ) − bj ≤ −1 + r

j
ki, k = 1, ..., j andi = 1, ..., nk,

w · Φ(xk
i ) − bj ≥ +1 − r

j
ki, k = j + 1, ..., J, i = 1, ..., nk,

(35)
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wherej = 1, ..., J − 1 and the corresponding dual can be formulated as:

max
α

∑

k,i

(
J−1
∑

j=1

α
j
ki(1 − r

j
ki))

−
1

2

∑

k,i

∑

k′,i′

{(
k−1
∑

j=1

α
j
ki −

J−1
∑

j=k

α
j
ki)(

k′
−1

∑

j=1

α
j
k′i′ −

J−1
∑

j=k′

α
j
k′i′)K(xk

i ,x
k′

i′ )}

s.t.

j
∑

k=1

nk

∑

i=1

α
j
ki =

J
∑

k=j+1

nk

∑

i=1

α
j
ki, ∀ j,

α
j
ki ≥ 0, ∀ i, j, k.

Once the solution for dual has been obtained, the threshold can be computed by any

α
j
ki > 0 as:

bj =















F (xk
i ) + 1 − r

j
ki k ≤ j,

F (xk
i ) − 1 + r

j
ki k > j.

(36)

The time complexity of this algorithm remainsO((J−1)3l3). Compared toSVORIMP,

SVORIMvPhas one more hyper-parameters. However, by using the same trick as we do

for SVMvP, model fitting ofSVORIMvPonly costs the effort of the same order as that

of SVORIMP.

5 Experimental Results and Analysis

We evaluated our methodology on several data sets of different nature and origin. The

input vectors were normalized to zero mean and unit variance. RBF kernels were used

both in classifier design and in slack variable modelling with kernel widthsσ andσ∗,

respectively, except the case of synthetic data for linear decision boundary where a

linear kernel was used in the classifier design.
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In our experiment, the ranges allowed for the parameters were as following:σ ∈

{0.1, 0.5, 1, 5, 10}, σ∗ ∈ {0.1, 0.5, 1, 5, 10}, C ∈ {1, 10, 50, 100, 500}, γ ∈ {0.001,

0.01, 0.1, 1, 10, 100, 500, 1000} and the value of mixing coefficientv for unconstrained

and model based slacks was taken from{0, 0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,

0.8, 0.9, 0.95, 1}. Hyper-parameters were tuned via grid search based on 5-fold cross

validation over the training set. We used thecvx Matlab tool1 as optimization routine

to training the SVM based algorithms mentioned in this paperusing SDPT3 solver.

Denoting the number of training examples byl, for SVM, SVMPandSVMvPthe time

complexity isO(l3), O((2l)3) andQ((l + 2l + l)3), respectively.

We first present and discuss experiments on binary classification. We employed 2

synthetic, 10 benchmark datasets and a very large dataset. We then move on to ordinal

regression, where 4 real world time series data sets were used.

5.1 Binary Classification

Synthetic Data Toy experiments were performed to evaluate the proposed algorithm

using randomly generated two-dimensional data from class-conditional Gaussian dis-

tributions with diagonal covariance matrix. In each experiment there were 2 classes

and we randomly and independently generated100 training and2000 testing points per

class. The data generation and model fitting/evaluation process was repeated 10 times.

Tables 1 and 2 contain the mean (and StDev) results over the10 trails.

In the first experiment, both classes shared the same spherical covariance structure

(identity matrixI), meaning that the optimal separation boundary was linear.The means

1http://cvxr.com/cvx
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of positive and negative classes were set to(1, 1) and(−1,−1), respectively. The ideal

separation line goes through the origin with directional vector (1,−1). We employed

linear kernelsK and Gaussian kernelsK∗ in SVMPandSVMvP, respectively.

In the second experiment, the three algorithms were tested on data with non-linear

optimal decision boundary. The class-conditional means remained the same, while the

covariance structure of the negative and positive classes was2I andI, respectively. The

decision boundary ‘bends’ towards the positive class.

Table 1: Classification error for synthetic datasets

Decision boundary SVMvP SVM SVMP SVMvP (v = 1)

Linear 0.0762±0.0030 0.0782± 0.0032 0.0762± 0.0027 0.0769±0.0029

Non-linear 0.1367±0.0056 0.1398±0.0053 0.1353±0.0052 0.1372±0.0062

Table 2: Number of support vectors for synthetic datasets

Decision boundary SVMvP SVM SVMP SVMvP (v = 1)

Linear 10.60±16.04 39.20± 10.65 151.40± 77.42 17.3±24.47

Non-linear 60.30±46.49 78.80±13.24 158.60±44.45 96.80±36.22

Table 1 summarizes classification performance of the three models in the two syn-

thetic data experiments. In addition we also report resultsfor theSVMvPmodel withv

set to 12. Note that theSVMvPmodel withv = 1 is not equivalent to theSVMPmodel,

although both use model based slacks only. This is because intheSVMvPmodel the de-

cision boundary is reconstructed from the slacks as described in section 3.1. However,

2 We are thankful to the anonymous reviewer for making this suggestion.
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it can be shown that whenv = 0, theSVMvPmodel is identical to the original SVM.

The number of support vectors in each model is recorded in table 2.

Test errors ofSVMvPandSVMPwere slightly smaller than that of SVM. Compared

to SVM, the number ofSVMPsupport vectors was much larger, while the number of

support vectors ofSVMvPwas much smaller than in the case of SVM.SVMvPwith

v = 1 achieve similar (but slightly inferior) performance toSVMvPwith v as a free

parameter. However, the model complexity ofSVMvPis lower than that ofSVMvP

with v = 1.

As an example, we show in Figure 2 separation lines (a) and support vectors of

SVM (b), SVMP(c) andSVMvP(d), for one trial in the first experiment. It appears that

SVMvPneeds much less support vectors to determine the separatingline. Analogous

results were found for data with non-linear separation in the second experiment (see

Figure 3).

The values of mixing parameterv for slacks selected through cross-validation in the

first and second experiment were (mean± StDev)0.84 ± 0.2665 and0.83 ± 0.2406,

respectively. In the two experiments, the methodology prefers model-based slacks3.

Benchmark datasets 10 benchmark datasets from the UCI repository

(Asuncion and Newman, 2007) were used to evaluate the three methods. The datasets

are briefly described in Table 3. Each data set was randomly and independently parti-

tioned into training/test splits 100 times, yielding 100 re-sampled training/test sets. In

3As mentioned earlier, by imposingv = 0, SVMvPbecomes standard SVM.
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(d) SVMvP, # support vectors is 3

Figure 2: Illustration of linear decision boundary. Black+ represents positive examples

while yellow ◦ describes negative examples. Support vectors from positive examples

are red circled, while support vectors from negative examples are marked with red dot

in the centre.

addition, we also employed a large dataset (Covertype4) containing 536301 data items5.

We randomly partitioned theCovertypeset into 600 (disjoint) folds. The models were

fitted and tested on the first 6 folds - in particular, the first fold was used for training,

4We are thankful to the anonymous reviewer for making this suggestion.

5after removing items with missing values
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Figure 3: Illustration of non-linear decision boundary. Support vectors are marked in

the same as in Figure 2.

the remaining 5 folds for testing. The procedure was then repeated on the next block of

6 folds, and so on, until all 100 6-fold blocks were used.

Tables 4 and 5 report the average performance on the data setsover the 100 trails.

The classification error ofSVMPwas consistently smaller than that of SVM. However,

the number of support vectors was mainly (10 cases out of 11) greater than for SVM.

SVMvPachieved slightly worse classification error compared toSVMP, but still better

than SVM. The support vector set ofSVMvPwas significantly smaller than that of both
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SVM andSVMP. As in the synthetic data experiments,SVMvPwith v = 1 achieved

comparable, but slightly worse performance thanSVMvPwith freev, while compared

with SVMvP, the number of support vectors inSVMvPwith v = 1 was higher.

Table 3: Description of the benchmark datasets.m is dimensionality of the input vector.

Dataset Cancer Diabetes Heart Solar Thyroid German Australian Breast cancer Fourclass Liver disorders

m 9 8 13 9 5 20 14 10 2 6

# training / # test 132/131 384/384 135/135 72/72 107/108 500/500 345/345 342/341 431/431 173/172

Table 6 summarizes statistical differences between the methods using Wilcoxon test

(Wilcoxon, 1945). The significance level was set toα = 0.1. For this analysis we con-

sidered the benchmark, as well as the synthetic data sets (total of 13 data sets). Each en-

try of the table reports the number of datasets for which the row method beat the column

method in the statistically significant manner (wins), the number of datasets where the

differences were not statistically significant (draws) andthe number of datasets where

the row method performed significantly worse than the columnmethod (loses). We

also includedSVMvPwith v = 1 for comparison purposes.SVMvPandSVMPobtained

statistically better classification error than SVM for 12 datasets, whileSVMvP(v=1)for

10 datasets. With respect to the number of support vectors,SVMvPhad statistically

significantly smaller support vector sets thanSVMPand SVM for 13 and 11 datasets,

respectively. Fixingv = 1 statistically increased the error of SVMvP for8 datasets and

the number of support vectors for8. Moreover,SVMvP(v=1)was only able to improve

number of support vectors with respect to SVM for 7 datasets and it was beaten by

SVM in 2 datasets. The tests confirm that the results previously observed in Tables 4

and 5, refuting that the differences could have been obtained by chance.
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The values of parameterv selected from cross-validation inSVMvPare given in

Table 7. It is interesting to observe that for all studied data sets the mixing of slack

values is biased towards the model-based slacks provided bythe correcting function.

These experiments indicate that modelling the slack variables using (8) has a poten-

tial to improve generalization performance, at the cost of increased model complexity.

However, using convex combination of unconstrained and model-based slacks (12) can

result in superior model of significantly reduced complexity.

Discussion and Analysis Our experimental results show thatSVMPcan improve gen-

eralization performance over SVM at the expense of increased model complexity. The

i-th training point is considered as support vector if its correspondingαi value is pos-

itive. Therefore, in SVM the points on the hyperplanesw · Φ(x) + b = −1 and

w ·Φ(x) + b = 1, together with the points whose corresponding slack value are bigger

than zero are support vectors. Hence, the determination of slack values will influence

the number of support vectors. Slacks in SVM are obtained independently through

optimization programme, whereas the slacks inSVMPchange according to a smooth

correcting function. Points in the neighbourhood of an input with a positive slack will

tend to have positive slacks imposed by the model. This can result in an increased

number of support vectors, when compared with SVM.

From our experimental results we see that the classificationboundary reconstruction

from slacks used inSVMvPdecreases the number of support vectors. Comparing the

dual problems for SVM andSVMvP, (2)-(3) and (21)-(21), respectively, we notice two

principal differences. First, the term
∑l

i αi in SVM is replaced by
∑l

i δiαi, δi = 1− ri,

25



in SVMvP. Second,αi in SVMvPare no longer bounded by the penaltyC (as in SVM).

If ri > 1, meaning that the corresponding inputxi is on the wrong side of the

boundary, the weightδi of αi in (21) is negative, forcingαi to zero (or ‘small’ value).

At the same time, the term

−
l

∑

i

l
∑

j

αiαjyiyjK(xi,xj)

is encouraging highα values for points considered similar under the kernelK (e.g.

spatially close under a Gaussian kernel), but with different class labels. The overall

effect inSVMvPis that a smaller number of points on the correct side of the decision

boundary, but close to it, will have highα values, whereas the other points will have

small, or vanishingα’s. This is illustrated in Figure 4.SVMvPmodel is usually much

more sparse than the standard SVM. Unlike in SVM (dots), the support vectors with

non-zeroα’s in SVMvP(circles) are predominantly located on the correct side of the

decision boundary (δi = 1 − ri > 0) and attain much higher values.

5.2 Ordinal Regression

In this section, we present the experimental results on modelling slacks in SVORIM.

We employed time series data sets (see Table 8), which were quantized into a series of

categories with natural order, so they can be tackled as ordinal regression problems.

Four different time series have been considered.Sunspotis the annual sunspot num-

bers from 1700-1988.Fish data contains 453 monthly values of estimated fish recruit-

ment in the period 1950-1987.Winedata set contains Australian red wine sales in the

period of 1980-1991. Finally,Birth data set contains births per 10,000 of 23 year old

women in U.S. in the period of 1917-1975. For each of the four time series{st}, a new
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(a) Synthetic dataset for linear decision
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(c) Cancer dataset.
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(d) Heart dataset.

Figure 4: Distribution of the multipliersαi and the weightsδi for two synthetic and two

real datasets.

series of differencesDt = st−st−1 was created and was then quantized into a symbolic

stream{yt} through:

yt =















































1 (extreme down) ifDt < θ1 < 0

2 (normal down) ifθ1 ≤ Dt < 0

3 (normal up) if0 ≤ Dt < θ2

4 (extreme up) ifθ2 ≤ Dt

The cut valuesθ1, θ2 were chosen so that classes 1, 2, 3 and 4 contain 10%, 40%, 40%

and 10% of sequence elementsDt. We used the values of the previous 5 time steps as
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input features. We randomly split these datasets into training and test set5 times. The

final results are the average results over the5 trails.

The zero/one classification errors are given in Table 9, the mean absolute errors6

are given in Table 10 and the number of support vectors is listed in Table 11. The re-

sults of the Wilcoxon tests are given in Table 12. According to Tables 9, 10 and 11, the

classification error ofSVORIMPis much smaller than that of SVORIM but the number

of support vectors ofSVORIMPis slightly greater than that of SVORIM. The classi-

fication error ofSVORIMvPis more or less the same asSVORIMPbut the number of

support vectors is much smaller than that of both SVORIM andSVORIMP. Thus, as in

the binary case, modelling slack variables in SVORIM using original information can

improve the generalization performance of the learner and decrease the model com-

plexity. Finally, Table 13 includes the values ofv selected by cross-validation. Again, a

trend similar to the binary case can be observed –SVORIMvPtends to select the values

from the correcting functions, although the original slacks can also play an important

role. Finally, as in the previous experiments, in general,SVORIMvPwith v = 1 tend

to yield comparable, or slightly worse performance thanSVORIMvPwith freev. When

compared withSVORIMvP, the number of support vectors inSVORIMvPwith v = 1

tends to be higher.

6The average difference between the predicted and target classes in terms of the number of categories

separating them in the ordinal scale.
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6 Discussion and Conclusion

In the framework of Learning with Privileged Information, Vapnik and Vashist (2009)

proposed to incorporate privileged information through modelling the SVM slack vari-

ables through a smooth correcting function whose domain is the privileged space. This

is reasonable, since the correcting function/slacks are updated only in the training (model

fitting) phase and are never used in the test phase. Indeed, asshown in (Pechyony and Vapnik,

2010), such an incorporation of additional information canlead to faster convergence

(as the training sample size grows) to the true (optimal Bayes) model, provided the

privileged information is ‘informative enough’ about the structure of the classification

problem7.

In this contribution we took a closer look at the meaning and consequences of

(smooth) modelling of slacks, as opposed to determining them in an unconstrained

manner through the SVM optimization programme. To investigate this issue, we asked:

What is the difference between determining the slack values as in the original SVM and

modelling them via a smooth function? To gain a better understanding of this differ-

ence we allowed the determination and modelling of slack values to be done using the

same information – i.e. using the same training sample in theoriginal input space. We

then moved further and asked: Is it possible to improve classification performance by

combining (in a convex combination) the original SVM slackswith the modelled ones?

By checking the mixing weights we could determine in a data driven manner which of

the two approaches to slack value determination are preferable for a given data set.

7Here, informative enough means that the correcting functions operating in the privileged space can

provide slack values ‘close’ to the ‘ideal’ oracle slack values corresponding to the true underlying model.
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We first introducedSVMP, which models the slack variables through a smooth cor-

recting function in the original space. We introduced a principled method for convex

mixing of the original and modelled slack values. However, the method needed tuning

of five hyper-parameters. Therefore, we considered a more practical method, which

obtains the original valuesξi by running SVM and the model valuesξ(xi) by running

SVMP. Those values are then combined and the decision boundary isrecovered from

the mixed slack values. Experimental results show that, compared with SVM, this ap-

proach (SVMvP) can lead to reduction in both the misclassification rate andthe model

complexity. Interestingly enough, for most data sets the modelled slacks were preferred

(had higher mixing weight) to the original ones.

We then extended the idea of model based slacks to ordinal regression in the frame-

work of SVORIM. We chose SVORIM instead of the explicit one (Chu and Keerthi,

2005), because the SVORIM framework can provide more flexibility for correcting

function modelling through greater number of slacks. As forSVM, we first model

slacks corresponding to each separating hyperplane using acorrecting function (SVORIMP).

Then we propose to use convex combination of the valuesξ
j
ki obtained from SVORIM

and the valuesξj(xk
i ) obtained fromSVORIMP. The experimental results show that

modelling slacks, as opposed to their determination as in the original SVORIM, im-

proves the generalization performance and reduces the model complexity.
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Table 4: Classification error for benchmark datasets

dataset SVMvP SVM SVMP SVMvP (v = 1)

Cancer 0.2360±0.0229 0.2504±0.0232 0.2356±0.0233 0.2406±0.0221

Diabetes 0.2157±0.016 0.2237±0.0163 0.2155±0.0152 0.2171±0.0160

Heart 0.1381±0.0182 0.1470±0.0189 0.1370±0.0189 0.1393±0.0183

Solar 0.3150±0.0341 0.3418±0.0386 0.3050±0.0317 0.3143±0.0346

Thyroid 0.0197±0.0151 0.0319±0.015 0.0177±0.0121 0.0207±0.0157

German 0.2286±0.0143 0.2372±0.0133 0.2263±0.0134 0.2295±0.0136

Australian 0.1194±0.0114 0.1300±0.0130 0.1186±0.0111 0.1202±0.0113

Breast cancer 0.0240±0.0065 0.0273±0.0065 0.0223±0.0058 0.0244±0.0067

Fourclass 0.000±0.0000 0.0001±0.0003 0.0000±0.0000 0±0.0000

Liver disorders 0.2562±0.0220 0.2733±0.0260 0.2540±0.0222 0.2582±0.0222

Covertype 0.2532± 0.0075 0.2549± 0.0075 0.2535± 0.0074 0.2537±0.0074
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Table 5: Number of support vectors for benchmark datasets

dataset SVMvP SVM SVMP SVMvP(v = 1)

Cancer 67.51±27.94 79.33±10.12 113.04±21.08 83.69±26.61

Diabetes 173.53±102.12 218.85±23.4 323.33±59.70 210.92±94.29

Heart 46.2±33.4 80.3±19.49 109.03±29.15 65.63±31.76

Solar 30.19±23.27 45.16±5.39 68.45± 10.78 31.68±21.20

Thyroid 18.38±13.33 29.95±16.22 52.79±42.82 18.33±12.37

German 221.08±129.18 289.79±18.26 459.43±66.74 256.05±131.46

Australian 160.13±70.67 165.28±48.99 266.28±70.55 198.36±64.84

Breast cancer 32.84±28.22 51.19±21.26 212.32±139.04 41.29±31.25

Fourclass 18.53±4.49 28±27.82 19.16±4.67 19.79±11.29

Liver disorders 80.22±42.11 119.66±14.06 156.51±20.72 93.25±48.20

Covertype 409.49±79.07 539.55±28.14 841.76±91.37 413.23±97.74
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Table 6: Results of Wilcoxon test for a significance levelα = 0.1 (Wins/Draws/Loses,

i.e. number of datasets where the method of the row is significantly better than the

method of the column, no significant differences can be foundand it is significantly

worse, respectively).

Classification error (Wins/Draws/Loses)# of SVs (Wins/Draws/Loses)

Method SVM SVMP SVMvP(v=1) SVM SVMP SVMvP(v=1)

SVMvP 12/1/0 0/7/6 8/5/0 11/2/0 13/0/0 8/5/0

SVM - 0/1/12 0/1/12 - 12/0/1 2/4/7

SVMP - - 10/3/0 - - 1/0/12

Table 7: Optimal value of the slacks mixing parameterv

dataset Cancer Diabetes Heart Solar Thyroid German Australian Breast cancer Fourclass Liver disorders Covertype

v

0.7861 0.8545 0.7477 0.6936 0.8775 0.8138 0.8600 0.8157 0.9336 0.8376 0.7173

±0.2413 ±0.2076 ±0.3007 ± 0.4199 ±0.2420 ±0.2711 ±0.2033 ±0.2730 ±0.1626 ±0.2642 ± 0.3189

Table 8: Description of the ordinal datasets.m is the dimensionality of the input vector.

Dataset Sunspot Fish Wine Birth

m 5 5 5 5

# class 4 4 4 4

# training/ # test 222/56 265/177 118/13 40/8
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Table 9: Classification error on ordinal datasets

Dataset SVORIMvP SVORIM SVORIMP SVORIMvP (v = 1)

Sunspot 0.3418±0.0459 0.4277±0.0549 0.3381±0.0452 0.4061±0.0602

Fish 0.5130± 0.0109 0.5571± 0.0267 0.5107±0.0117 0.5186±0.0152

Wine 0.3599±0.1032 0.4456±0.0788 0.3599±0.0896 0.4975±0.1079

Birth 0.3000±0.0685 0.4250±0.1118 0.3250±0.0685 0.3250±0.0685

Table 10: Mean Absolute Error on ordinal datasets

Dataset SVORIMvP SVORIM SVORIMP SVORIMvP (v = 1)

Sunspot 0.3851± 0.0699 0.4710±0.0765 0.3813±0.0652 0.4564± 0.0794

Fish 0.5819±0.0384 0.6271±0.0543 0.5684±0.0267 0.5774±0.0251

Wine 0.4291±0.1219 0.5819±0.0995 0.4214±0.1116 0.6150±0.1658

Birth 0.4000±0.0559 0.5500±0.1425 0.4500±0.1118 0.4250±0.0685

Table 11: Support vector size on ordinal datasets

Dataset SVORIMvP SVORIM SVORIMP SVORIMvP (v = 1)

Sunspot 147.8±52.77 191.40±10.23 206.20±29.78 221.20±2.16

Fish 69.40±50.34 235.80±9.86 265.00±0.00 181.80±106.06

Wine 64.7±46.81 108.2±5.35 115.4±5.21 117.20±1.68

Birth 23.80±14.60 37.20±2.59 37.60±1.82 20.80±10.99
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Table 12: Results of Wilcoxon test on ordinal datasets for a significance levelα = 0.1

(Wins/Draws/Loses, i.e. number of datasets where the method of the row is significantly

better than the method of the column, no significant differences can be found and it is

significantly worse, respectively).

Classification error (Wins/Draws/Loses)

Method SVORIM SVORIMP SVORIMvP(v=1)

SVORIMvP 0/4/0 0/4/0 1/3/0

SVORIM - 0/4/0 0/4/0

SVORIMP - - 1/3/0

Mean Absolute Error (Wins/Draws/Loses)

Method SVORIM SVORIMP SVORIMvP(v=1)

SVORIMvP 1/3/0 0/4/0 1/3/0

SVORIM - 0/3/1 0/4/0

SVORIMP - - 1/3/0

# of SVs (Wins/Draws/Loses)

Method SVORIM SVORIMP SVORIMvP(v=1)

SVORIMvP 0/4/0 1/3/0 0/4/0

SVORIM - 1/3/0 0/4/0

SVORIMP - - 0/3/1
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Table 13: Optimal value of the slack mixing parameterv in SVORIMvP

Dataset Sunspot Fish Wine Birth

v 0.8900±0.1342 0.7900±0.2460 0.9300±0.1304 0.7900±0.2748
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