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Abstract

In this paper, we explore the idea of modelling slack vagabh Support Vector Ma-

chine (SVM) approaches. The study is motivated by SVM+, Wimmodels the slacks



through a smooth correcting function that is determinedduiiteonal (privileged) infor-
mation about the training examples not available in theflease. In this paper we take
a closer look at the meaning and consequences of smooth Imgd#l slacks, as op-
posed to determining them in an unconstrained manner thrtheggSVM optimization
programme. To better understand this difference we onbmathe determination and
modelling of slack values on the same information - i.e. gisive same training input in
the original input space. We also explore whether it is fadsso improve classification
performance by combining (in a convex combination) theinagSVM slacks with the
modelled ones. We show experimentally that this approatlomly leads to improved
generalization performance, but also yields more compawgr complexity models.
Finally we extend this idea to the context of ordinal regi@sswhere a natural order
among the classes exists. The experimental results confintigal findings from the

binary case.

1 Introduction

Support Vector Machines (SVMs) have gained wide populagr the last decades.
They were shown to be effective for many problems on numeappsications such as
digit recognition, face detection, speaker identificatzma so onﬁ&%). For
binary classification, SVMs construct a separating hypemplas the decision bound-
ary to separate the positive examples from the negative withamaximum margin.
To deal with the case of overlapping classes, SVM formutatitlizes non-negative

‘slack’ variables to tolerate misclassification in traigidata. Non-linear class separa-



tion structure can be addressed through so-called ‘kerickl £ kernels map the input
data into a higher dimensional feature space where lingaragon hyperplane can be

applied.

Recently, Vapnik and Vashist (2009) extended SVM framewor8¥M+ by mod-

elling the slack variables of training points through stiethcorrecting functions to
incorporate an additional privileged information. Thevpeiged information is avail-
able for inputs during training stage but unavailable intdst phase. Modelling slacks
using privileged information is feasible, as the slacksoaulg used in the training stage,

but not in the test phase. SVM+ can achieve superior perfocenavhen compared to

standard SVM trained without privileged informati(Ln (Vapand Vashisu, 2009).

In this paper, we explore the benefits of modelling slackaldés in SVM from a
different perspective. We study the difference betweeardahing the slack values as
in the original SVM and modelling them via a smooth corregtinnction. For a sys-
tematic study of this issue we need to make sure that thendiet@tion and modelling
of slack values are done using the same information - i.eagugie same training ex-
amples in the original input space. In other words, to obtadudel-based slack values
we will employ the SVM+ model, but the domain of the corregtimnctions will be
the original input space, rather than the privileged infation one.

Having obtained two sets of slack values on the same prohlemtbe ones ob-
tained through a standard SVM optimization procedure aadties obtained from the
correcting function), we further investigate in a data eénivnanner which kind of slack
construction is more preferable for the given problem. & #nd we consider a new

set of slack values obtained as a convex combination of thadard’ and model based



slacks. The values of mixing coefficients in the convex corabon indicate the pre-
ferred slack construction. We will refer to this approachSdVivPand introduce a
principled (but costly), as well as a practical algorithmrgplement this idea.

Ordinal regression problems are multi-class classifiogtimblems where a natural

order among categories can be obserL/ed (Cardoso and Pintastlg 2007) and they

are recently receiving considerable attention (Lin and?Dil2; Fouad and Tib, 2012;

Sanchez-Monedero et al., 2013; Seah et al., 2012). We extendléa of modelling

slacks to ordinal regression problems on the basis of th@@&@upector Ordinal Re-

gression with IMplicit constraints (SVORIM) (Chu and Keerth005). SVORIM con-

structs multiple parallel hyperplanes separating thecadyjaclasses (in the class order),
by stipulating that each hyperplane separates all thepwiritigher classes from all the
points in lower classes. As we do for binary SVM, we first matthel slack variables
for each hyperplane using a correcting functi®QORIMB. We then derive a method
based on combining the slacks from the standard optimizgtiocedure of SVORIM
and the slacks from the correcting functions with a mixingapaetery (SVORIMVR.

In summary, this paper explores the idea of modelling slaaables in SVM

framework. The contributions of this paper are three-fold:

e We investigate the differences between modelling slacksodntaining their val-
ues in an unconstrained manner through the optimizatiogranome. This is
done by slack modelling via a correcting function using thgioal information,

instead of privileged information.

e We introduce methodologies for obtaining slacks througbravex combination
of model based and optimized slack values, which, as willhmve, leads to
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lower model complexity and enhanced generalization peréoice.

o We extend these ideas to the case of ordered classes in mhewoak of ordinal

regression.

The paper has the following structure: Section 2 briefly dbes SVM and SVM+.
The idea of modelling slack variables using original tragninputs is presented in Sec-
tion/3 andSVMvPis demonstrated in Section 3.1. Section 4 extends the idesodf
elling slack variables to ordinal regression. Section S@nés the experimental results

and analysis. The main findings are discussed and summanmiSsttion 6.

2 Background

2.1 Support Vector Machine (SVM)

In this section we briefly review SVMs for classification pietns (for more details see

e.g. Vapnik, 1998; Burg

D

s, 1998).

Given a training set of examples, represented by input-output paits ;), ; €
R™, y; € {—1,1}, the aim is to construct a decision boundary (separatingtpyane)
that separates positive examples from the negative onésmakimum margin. This
can be formulated as the following constrained optimizapiooblem:

l
1 )
min s || w |2 +C Y€,

=1
where||w|| is the Euclidean norm ofv and ®(-) is the feature mapping induced by
the associated kerndl(-,-). Non-negative slack variables are utilized to relax the
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constraints and allow some misclassificati@n.> 0 is a hyper-parameter chosen by

user. This problem is usually transformed to its dual adogrdo the Karush-Kuhn-

Tucker (KKT) conditions (Boyd and Vandenbethe, 2004):
l 1 l

l
S. t. Zazyz = 0, 0 S a; S C, V1.
=1
Once optimah’s are obtained, the decision function for a new input veatds given

by:
!
F(x) = sgn (Z Y K (i, ) + b) ) (3)

2.2 Learning Using Privileged Information in SVM framework

Learning Using Privileged Information (LUPI) (Vapnik andShth\ 20J9), also known

as Learning Using Hidden Information (Vapnik et al., 20089s been introduced to

deal with situations where additional (privileged) infationz* € X* about training

examplese € X is known during training but is unavailable in the test phaB&v-

ileged information appears in several application domé@uagpnik and Vashist, 2009;

Vapnik et al., 2009), for example, in the time series prealitprivileged information is
the behaviour of the time series in the future; in canceriptieth using biopsy images,
the privileged information is the pathologist’s report.etc

An extension of SVM learning algorithm, known as SWhas been suggested as

a candidate for LUPI in (Vapnik and Vashist, 2009; Vapniklet2009). In SVM+, the

slack variables for inputs i’ are determined by a correcting function operating in the



privileged spaceX*,
where ®* is the feature map induced by the kernel operatingXon Replacing the

slacks in|(1) by the slack variable model defined above, thblpm becomes:

l
: 1 2 * |12 * * *
Juin =l w [P +y(] w” )] + C D [w" - & (@) + d]

i=1

S. L. (4)
yilw - ®(x;) + b > 1 — [w* - *(x}) + d], Vi,

w* - P (x])+d >0, Vi.

where~ is a hyper-parameter used to control the capacity for theecting function in

X* space. The Lagrangian reads:

l
L(w, w",b,d, o, B) = %[II w > (| w )]+ C Y [w - (2f) +d  (5)

= aifyilw - (@) +b] — 1+ [w* - B (x]) + d]} — Z@[w* SO (x)) + d],

i=1

with the corresponding dual:

I !
1
rgagcg ai—§ E Oéiajyiyjlc(wiawj)
=1

ij=1
l
1 * * *
2 > (ai+ B — C)a; + B — O)K* (x}, x5
ij—=1
s. t. (6)

l

!
Z(ai+ﬁi_c):07 Zyiai:07 a; >0, 5; >0, Vi.

i=1 i=1

K(zx;, ;) and C*(x;, x;) are kernels inX' and X* spaces, respectively. SVM+ have

been successfully used on a variety of data sets with pgedenformation, (e.g. Ribeiro et al.,

2010; Liang and Cherkassky, 2007).




2.3 SVM for Ordinal Regression - SVORIM

Support Vector Ordinal Regression with IMplicit constrai(8VORIM) (Chu and Keerthi,

2005) is a gzeneralization of the binary SVM (Vapnik and Lerid®63; Vapnik 19£J8;

Burges, 19 J; Chang and iin, Z(HO; Kotsiantis eJ al., 2006gaoning to rank or or-
dinal regression. While the key concept of the SVM classiidpbiconstruct a hyper-
plane separating the positive examples from the negatigs wfith maximum margin,

SVORIM classifier extends this idea by constructing multyeallel hyperplanes sep-

arating the adjacent classes (in the class order). In rtwéSupport Vector Ordinal

Regression with EXplicit constraints (SVOREX) (also progbsy Chu and KeertLi

(2005) by enforcing an order on the adjacent thresholdsatly), SVORIM ensures
the threshold order implicitly by stipulating that thieh hyperplane (corresponding to

thresholdb;) separates all points from classegi from all points of classes ;.

Consider an ordered set of classgs?, ..., J}. In SVORIM (Chu and Keerthi,

2005), there are two sets of slack variabfeand v and the primal problem is for-

mulated as follows:

Jj o nF

J-1 J nF
1 2 J J
S T PO (L2 b 2 2 )
7=1 k=1 1=1 k=j+1 i=1
s.t. (7)
w-P(xf)—b; < -1+, &, >0,k=1,..,jandi=1,..,n"

w- O b, >+l —vl v >0 k=54+1,..,J i=1,..n"

wherej runs overl to J — 1. fii andu,{;i are the ‘left’ and ‘right’ slacks, respectively,
for thei-th point in class: with respect to the separating hyperplane between classes

andj + 1 andn* is the number of patterns of claks
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Figure 1: lllustration of SVORIM. All the examples are mappetheir function values

w - ®(x) along the horizontal axis.

Note that since in SVORIM there is a slack variable for ef@tdta point, decision
boundary)pair, there is no need to have different notations for th# ‘end ‘right’
slacks,£ andv, respectively. The left-right slacks are necessary foretk@icit con-
straint formulation, but not for the implicit one. The ideSVORIM can be summa-
rized in Figure 1: for a threshold, the function valuesv - ®(x) of all examples from
all the lower categories should be less than the lower margin1 and the function
valuesw - ®(x) of all examples from all the upper categories should be grehgan
the upper margid; + 1. Slacks of each example with respect to every threshold are

allowed to relax the constraints.

3 Modelling Slack Variables in SVM classification

Vapnik and Vashist (2009) have theoretically and empilygaktified the idea of mod-
elling the slack variables using privileged informatiow{&+). If the idea of modelling

slack variables (as opposed to obtaining their individwdles through optimization
problem) is reasonable, then it makes sense to ask what igjfpe&e build a slack
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variable model using the original information. In other d®rwe would like to analyse
the modelling approach for determining slacks by imposkg= X* and using the
SVM+ framework:

& =¢(x) =w" - O (x;) + d. (8)
The proposed model, which is denoted®YMP, formulates the slack model as kernel
regression and can thus be naturally incorporated into YHd 8amework. The de-
cision rule and the correcting function are found by soluing following constrained

optimization problem:

l
. ]' 2 * |12 * * )
min S{l| w7+ (] w |l )]+Czl[w - % () + d]

w,w

s. t. 9)
plw - B(a) +6] > 1 - [w" - ®(z) +d, V1,
w* - P*(x;) +d >0, Vi.

The Lagrangian is constructed as in eq (5). By applying KKTditions, we can

obtain an optimization problem only depending@a and5’s:

l l
1
rgaﬁx 2 o — 5 ”21 Oéz‘Oijiyle(mi’ wj)

l
—% S (i + B — C)(a; + B; — OO (i, @)
ij=1
s. t. (20)

l l

Y (i+8=C)=0,> ya;=0,0; 20,6 >0, Vi

i=1 i=1

Once the optimad’s and3’s are obtained, the decision function has the same form

as in eq./(8) and the corresponding correcting functionsead

l

£(@) = Dol t - O (@a) +d (11)

i=1
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where the biagl is computed fromw* - ®*(x;) + d = 0, for any training point with
G; > 0 and we take the average over all such points. Thethiashe decision function
can be computed from any point whose corresponding mutipliis greater than zero
from y;[w - ®(x;) + 0] — 1 + £(x;) = 0 (we take the average over all such points).

In the standard SVM construction the slacks are not com&daby any smooth
model, but are determined directly in the optimization gehare. We have shown how
the slack values can be obtained in a model based mannegthcourecting functions.

Next, we will combine the two kinds of slacks in a convex comnation.

3.1 Convex Combination of Model Based and Optimized Slack Val-

ues SVMvP)

In this section we propose to use slack values obtained froonaex combination of
the slacks obtained in the SVM ai8VMP frameworks. This proposal allows slack
values to be moved between modelled slacks and indepepndeathed slacks so that
we can answer in a data-driven way what kind of slack valugsaterable for a given

task. This idea can be formulated as follows:

ri = (1 —v)& 4+ vé(x;), velol], Vi (12)

We refer to the model operating with slacksasSMPVR
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Givenv, using the slacks; in (12), the problem can be formulated as:

I+l w™ 1) +CZTZ

. 1
min —[|| w
w,w*,b,d,& 2

S. L.
yilw - &(x;) +0] > 1 -1, Vi,
& >0, w - @ (x;) +d >0, Vi.

As before, we construct the Lagrangian:

l

= %[II w > ([ w” 1))+ C Y {1 —v)& +ov[w - @ (x;) +d]

i=1

+ Z ai{l = (1 = v)& —vfw" - &™) +d] + yi[w - () + 0]} (13)

_Zﬁz wz +d 2951

whereq;, 5; andd; are non-negative Lagrangian multipliers. Again, we cangfarm

the problem into its dual:

maxg Oél——g a0y K (2, )

i,7=1

T 9n, Z va; + B — v0)(va; + B; — vO)K* (;, ;)

z] 1
S. t.
l

!
Z(UO&H"@‘—UC):O, Zyiaizoy 0<a; <C, >0, Vi.

i=1 i=1

Once the optimadk’s and5’s are obtained, we can use the following KKT complemen-

tary conditions

Bi(w*®*(2;) +d) = 0, (14)
0;& = 0, (16)
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to compute the biad = —w*®*(x;) using anyx; for which g; # 0. We take the
average over all such points. Once we have the Bia$ the slack model, we can
compute bia$ of the decision function through Equation (15), using anyor which

0 < a; < C'. Again, we take the average over all such points.

The model introduced above has 5 hyper-parameters thattodeduned (e.g. via
cross-validation), namely, kernel widths of the decisiod alack model (correcting)
functions,oc andc*, respectively, regularization parametétsand~, and coefficienv
of the slack convex combination. In practice, we obtain theks¢; in standard SVM
and model slackg(x;) by runningSVMP, respectively. Having slacks, &(x;) and
combination coefficient, we compute the new slacksand recover the corresponding

decision boundary from the SVM model formulation by solv{ngare fixed):

1
min = || w ||2
2

The Lagrangian has the following form:

l
L= % lw |? =3 adylw - d(a) +b] — 1+, (18)

i=1

The solution requires the following conditions to be met:

oL

1
9w = w-— Z%yz@(wi) =0, (19)
i=1
oL l
i=1

By substituting the solution of (19) |- (20) into (18), we olotéine corresponding dual
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problem:

l l
1
Hl;lX E (1 — 7”1‘)061' — 5 E aiozjy,-yle(zci, wj)
=1

ij=1
s. t.

l
i=1

(67 ZO, Y i.

After finding o’s, the decision function is obtained as in standard SVMt{se@).

4 Modelling Slacks in SVM based Ordinal Regression

In this section, we extend the idea of modelling slacks imbjr§VM to Support Vector

Ordinal Regression with IMplicit constraints (SVORIM) (ChudaiKeerthi, 2005).

We chose SVORIM instead of the explicit onJ in Chu and Keertb08), since in
SVOREX thej-th hyperplane{ = 1,2,...J — 1, whereJ is the number of classes) is
constrained only by the slacks of patterns from adjacemssels, whereas in SVORIM
it is constrained by the slacks of patterns from all class&s.the key aspect of our
method is modelling of slacks, the SVORIM framework can pdevimore flexibility
through greater number of correcting functions.

In this section, we present the detailed derivation oSR®©RIMPalgorithm, which

models slack variables for each threshbldy a correcting function, as follows:
E(x) = w; " (x) + dj, (22)

wherej = 1,2, ..., J — 1. Replacing the slack variables by the slack models (22) and
considering the primal in (7), we can formulate the followiprimal problem using

14



correcting functions:

min — || w ||2
wbw*d2

s.t.foreveryj =1, ...,

w - d(x

w - d(x

w;- " (x

”an

J—1,

F) = by < =1+ (w)-@*(f) +
By —b; > 41— (w}-0*(x

M +d; >0.Yi, 5, k.

2+C

dj),fork=1,..,

M+dj),fork=5+1,..,

nk

ZZw@ ")+ dy),

1 k=1 =1

<

-1

.
Il

As in the previous sections, we construct the Lagrangian:

L

J—-1 J nk
1 ;
§||w|!2 \'w P+CD Y0 (wi @ (af) + dy)
j=1 k=1 i=1
J—1 j nF
Z {od, (14w @ (xF) + dj — w - D(xF) + b))}
7j=1 k=1 =1
J—1 nk
> ali(—1 w0 (@) + dj + w - D(af) — b))
7j=1 k=j+1 i=1
J—1 J nk '
SO Bliw @ (af) + dy),
j=1 k=1 i=1

jandi =1,....nF

(23)

Jandi=1,...,n"

wherea?, and 3}, are non-negative multipliers. The KKT conditions for thénpal

problem require the following conditions hold true:

oc
ow
oL

*
8wj

oL
b,

oL
od,

J—-1 j nk A J-1 J nk '
= w+ Z aii@(mf) - Z afcitb(wf) =0,
j=1 k=1 i=1 Jj=1 k=j+1 i=1
J nk j nk
= w0 Y et - 3N o (ah)
k=1 i=1 k=1 i=1
J nk J nk
EDIPIRCIED DI ARCIRIY
k=j+1 i=1 k=1 i=1
i nk J nk
S ) SR S IR
k=1 i=1 k=j+1 i=1
J nF
= Z Z(O‘ii + 61‘1-1 —C)=0,vj.

k=1 i=1

(25)

(26)

(27)

(28)



By substituting the solutions of (25)-(28) into (24), we héwe following dual problem:

max E O[k,l

ki =1
- _EE{ E:akz E:akz E:O‘k” E:O‘k” )}
kg k' =k

= oSS e+ - Ot + Bl - O} (29

S. t.

Once the solution of the dual problem is found, the value sé€riininant function at a

new inputz is:

Z Zakz Zozkl (30)

kg j=1

The correcting functions for each threshold have the form,

& (x) = fi(z) + dj, (31)
wheref;(x) = 237 S (ad, + B, — C)K*(aF, ), and the biag, is computed by
averaging over- f;(xF) for all the points whichs], > 0, j = 1, ..., J — 1. The threshold
b; can be computed by ara%i > 0, in the following way:

F(xf)+1-¢(x7) k<],

bj = (32)
F(xh) =1+ &(z%) k>

The threshold is taken the average for these points. Thepy#dictive ordinal decision
function is defined as:
argmin F'(x) < b;. (33)
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The time complexity of this algorithm i©((J — 1)3/%), and there are four hyper-

parameters need to be tuned.

4.1 Convex Combination of Model Based and Optimized Slack val-
ues in SVORIM (SVORIMVP)

This section demonstrates the algorithm denote@¥@RIMvVP which uses slack val-
ues from convex combination of slack values obtained froenabrrecting functions

and values from the standard SVORIM optimization procedasdollows:
s = (1= o) +v&;(f), (34)

where the mixing weight < v < 1 can be tuned through cross-validation. We ob-
tain the slackg/, and¢;(z¥) by running SVORIM andSVORIMP respectively. After
determining the combined slacks (34), the primal probleforisiulated as:
1
min = || w ||?
wb 2
s.t.
(35)

w- (k) —b; < —1+7, k=1, jandi=1,..nF

w- O —b; >+l -l k=5+1,...J,i=1,...nF

17



wherej =1, ..., J — 1 and the corresponding dual can be formulated as:

max E E akz Tkl

ki gJ=1

- ‘ZZ{Z% Z% Zo‘k“ Zo‘k” 2l

ki ki j=1 =K
s.t.

J nk:
ZZ% 2. 2w Vi

=1 i=1 k=j+1 i=1
aki >0,Va1, g, k.
Once the solution for dual has been obtained, the threslaoltbe computed by any
al; > 0 as:
P@h)+1-rl, k<j
bj = (36)
F(xt)—1+r], k>3
The time complexity of this algorithm remait (J/—1)3/*). Compared t&VORIMP
SVORIMvFhas one more hyper-parameters. However, by using the setkagrwe do

for SVMvRE model fitting of SVORIMvPonly costs the effort of the same order as that

of SVORIMP

5 Experimental Results and Analysis

We evaluated our methodology on several data sets of diffex@ure and origin. The
input vectors were normalized to zero mean and unit variaR&4 kernels were used
both in classifier design and in slack variable modellinghwkiérnel widthss ando*,

respectively, except the case of synthetic data for linemistbn boundary where a

linear kernel was used in the classifier design.
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In our experiment, the ranges allowed for the parameters agrfollowing: o €
{0.1,0.5,1,5,10}, ¢* € {0.1,0.5,1,5,10}, C e {1,10,50,100,500}, v € {0.001,
0.01, 0.1, 1, 10, 100, 500, 1000} and the value of mixing coefficientfor unconstrained
and model based slacks was taken frgim0.001, 0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
0.8, 0.9,0.95,1}. Hyper-parameters were tuned via grid search based ord%fobs
validation over the training set. We used the Matlab toc£ as optimization routine
to training the SVM based algorithms mentioned in this papeng SDPT3 solver.
Denoting the number of training examples lhyor SVM, SVMPandSVMvPthe time
complexity isO(1?), O((21)*) andQ((I + 21 + 1)?), respectively.

We first present and discuss experiments on binary claggicaWWe employed 2
synthetic, 10 benchmark datasets and a very large datasgheff move on to ordinal

regression, where 4 real world time series data sets wetk use

5.1 Binary Classification

Synthetic Data Toy experiments were performed to evaluate the proposexitim
using randomly generated two-dimensional data from atasslitional Gaussian dis-
tributions with diagonal covariance matrix. In each exmpemt there were 2 classes
and we randomly and independently generdt&ttraining anc2000 testing points per
class. The data generation and model fitting/evaluationgeg®was repeated 10 times.
Tables 1 and 2 contain the mean (and StDev) results ovdittrails.

In the first experiment, both classes shared the same spheoiariance structure

(identity matrix/), meaning that the optimal separation boundary was lifde.means

1http://cvxr.com/cvx
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of positive and negative classes were sétltd ) and(—1, —1), respectively. The ideal
separation line goes through the origin with directionaitee(1, —1). We employed
linear kerneldC and Gaussian kerneks" in SVMPandSVMVR respectively.

In the second experiment, the three algorithms were testethta with non-linear
optimal decision boundary. The class-conditional meamsaneed the same, while the
covariance structure of the negative and positive clasasgiand/, respectively. The

decision boundary ‘bends’ towards the positive class.

Table 1: Classification error for synthetic datasets

Decision boundary SVMvP SVM SVMP SVMVP (v = 1)
Linear 0.0762+0.0030 | 0.0782+ 0.0032| 0.0762+ 0.0027| 0.0769:0.0029
Non-linear 0.1367+0.0056| 0.1398:0.0053 | 0.1353+0.0052 | 0.1372+0.0062

Table 2: Number of support vectors for synthetic datasets

Decision boundary SVMvP SVM SVMP SVMVP (v = 1)
Linear 10.60£16.04| 39.20+ 10.65| 151.40+ 77.42| 17.3+24.47
Non-linear 60.30+:46.49| 78.80+13.24 | 158.6G+44.45 | 96.80+36.22

Table 1 summarizes classification performance of the thiedeis in the two syn-
thetic data experiments. In addition we also report redaitthe SVMvPmodel withv
setto E Note that thesVMvPmodel withv = 1 is not equivalent to th&VMPmodel,
although both use model based slacks only. This is becatlse®VMvPmodel the de-

cision boundary is reconstructed from the slacks as destiibsection 3.1. However,

2 We are thankful to the anonymous reviewer for making thigeston.
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it can be shown that when = 0, the SVMvPmodel is identical to the original SVM.
The number of support vectors in each model is recorded Ia/fab

Test errors o6VMvPandSVMPwere slightly smaller than that of SVM. Compared
to SVM, the number oEVMPsupport vectors was much larger, while the number of
support vectors o6VMvPwas much smaller than in the case of SVEVMvPwith
v = 1 achieve similar (but slightly inferior) performance &/MvPwith v as a free
parameter. However, the model complexity SWMvPis lower than that oSVMvP
with v = 1.

As an example, we show in Figure 2 separation lines (a) angostipectors of
SVM|(b), SVMP(c) andSVMvRB(d), for one trial in the first experiment. It appears that
SVMvPneeds much less support vectors to determine the sepaliagngAnalogous
results were found for data with non-linear separation & thcond experiment (see
Figure 3).

The values of mixing parameterfor slacks selected through cross-validation in the
first and second experiment were (mearStDev)0.84 + 0.2665 and0.83 + 0.2406,

respectively. In the two experiments, the methodologygreeodel-based slacks

Benchmark datasets 10 benchmark datasets from the UCI repository

Asuncion and NewmanL, 2007) were used to evaluate the thetieoals. The datasets
are briefly described in Table 3. Each data set was randondyratependently parti-

tioned into training/test splits 100 times, yielding 108sampled training/test sets. In

3As mentioned earlier, by imposing= 0, SVMvPbecomes standard SVM.
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Figure 2: lllustration of linear decision boundary. Blagkepresents positive examples
while yellow o describes negative examples. Support vectors from pesttamples
are red circled, while support vectors from negative exasmpre marked with red dot

in the centre.

addition, we also employed a large data@ei\(ertypg) containing 536301 data itegﬂs
We randomly partitioned th€overtypeset into 600 (disjoint) folds. The models were

fitted and tested on the first 6 folds - in particular, the ficdtifwas used for training,

4\e are thankful to the anonymous reviewer for making thigesgon.

5after removing items with missing values

22



(c) SVMP,# support vectors is 151. (d) SVMVP, # support vectors is 36.

Figure 3: lllustration of non-linear decision boundary.pgart vectors are marked in

the same as in Figure 2.

the remaining 5 folds for testing. The procedure was theaatgal on the next block of
6 folds, and so on, until all 100 6-fold blocks were used.

Tables 4 and 5 report the average performance on the datavegtthe 100 trails.
The classification error dVMPwas consistently smaller than that of SVM. However,
the number of support vectors was mainly (10 cases out of (eBter than for SVM.
SVMvPachieved slightly worse classification error compare®WWWP, but still better

than SVM. The support vector set 8% MvPwas significantly smaller than that of both
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SVM and SVMR As in the synthetic data experimen&yMvPwith v = 1 achieved
comparable, but slightly worse performance ti&rivivPwith free v, while compared

with SVMVR the number of support vectors 8VMvPwith v = 1 was higher.

Table 3: Description of the benchmark datasetss dimensionality of the input vector.

Dataset Cancer | Diabetes| Heart | Solar| Thyroid | German| Australian| Breast cancef Fourclass| Liver disorders|

m 9 8 13 9 5 20 14 10 2 6

# training / # test 132/131| 384/384 | 135/135| 72/72| 107/108| 500/500| 345/345 342/341 431/431 173/172

Table 6 summarizes statistical differences between theadstusing Wilcoxon test

Wilcoxon, 1945). The significance level was setite- 0.1. For this analysis we con-
sidered the benchmark, as well as the synthetic data sebqtd 3 data sets). Each en-
try of the table reports the number of datasets for whichalemethod beat the column
method in the statistically significant manner (wins), tlhuenber of datasets where the
differences were not statistically significant (draws) #mel number of datasets where
the row method performed significantly worse than the colunathod (loses). We
also includedsVMvPwith v = 1 for comparison purposeSVMvPandSVMPobtained
statistically better classification error than SVM for 12atets, whileSVMvP (v=1)for
10 datasets. With respect to the number of support vecBrdJvPhad statistically
significantly smaller support vector sets ttBiMPand SVM for 13 and 11 datasets,
respectively. Fixing = 1 statistically increased the error of SVMvP fodatasets and
the number of support vectors fer Moreover,SVMvP(v=1)was only able to improve
number of support vectors with respect to SVM for 7 datasetsiawas beaten by

SVM in 2 datasets. The tests confirm that the results preljiaisserved in Tables|4

and 5, refuting that the differences could have been oldaigechance.
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The values of parameter selected from cross-validation BVMvPare given in
Table/ 7. It is interesting to observe that for all studiedadsets the mixing of slack
values is biased towards the model-based slacks provid#telyorrecting function.

These experiments indicate that modelling the slack viesalsing|(8) has a poten-
tial to improve generalization performance, at the coshofeased model complexity.
However, using convex combination of unconstrained andahbdsed slacks (12) can

result in superior model of significantly reduced comphexit

Discussion and Analysis Our experimental results show tt&¥MPcan improve gen-
eralization performance over SVM at the expense of incebasadel complexity. The
i-th training point is considered as support vector if itsrespondingy; value is pos-
itive. Therefore, in SVM the points on the hyperplanes ®(x) + b = —1 and
w - ®(x) + b = 1, together with the points whose corresponding slack valediager
than zero are support vectors. Hence, the determinatiolack salues will influence
the number of support vectors. Slacks in SVM are obtainedpeddently through
optimization programme, whereas the slackSWMPchange according to a smooth
correcting function. Points in the neighbourhood of an inpith a positive slack will
tend to have positive slacks imposed by the model. This camitrén an increased
number of support vectors, when compared with SVM.

From our experimental results we see that the classificatbondary reconstruction
from slacks used iBVMvPdecreases the number of support vectors. Comparing the
dual problems for SVM an8VMVR (2)-(3) and|(21)+(21), respectively, we notice two

principal differences. First, the terﬁi «; in SVM is replaced b)Eﬁ 0,0, 0, = 1 — 1y,
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in SVMVP Secondgy; in SVMvPare no longer bounded by the penaltyas in SVM).
If »; > 1, meaning that the corresponding inpeitis on the wrong side of the
boundary, the weight; of «; in (21) is negative, forcingy; to zero (or ‘small’ value).

At the same time, the term

l l
— Z Z OéiOéjyiyj’C<wi7 CUj)
(2

is encouraging higly values for points considered similar under the kerdele.g.
spatially close under a Gaussian kernel), but with diffeidass labels. The overall
effect in SVMvPIs that a smaller number of points on the correct side of thosam
boundary, but close to it, will have high values, whereas the other points will have
small, or vanishingy’s. This is illustrated in Figure|4SVMvPmodel is usually much
more sparse than the standard SVM. Unlike in SVM (dots), thmpsrt vectors with
non-zeroa’s in SVMvP(circles) are predominantly located on the correct sidéhef t

decision boundary¥{ = 1 — r; > 0) and attain much higher values.

5.2 Ordinal Regression

In this section, we present the experimental results on fhogelacks in SVORIM.
We employed time series data sets (see Table 8), which wargigad into a series of
categories with natural order, so they can be tackled asartegression problems.

Four different time series have been conside&ghspots the annual sunspot num-
bers from 1700-1988ish data contains 453 monthly values of estimated fish recruit-
ment in the period 1950-198TVinedata set contains Australian red wine sales in the
period of 1980-1991. Finall\Birth data set contains births per 10,000 of 23 year old
women in U.S. in the period of 1917-1975. For each of the fone tserieqs; }, a new
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Figure 4: Distribution of the multipliers; and the weights; for two synthetic and two

real datasets.

series of difference®, = s, — s;_; was created and was then quantized into a symbolic

stream{y, } through:

.
1 (extreme down) D, < 6; <0
2 (normal down) ifd; < D, <0

Yr =

3 (normal up) if0 < D; < 6,
4 (extreme up) i, < D,

\

The cut value#,, 6, were chosen so that classes 1, 2, 3 and 4 contain 10%, 40%, 40%

and 10% of sequence elemems We used the values of the previous 5 time steps as
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input features. We randomly split these datasets intoitrgiand test sei times. The
final results are the average results overitils.

The zero/one classification errors are given in Table 9, tearmabsolute errJ;ls
are given in Table 10 and the number of support vectors isdist Table 11. The re-
sults of the Wilcoxon tests are given in Table 12. Accordmdables 9, 10 and 11, the
classification error 08VORIMPis much smaller than that of SVORIM but the number
of support vectors 08VORIMPIs slightly greater than that of SVORIM. The classi-
fication error of SVORIMvVPis more or less the same 8&/ORIMPbut the number of
support vectors is much smaller than that of both SVORIM @W@®RIMP Thus, as in
the binary case, modelling slack variables in SVORIM usingioal information can
improve the generalization performance of the learner awedhse the model com-
plexity. Finally, Table 13 includes the valueswo$elected by cross-validation. Again, a
trend similar to the binary case can be observ&Y/ORIMvRends to select the values
from the correcting functions, although the original skaclan also play an important
role. Finally, as in the previous experiments, in genes&ORIMvPwith v = 1 tend
to yield comparable, or slightly worse performance tBMORIMvPwith freev. When
compared witlSVORIMVR the number of support vectors 8WVORIMvPwith v = 1

tends to be higher.

6The average difference between the predicted and targestedan terms of the number of categories

separating them in the ordinal scale.
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6 Discussion and Conclusion

In the framework of Learning with Privileged Informationaphik and Vashist (2009)

proposed to incorporate privileged information throughdelbng the SVM slack vari-
ables through a smooth correcting function whose domaimeiptivileged space. This

Is reasonable, since the correcting function/slacks adataol only in the training (model

fitting) phase and are never used in the test phase. Indegthas in (Pechyony and VaprLik,
Qﬁ), such an incorporation of additional information ¢=ed to faster convergence

(as the training sample size grows) to the true (optimal Bagexdel, provided the
privileged information is ‘informative enough’ about theeusture of the classification
problent.

In this contribution we took a closer look at the meaning andsequences of
(smooth) modelling of slacks, as opposed to determiningnthe an unconstrained
manner through the SVM optimization programme. To invedédhis issue, we asked:
What is the difference between determining the slack vals@sthe original SVM and
modelling them via a smooth function? To gain a better urideding of this differ-
ence we allowed the determination and modelling of slackesto be done using the
same information — i.e. using the same training sample imtignal input space. We
then moved further and asked: Is it possible to improve ilaeason performance by
combining (in a convex combination) the original SVM slagkh the modelled ones?
By checking the mixing weights we could determine in a dateesfrimanner which of

the two approaches to slack value determination are pilgéefar a given data set.

7Here, informative enough means that the correcting funstmperating in the privileged space can

provide slack values ‘close’ to the ‘ideal’ oracle slackuesd corresponding to the true underlying model.
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We first introducedVMP, which models the slack variables through a smooth cor-
recting function in the original space. We introduced a @pled method for convex
mixing of the original and modelled slack values. Howevee, tnethod needed tuning
of five hyper-parameters. Therefore, we considered a ma@etipal method, which
obtains the original value§ by running SVM and the model valu€éx;) by running
SVMP Those values are then combined and the decision boundeggasered from
the mixed slack values. Experimental results show thatpewed with SVM, this ap-
proach EVMvB can lead to reduction in both the misclassification ratetaednodel
complexity. Interestingly enough, for most data sets thdelied slacks were preferred
(had higher mixing weight) to the original ones.

We then extended the idea of model based slacks to ordin&ssgn in the frame-

work of SVORIM. We chose SVORIM instead of the explicit one (Cind &eerthi,

2005), because the SVORIM framework can provide more flakibibr correcting
function modelling through greater number of slacks. As3&M, we first model
slacks corresponding to each separating hyperplane usmygexting function$VORIMB.
Then we propose to use convex combination of the vaﬂg.esbtained from SVORIM
and the valueg’(z¥) obtained fromSVORIMP The experimental results show that
modelling slacks, as opposed to their determination aserotiginal SVORIM, im-

proves the generalization performance and reduces thel moaglexity.
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Table 4: Classification error for benchmark datasets

dataset SVMvP SVM SVMP SVMVP (v = 1)
Cancer 0.236G6:0.0229 | 0.2504+0.0232 | 0.2356+0.0233 | 0.2406+0.0221
Diabetes 0.21540.016 | 0.223A0.0163 | 0.2155t0.0152 | 0.21710.0160
Heart 0.1381-0.0182 | 0.147Gt0.0189 | 0.137G+0.0189 | 0.1393+0.0183
Solar 0.3150t0.0341 | 0.3418+0.0386 | 0.3050:0.0317 | 0.3143:0.0346
Thyroid 0.019A40.0151 | 0.0319+0.015 | 0.017A-0.0121| 0.020A4-0.0157
German 0.22864+0.0143 | 0.2372+0.0133 | 0.2263:0.0134 | 0.2295+0.0136
Australian 0.1194+0.0114 | 0.130Gt0.0130 | 0.1186+0.0111 | 0.1202+0.0113

Breast cancer

0.0240G£0.0065

0.0273t0.0065

0.0223t0.0058

0.0244+0.0067

Fourclass

0.000+0.0000

0.00010.0003

0.000Q£0.0000

0+0.0000

Liver disorders

0.2562:0.0220

0.2733t0.0260

0.2540t0.0222

0.2582+0.0222

Covertype

0.2532+ 0.0075

0.2549+ 0.0075

0.2535t 0.0074

0.2537#:0.0074
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Table 5: Number of support vectors for benchmark datasets

dataset SVMvP SVM SVMP SVMVP(v =1)
Cancer 67.5127.94 | 79.33t10.12 | 113.04:21.08 | 83.69+26.61
Diabetes 173.53t102.12| 218.85t23.4 | 323.33t59.70 | 210.92+:94.29
Heart 46.2+33.4 80.3+19.49 | 109.03t29.15 | 65.63t31.76
Solar 30.19+-23.27 45.16+5.39 | 68.45+ 10.78 | 31.68t21.20
Thyroid 18.38+13.33 | 29.95+16.22 | 52.79+-42.82 18.33+12.37
German 221.08:129.18| 289.79418.26| 459.43+66.74 | 256.05£131.46
Australian 160.13t70.67 | 165.28:48.99| 266.28:70.55 | 198.36:64.84
Breast cancer| 32.84+28.22 | 51.19+21.26 | 212.32:139.04| 41.29+31.25
Fourclass 18.53+4.49 28+27.82 19.16+4.67 19.79+11.29
Liver disorders| 80.22-42.11 | 119.66£14.06| 156.5120.72 | 93.25£48.20
Covertype 409.49t79.07 | 539.55+28.14| 841.76:91.37 | 413.23t97.74
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Table 6: Results of Wilcoxon test for a significance levek 0.1 (Wins/Draws/Loses,
i.e. number of datasets where the method of the row is signifig better than the
method of the column, no significant differences can be foamd it is significantly

worse, respectively).

Classification error (Wins/Draws/Loses)# of SVs (Wins/Draws/Loses)

Method | SVM | SVMP SVMvP(v=1) SVM | SVMP | SVMvP(v=1)

SVMVP | 12/1/0| 0/7/6 8/5/0 11/2/0| 13/0/0 8/5/0
SVM - 0/1/12 0/1/12 - 12/0/1 21417
SVMP - - 10/3/0 - - 1/0/12

Table 7: Optimal value of the slacks mixing parameter

dataset Cancer | Diabetes| Heart Solar | Thyroid | German| Australian| Breast cancef Fourclass Liver disorders| Covertype

0.7861 | 0.8545 | 0.7477 | 0.6936 | 0.8775 | 0.8138 | 0.8600 0.8157 0.9336 0.8376 0.7173

+0.2413| £0.2076| +0.3007| + 0.4199| +0.2420| +£0.2711| +0.2033 +0.2730 +0.1626 +0.2642 +0.3189

Table 8: Description of the ordinal dataseisis the dimensionality of the input vector.

Dataset Sunspot| Fish Wine | Birth
m 5 5 5 5
# class 4 4 4 4

# training/ # test 222/56 | 265/177| 118/13| 40/8
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Table 9: Classification error on ordinal datasets

Dataset] SVORIMvP SVORIM SVORIMP SVORIMVP (@ = 1)
Sunspot| 0.34184+-0.0459 | 0.427A0.0549 | 0.338H-0.0452| 0.4061+0.0602
Fish | 0.5130+ 0.0109| 0.5571+ 0.0267| 0.510A4-0.0117| 0.5186t0.0152
Wine | 0.3599:0.1032 | 0.4456+0.0788 | 0.3599+0.0896| 0.4975t0.1079
Birth | 0.3000t0.0685 | 0.4250G+0.1118 | 0.325Qt0.0685| 0.3250:0.0685
Table 10: Mean Absolute Error on ordinal datasets
Dataset] SVORIMvP SVORIM SVORIMP SVORIMVP (@ = 1)
Sunspot 0.385H- 0.0699| 0.471G:0.0765| 0.3813:0.0652| 0.4564+ 0.0794
Fish | 0.5819:0.0384 | 0.627H1-0.0543| 0.5684+0.0267| 0.5774t0.0251
Wine | 0.4291-0.1219| 0.5819+0.0995| 0.4214+0.1116| 0.615G+0.1658
Birth | 0.400G+0.0559 | 0.5500t0.1425| 0.4500t0.1118| 0.4250+0.0685
Table 11: Support vector size on ordinal datasets
Dataset| SVORIMvP SVORIM SVORIMP | SVORIMVP (v = 1)
Sunspot| 147.8+52.77| 191.4G:10.23| 206.2Gt29.78 221.2G+2.16
Fish 69.40+50.34 | 235.80:9.86 | 265.0Qt0.00 181.80+106.06
Wine 64.7+46.81 | 108.2t5.35 115.4£5.21 117.20+1.68
Birth 23.80+14.60 | 37.2G+2.59 37.60+1.82 20.80£10.99
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Table 12: Results of Wilcoxon test on ordinal datasets fogaicance leveh = 0.1
(Wins/Draws/Loses, i.e. number of datasets where the rdethibie row is significantly
better than the method of the column, no significant diffeesncan be found and it is

significantly worse, respectively).

Classification error (Wins/Draws/Loses
Method SVORIM | SVORIMP | SVORIMVP(v=1)
SVORIMvP | 0/4/0 0/4/0 1/3/0
SVORIM - 0/4/0 0/4/0
SVORIMP - - 1/3/0

Mean Absolute Error (Wins/Draws/Loses)
Method SVORIM | SVORIMP | SVORIMvP(v=1)
SVORIMvVP 1/3/0 0/4/0 1/3/0
SVORIM - 0/3/1 0/4/0
SVORIMP - - 1/3/0
# of SVs (Wins/Draws/Loses)

Method SVORIM | SVORIMP | SVORIMvP(v=1)
SVORIMVP |  0/4/0 1/3/0 0/4/0
SVORIM - 1/3/0 0/4/0
SVORIMP - - 0/3/1
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Table 13: Optimal value of the slack mixing parametén SVORIMvP

Dataset

Sunspot

Fish

Wine

Birth

0.8900£0.1342

0.7900t0.2460

0.9300+0.1304

0.7900t0.2748
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