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Many real-world networks are directed, sparse and hierarchical, with a mixture of feed-forward
and feedback connections with respect to the hierarchy. Moreover, a small number of ‘master’
nodes are often able to drive the whole system. We study the dynamics of pattern presentation and
recovery on sparse, directed, Hopfield-like neural networks using Trophic Analysis to characterise
their hierarchical structure. This is a recent method which quantifies the local position of each node
in a hierarchy (trophic level) as well as the global directionality of the network (trophic coherence).
We show that even in a recurrent network, the state of the system can be controlled by a small
subset of neurons which can be identified by their low trophic levels. We also find that performance
at the pattern recovery task can be significantly improved by tuning the trophic coherence and
other topological properties of the network. This may explain the relatively sparse and coherent
structures observed in the animal brain, and provide insights for improving the architectures of
artificial neural networks. Moreover, we expect that the principles we demonstrate here, through
numerical analysis, will be relevant for a broad class of system whose underlying network structure

is directed and sparse, such as biological, social or financial networks.

I. INTRODUCTION

Models of the brain provided the original inspiration
for the invention of artificial neural networks. However,
biological neural networks have a much richer structure
than their artificial counterparts. In particular, they are
not exclusively feed-forward like conventional deep net-
work architectures, yet there is a direction to informa-
tion processing, unlike in recurrent network models. For
example, the neural network of the nematode C. Ele-
gans [I, 2] — the only animal nervous system to have
been fully mapped at the level of neurons and synapses
— is quite sparse and displays a non-trivial mix of feed-
forward and feedback connections, as revealed by a re-
cent technique from the field of complex networks called
Trophic Analysis [3]. What might explain this particular
neural-network architecture? We address this question
by studying the relationship between trophic structure
and the dynamics of a simple model which we refer to as
a Hopfield-like neural network.

Trophic Analysis, inspired by ecological networks, as-
signs to each node a ‘trophic level’, which can be regarded
as a position in a hierarchy; and measures the ‘trophic
coherence’ of the whole network, a property which indi-
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cates to what extent this hierarchy is well defined, con-
ferring to the network an overall directionality. In this
work we take the convention that the bottom of the hi-
erarchy is where information enters the system, just as
energy flows up from plants in a food web. This may
be different in other fields, for example in the study of
‘hierarchical trees’, but all definitions are equivalent up
to relabelling ‘top’ and ‘bottom’ or by reversing the edge
directions. When the C.FElegans neural network is visu-
alised so as to show the trophic level of each neuron, as in
figure [15] in the appendix, it is observed that while most
of the synapses are consistent with an overall direction,
there are some which feed back as in a recurrent architec-
ture. In fact, when the trophic coherence is calculated, it
lies exactly half way between a maximally coherent (i.e.
entirely feed-forward) network, and one which is entirely
incoherent (fully recurrent). Moreover, it has been shown
previously that this level of coherence amounts to a sig-
nificant deviation from the kind of networks which arise
from random graph models such as Erdés—Rényi model.
[4, 5]

How dynamics and hierarchy interact is demonstrated
in this paper by performing a pattern recognition task
(described in detail in the next section) on network ar-
chitectures which span a range of hierarchical structures.
We find that trophic coherence is very strongly linked to
the ability to correctly recognise and display the pattern
shown. Maximally coherent networks lack the feedback
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to store patterns, while maximally incoherent networks
are unable to change state when presented with fractions
of new patterns. The optimal configuration is interme-
diate coherence, a mixture of feed-forward and feed-back
structure which is shared with many biological systems.
A similar result was reported in Ref. [6] for a system in
which elements followed majority rule dynamics where
the stability of the C. Elegans neural network was anal-
ysed using Trophic Analysis. We concentrate our study
on synthetic networks inspired by this network which can
be made dense enough to store multiple pattern states
and lack basal nodes (nodes with no in-degree) which
would act as input to the system without being influ-
enced by it.

There are clear differences between the structures of
biological neural networks and artificial, recurrent neural
networks, such as standard implementations of the Hop-
field model. Biological networks are sparse, whereas the
artificial versions are often based on complete or very
dense graphs. They are also directed, since chemical
synapses have a pre- and a post-synaptic neuron [7], while
some models such as that of Hopfield tend to assume sym-
metric synapses in order to avoid the possible periodic
or chaotic behaviour associated with asymmetric inter-
actions [§] or to align with experimental data limited to
the undirected case [7].

And in nature there are a limited number of sensory
neurons which receive information directly from the out-
side world, a fact not usually replicated in Hopfield mod-
els. However, it is possible to implement a Hopfield-like
model on sparse, directed networks, and to present stim-
uli only to a subset of neurons, as we go on to do here in
order to investigate how dynamics is affected by modify-
ing the trophic structure.

Feed-forward artificial neural networks, such as those
used in deep learning, in these respects resemble more
closely the architectures of biological neural networks,
at least in the case of nature’s only fully mapped con-
nectome, that of C. FElegans. The main difference is
that deep neural networks tend to be maximally coher-
ent, with each layer corresponding to a distinct (integer)
trophic level.

We show, through numerical analysis, that network hi-
erarchy can be exploited in order to use a small subset
of neurons to drive the system, with how well a pat-
tern is recovered being strongly influenced by where in
the hierarchy it is received. Hierarchical structure cre-
ates heterogeneous dynamics with different parts of the
network recovering patterns differently. Additionally, we
show that by preferentially adding edges to lower level
nodes, pattern recovery can be made more consistent.
This has potential applications for how artificial neural
networks are designed [9, [10], as well as for controllability
of dynamics on general directed complex networks [11-
13], which could range from biological neural networks
[14, 15], to ecosystems, economies [I6] or the Internet
[17]. In particular, Hopfield networks have recently been
used to model Gene Regulatory Networks [I8] 19]. We

will therefore use this model to highlight principles which
may be of general application to any system wired ac-
cording to a directed network. This is the first work in
which Trophic Analysis has been applied to Hopfield-like
networks which have been trained to store patterns.

II. USING TROPHIC ANALYSIS TO
QUANTIFY NETWORK HIERARCHY

Trophic Analysis is a method of quantifying the hier-
archy of nodes and the global directionality of a directed
complex network, first introduced in 2014 [20], which is
based on the ecological concept of trophic level [21]. A
directed network, or graph, can be represented via an
adjacency matrix, defined as:

1
Ay =

Unlike in undirected networks, this matrix is not nec-
essarily symmetric, A;; # Aj;. Directed networks have
the additional complexity of the notion of in- and out-
degrees, where the in-degree is the number of incoming
edges a vertex receives and the out-degree is the number
of edges leaving a vertex. In undirected networks the in-
and out-degrees coincide. Directed networks can also be
weakly or strongly connected. Weakly connected means
that there is a path between all pairs of vertices if you ig-
nore the edge directions, while strongly connected means
there is such a path respecting the edge directions. The
networks studied in this work are all weakly connected
but may not be strongly connected.

Trophic Analysis was recently extended and redefined
to cover more general networks [3], removing the require-
ment that networks must have basal nodes (nodes with
in-degree 0). This is the definition that will be used in
this work. Trophic structure has been used to study
spreading processes in neural and epidemiological set-
tings [16], infrastructure [22, 23] and the structure of
organisations [24]. Trophic Analysis is composed of two
parts: the node level information, trophic level, which
describes where each node sits in the overall hierarchy of
a network; and the global information of how directed, or
coherent, the overall network is. The idea of trophic level
arises from ecology where the lowest trophic level nodes
represent plants which sit at the bottom of the network
hierarchy, and the highest trophic level nodes are carni-
vores at the top of the food chain. Trophic level can be
calculated for a network of N nodes by solving the N x NV
matrix equation

if there exists an edge i — j

(1)

otherwise

Ah = v, (2)

where h is the vector of trophic levels, v is the imbalance
of in-degree and out-degree of a node, v; = k™ — k2ut,
and A is the Laplacian matrix:

A = diag(u) — A — AT, (3)



This depends on the sum of the in- and out- degrees of
each node, u; = k" + k%% the adjacency matrix, A, of
the graph and its transpose, A”. This definition can also
be extended to cover weighted adjacency matrices [3].
The solutions to equation [2| can be modified by adding
a constant vector since A acting on a constant vector is
zero. This allows the minimum level to be set at zero by
convention and fully coherent networks to have integer
levels.

Trophic coherence is based upon the distribution of
trophic levels of the nodes in a network. How coherent
or incoherent a network is can be described by the pa-
rameter

_ > Aij(hy — hi = 1)°
25 Aij '

We call F the trophic incoherence, such that when F' = 0
the network is completely coherent and when F' = 1 it
is completely incoherent. This depends on the levels of
each node h; and the entries of the adjacency matrix
A;j. Loosely speaking, F' quantifies, per connection in
the graph, to what degree the connections ¢ — j are not
“one-step” connections in the order of trophic levels, i.e.
by how much (h; — h;) differs (in the mean square sense)
from 1. In principle these could have positive weights but
throughout this work we will take the entries of the adja-
cency matrix to always be 0 or 1 to avoid confusion with
the trained weights associated with the neural network.
A network for which F' = 0 is acyclic and completely free
from any feedback, with the amount of feedback and cy-
cles growing as this parameter increases to 1 [3]. This is
reflected in results showing an increase in spectral radius
and a reduction in the deviation from normality of the
adjacency matrix, how far the matrix is from commuting
with its transpose, as incoherence increases [3|, 5.

Note that the levels h, defined by Eq. , can be
regarded as the argument which minimises F', as given
by Eq. () [3]. One can therefore think of the trophic
levels of a network as those which maximise its trophic
coherence which relates to how it was derived in [3].

F (4)

III. HOPFIELD-LIKE NETWORKS

The Hopfield Model is a recurrent neural network
model which is very similar to the Ising model studied in
statistical physics [8]. The neurons can take binary states
41 or —1. Due to similarity to the Ising model these
neuron states are sometimes referred to as spins and the
order parameter measuring the state of the system can
be referred to as a magnetisation. A Hopfield network
can store binary memories, or patterns, by setting the
weights of connections between neurons such that when
an update rule is applied the system moves across an
energy landscape to its attractors, which correspond to
the stored patterns. This system can, in some cases, be
studied via mean-field theory or other theoretical meth-
ods [25]. In our case, however, due to the asymmetric

connections and complex network topology, we will use
numerical simulations.

We want the system to update in such a way that it
moves towards the minima in the energy landscape de-
fined by

E = _ZwiinjSisja (5)
ij

where w;; is the coupling between neurons ¢ and j,
which may be positive or negative depending on patterns
stored. The states of the neurons take values s; = +1 and
A;; are the elements of the adjacency matrix, as defined
by Eq. . There are many possible update rules which
can achieve the desired behaviour, such as the Metropo-
lis-Hastings algorithm [26]. We use a sigmoid probability
function such that

S; (t + At) = —S; (t) (6)
with

obability = ————— 7
probability = 7=—-""~p (7)

T

where AFE is the energy change associated with flipping
the neuron state and T' is a temperature parameter which
makes the system stochastic. To reduce complexity and
uncertainty, the results we present here are for a tem-
perature very close to zero, T = 107>, so the dynamics
is essentially deterministic and equivalent to using the
sign of the incoming field, the sum of the states of the in-
neighbours, as the update rule. The system can therefore
be referred to as Hopfield-like, or simply as a Hopfield
network, which is generally taken to be deterministic,
as opposed to Boltzmann machines, which are stochastic
[27]. However, even in this regime the asymmetry in A
leads to a range of surprising behaviours not observed in
undirected networks [28].

Updates to the system can be made in parallel or asyn-
chronously. We use a parallel update rule, which allows
for complex behaviour such as limit cycles [IT].

A. Training the Network

Setting the weights so that the attractors of the sys-
tem correspond to the random binary patterns we wish
to store in the network is a key part of the process. The
traditional method of setting weights in a Hopfield net-
work so that the network recalls the desired patterns is
Hebb’s rule [29]. This is often summarised as “neurons
that fire together wire together”. That is, if two neurons
have the same state in a particular pattern the connection
between them is strengthened, and if they are in opposite
states it is decreased. For learning P patterns, where for
each pattern each neuron has a fixed state & = +1, the
rule sets the weights as

1 P
wy = LS ge ©
p=1



This very simple rule works and can be used on any net-
work topology. It has the benefit of being a “one shot”
rule in that it only requires one loop over the set of pat-
terns to train the network. However, it suffers from the
fact that on a graph which is not complete the informa-
tion about the correlations between disconnected neurons
is not used. We found during initial tests that on very
sparse directed networks the memory capacity of the net-
work was substantially reduced. This is very similar to
the finding of Tanaka et al. [30] for undirected networks.
They remedy this issue by adopting an iterative version
of Hebb’s rule based on earlier work [31, B2] which was
found to increase capacity substantially, with other sim-
ilar results noted in the literature [33]. For the remain-
der of this work we implement this rule [30]. Both the
original Hebb rule and the adapted version are local, in
that synaptic weights are updated using only informa-
tion from the pre- and post-synaptic neurons — as also
happens, we believe, in the brain [34].

The iterative Hebb rule works to set the weights so
that every pattern corresponds to a local minima of the
energy landscape where updates of the system stop. This
condition can be expressed as

&Y Ajiw;iet | =06 9)
7

for all P patterns and N nodes, and § a positive constant.
This means that at each node, for every pattern the po-
larities of the state and the incoming field are the same.
As a result it is always energetically unfavourable to flip
the state at zero temperature so the system is stable.

The iterative Hebb rule is laid out in detail in Algo-
rithm [

Algorithm 1: Iterative Hebb Rule [30]

Set the initial weights w;; = 0 for all nodes ¢, j.
Set the stop condition flag, flag = 0.
Set the step counter, steps = 0.
while flag = 0 and steps < steps,,,, do
flag=1;
for p in range P do
for i in range N do
field =0 ;
for j in range N do

‘ field < field + Aji’Uinfjp
end
if field x (€7) < 6 then

for ¢q in range N do

Wi <= Wqi + 7Aqi§g£? ;
flag=10
end
end
end
end
steps < steps + 1
end

At each iteration the weights are updated by

AjlEr

Wj; < wj; + N

(10)
until the required condition is met. For this study § was
always set at 1, but other values can be used to change
the stability of the patterns. If a stable solution of this set
of inequalities exists it should always converge in a finite
amount of time [3I]. However, a solution does not always
exist for sparse, directed networks, so the algorithm needs
to be terminated after a chosen maximum number of it-
erations. Here we use 400 iterations. The patterns can
still be quite successfully stored and recovered if full con-
vergence has not been achieved, as the number of weights
continually updated is small after only a few iterations.

Pattern recovery is measured with an order parame-
ter, which we call magnetisation, and is defined for each
pattern p as the scalar product of the state of the system
and the pattern:

1 N

= Y a

i=1

This is equivalent to the cosine of the angle between
the state and the pattern. In this work we study pat-
terns which are random, independent and identically dis-
tributed. Correlation between patterns and between pat-
terns and the network topology may affect the perfor-
mance of the network in a wide variety of ways depend-
ing on the topology, sparsity and nature of the correla-
tion [30, B5], so this may be a potential avenue for future
work.

IV. NETWORK GENERATION

To generate networks with a specified trophic coher-
ence and fixed numbers of nodes and edges, we use a
variant of the Generalised Preferential Preying Model
(GPPM) from Refs. [I6] B36], although the original work
used a different definition of trophic level.

We generate networks such that each node has in-
degree at least 1. One reason for this is that if the net-
work contains basal nodes (nodes with in-degree 0), one
must choose whether their states s should remain con-
stant, take random values at each time step, or act as
external inputs to the system. Moreover, it is known
that basal (or source) nodes can drive dynamics on di-
rected networks in certain contexts [6, B7]; but, to the
best of our knowledge, we investigate here for the first
time the importance of trophic level for dynamics on net-
works without basal nodes.

The detailed steps of the generative process are laid out
in appendix [B| In short, we randomly generate an initial
configuration of N nodes where each node has in-degree
1 and then calculate the initial trophic level, h, of this
configuration. Then edges are added until the specific



number is reached where the probability of connecting
node i to j is

(hj — h; — 1)?
P;j =exp [ T ] . (12)
Afterwards, the updated trophic levels, h, are recalcu-
lated. With this method networks of any incoherence
can be generated by varying the control parameter Tgen,
as demonstrated in Fig. [T4]in the appendix.

The networks generated via this method can act as an
approximation to the hierarchical structures seen in real-
world systems. In Ref. [3] it was shown that many real-
world networks conform approximately to an analytical
prediction for their scaled spectral radius, ps, as a func-
tion of the incoherence parameter, F'. This relationship
is

pe = exp {(1_})} 7 (13)

and can be derived from the ‘coherence ensemble’ of ran-
dom graphs [5]. Here, ps is defined such that it is scaled
between 0 and 1 to compare networks of different sizes:

P
pe= L, 14
AT, (14)

where p is the standard spectral radius of the adjacency
matrix, and ||A[|2 is the 2-norm of A — that is, ||A|[3
is the largest eigenvalue of AAT. As we show in Fig.
the generated networks we use in this work also have
ps close to the value given by Eq. . This justifies
the assumption that the numerically generated networks
reflect some of the characteristics exhibited by real world
networks.
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Figure 1: Scaled Spectral Radius of Generated Networks
against trophic incoherence following the same analytic
prediction as real networks as shown in Ref. [3]. The
number of nodes is always N = 500, and the mean degree
(k) = 20.

V. RESULTS

Firstly, as we impose the constraint that only a subset
of neurons are presented the pattern to make the setup
more like real-world systems, we must decide which set
of neurons are to be shown the pattern and assess the
effects of this choice. It was chosen that for this model
20% of the neurons would be set into a pattern state and
then it would be measured how well the system recov-
ered the remainder of the pattern from this setup. The
location of pattern presentation is analogous to the ini-
tial conditions of a dynamical system where the question
would be which initial condition sends the system into
the desired state given the constraint of only controlling
a small number of elements. To assess the effect of hi-
erarchy on pattern recovery, patterns were shown to the
20% of nodes with the lowest trophic level (at the bot-
tom of the hierarchy), highest trophic level (at the top
of the hierarchy), and a random 20% of nodes. The re-
sults are shown in figure 2| for networks spanning a range
of trophic coherence. We plot the results for each indi-
vidual network, rather than just the averages with error
bars, in order to highlight the breadth and distribution
of network behaviour, which becomes more apparent as
we study sparser networks in section [VA] These results
demonstrate the difference in dynamics depending on the
part of the network shown the pattern. When the pat-
tern is shown to 20% of the nodes randomly this is not
enough to move the system into a new state, so the shown
pattern is not recovered well across the whole range of
trophic coherence. It is only possible to extend down to
networks of intermediate coherence at this edge density
with the generative method used. When the perturbation
is made to the state of the top 20% of nodes by trophic
level, it has little effect on the state of the system. This
is because the perturbation cannot filter back down the
system, so the top nodes do not drive the dynamics. For
sparse enough networks and high coherence, it is unlikely
there will be any paths from the highest trophic levels to
other nodes further down. If the network is denser, such
paths may exist, but they will still be few compared with
the number of paths form lower levels to higher. Hence,
information flow will always be predominantly form lower
to higher trophic levels in coherent networks.

The dynamics are more complex when patterns are
presented to the lowest level nodes, since we observe dif-
ferent behaviours when trophic incoherence is varied. For
the most incoherent networks, which are most similar to
random graphs, the performance is on average poorer as
the system is more stable due to the amount of feedback
in the system. By stability we mean here the system’s
resistance to changing state when a new pattern is pre-
sented. At intermediate coherence, the network has an
overall direction, so the perturbation at low level nodes
is transmitted through the hierarchical network structure
and pattern recovery is quite good even though only 20%
of nodes are stimulated. This is behaviour that would not
be seen in a Hopfield model on a complete graph, nor on



a random graph, since more than half the nodes would
need to be changed to a new pattern in order to change
the state of the system. These results demonstrate the
variety of dynamics that can be induced by the more com-
plex, hierarchical networks as compared to a complete or

random graph [8], [38 [39].
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Figure 2: Performance of 200 Networks with N = 500,
(k) = 100 recovering 10 patterns plotted against trophic
incoherence. Showing patterns to different 20% sets of
nodes.

When the constraint of a small number of input neu-
rons is removed, the effect of hierarchy on the dynamics
is less obvious. Figure |3| illustrates the case when the
patterns are shown to 60% of neurons. When this many
neurons receive an input the distinction between outcome
of showing a pattern to a random 60% and the lowest
level 60% is blurred, with both being able to recover the
pattern across a range of trophic coherence. This high-
lights the impact of removing the constraint of a small
number of inputs. When the inputs are large the effect
of trophic level is hidden as randomly chosen inputs can
control the system. However, for the highest level nodes
this is still not the case. Even at 60%, the higher level
nodes fail to influence the coherent networks, as the low-
est level nodes still have more control over the system
and prevent the pattern from being modified. When the
network is hierarchical, perturbations can be both am-
plified or damped by the structure, something we don’t
see in either a complete or a random graph Hopfield net-
work. This is again different behaviour than what would
be observed on a dense network with no internal struc-
ture, as 60% of neurons being flipped would be enough to
change the state to that of the new pattern in all cases.
This highlights the connection between the trophic level
of a node and its ability to control the network: the high
level nodes have much less ability to influence the system
than those at a low level. This difference remains at all
levels of trophic coherence, but is most pronounced for
more coherent structures. In all examples the trophic in-
coherence does not actually reach 1, where all the nodes
would have the same level. This is because this only hap-
pens in balanced networks, such as a directed cycle, and
the limit of our model is Erdés—Rényi random graphs,

which have incoherence around 0.95. It is interesting to
note the graphs which are random still have a slight hi-
erarchical structure which can be revealed by the trophic
levels.
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Figure 3: Performance of 200 Networks with N = 500,
(k) = 100 recovering 10 patterns plotted against trophic
incoherence. Showing patterns to different 60% sets of
nodes.

A. Sparser Networks

When the networks are made sparser — that is, the
average degree (k) is reduced from 100 to 20 — the re-
sults are broadly the same as on denser networks, but
there is more variation in the performance of different
networks, even for similar trophic coherence. For net-
works of this sparsity the whole range of coherence can be
investigated, as there are no difficulties associated with
generating the more coherent networks. For inputs to
both randomly selected and highest level nodes, the re-
covery is very poor, just as it was before. When it is
the lowest level nodes which receive the input, behaviour
depends on the trophic incoherence of the network. For
the networks with lowest incoherence, the performance
is generally very poor. This is due to the fact that these
networks have very little feedback and small strongly con-
nected components, so the patterns are not well recov-
ered. For the intermediate coherence networks, perfor-
mance is inconsistent. Some networks perform very well,
with their structure being suited to controlling the sys-
tem with only the low level nodes, while other networks
perform very badly. Finally, higher incoherence networks
are again more likely to get stuck in a pattern rather than
to respond to the stimulus at the lowest level nodes, due
to the high amount of feedback in the system, and the
maximum performance begins to decrease again. There-
fore, for sparser networks we find that the best perfor-
mance is found at intermediate coherence — although not
all networks in this range are necessarily high performing.

The relationship between average degree and recovery
of patterns is shown in figure [5] where all networks have
500 nodes and are generated using Tggny = 1. The task
cannot be performed by the most sparse networks, as
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Figure 4: Performance of 200 Networks with trophic
incoherence showing patterns to the 20% lowest (blue),
highest (green) and random (orange) nodes by trophic

level. N =500, (k) =20

they all fail to store any patterns. At an average degree
of around 20, we reach the regime where some recovery
is possible. For higher density, recovery reaches an in-
consistent regime, where performance varies greatly for
networks of similar degree and trophic properties. This
kind of regime is most interesting to study since the dy-
namics have a lot of variability, and successful pattern
recovery is possible but not sure. Above an average de-
gree of about 200, the structural features of the network
are lost as the network is too dense and it simply gets
stuck in one state for the whole dynamics and there is no
ability to update when presented with a small number of
inputs. Hence, figure |5| demonstrates that increasing the
network density can make performance at a pattern re-
covery task worse, which is counter to the general expec-
tation for Hopfield networks where higher connectivity
improves performance [39] 40].
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Figure 5: Performance of Networks of varying degree for
fixed generation temperature, Tqgn = 1, showing
patterns to the 20% lowest nodes by trophic level.

N = 500. With the average trend shown by the dashed

red line and the standard deviation shown in the shaded

area.

B. Comparison of Targeting Highest Degree Nodes

To validate our choice of nodes we compare our re-
sults to a targeted presentation of the pattern to the 20%
of nodes of highest out-degree, which one might assume
form the subset of nodes with greatest local influence on
the system. This comparison is shown in figure [§] which
compares the influence of the nodes of high degree to
the selection of nodes by their local trophic properties.
The set of nodes with highest degree do not influence
the network to the extent that the lowest level nodes do.
However, they do perform better than a random set of
nodes, as expected, in both networks of average degree 20
and 100. In the networks of average degree 100 (figure
@, the lowest trophic level nodes are better than the
highest degree nodes when the network is more coher-
ent and hierarchical, as in this case the system is more
strongly controlled by the low level nodes. When the
networks are less hierarchical, the influence of the high
out-degree nodes becomes comparable to the influence of
the low level nodes. This highlights a crucial point: in
a complex network, the “importance” of nodes can be
determined both by their degree-based centrality and by
their relative position in the hierarchy, depending on how
trophically coherent the overall system is. In a very hi-
erarchical (i.e. coherent) network, even if a node has a
high out-degree, the state of the system can still be more
controlled by lower out-degree nodes below it in the hi-
erarchy. Our results, due to the generative model, focus
on networks where the degree distributions are not ex-
tremely heterogeneous. The fact the in very hierarchical
networks low level nodes control the state of the nodes
above them would still hold in a very heterogeneous net-
work. However, degree may be a more important factor
if the out-degree of a few nodes were so large that they
directly affected much of the network. These network
properties can interplay in a variety of ways and may be
the subject of future work.

C. Structural Properties of Networks Affecting
Performance

We hypothesised that some network properties out-
with trophic coherence could explain the range and in-
consistency of behaviour for sparse networks. One pos-
sible measure was the number of edges leaving the node
set shown the pattern compared to the total number of
edges. When very few edges connect the nodes shown the
pattern to the rest of the network, it is unlikely for the
pattern to be successfully recovered, as when the pattern
is updated it cannot be properly transmitted outside of
the set shown the pattern. The results of this are dis-
played in figure[7] This shows that there is a strong cor-
relation (correlation coefficients in the legend) between
the edge ratio and performance, but it does not exactly
determine the behaviour of the system. However, it is
very clear the worse performing networks have very small
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Figure 6: Distribution of Performance for Networks
showing 10 patterns to lowest trophic level, highest
degree and random 20% of nodes. N = 500 (a)
(k) =100, (b) (k) = 20.

values of this parameter, and it can be used to identify
the failing networks, if not precisely to select the very
best networks.

Another factor which we thought may influence
the performance was the distribution of trophic levels
amongst the nodes. In networks generated with the
model used here (see section, edges tend only to span
a small difference in trophic level. We would therefore
like the level distribution to be peaked towards lower lev-
els, so that more nodes have a lower level and are more
likely to be densely interconnected with the set of nodes
shown the pattern. This is shown in figure [8) where we
sum the cumulative distribution of the number of nodes
of trophic level less than ahj,q,, for a in the range 0 to
1. This function is maximised when the level distribution
peaks towards lower level nodes, and so provides a good
measure of where the peak in trophic level lies, while be-
ing normalised so different networks can be compared. It
shows a similar profile to the result of figure[7} where the
correlation is again strong but does not precisely predict
the performance of the network.

We therefore surmise that the performance of a net-
work at this task depends on several topological features,
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Figure 7: Relationship between network performance
and the ratio between number of edges leaving the set
shown the pattern and total edges in the network.
N =500, (k) = 20. Networks of Intermediate
Incoherence.

including but not limited to: trophic coherence, mean de-
gree, mean degree of the lowest level nodes, and trophic
level distribution.
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D. Time Series of Pattern Recovery in Sparse
Network Components

In this section we review the time series of the dynam-
ics of pattern recovery in a network with average degree
20, and highlight some of the reasons for the inconsis-
tency in performance between similar networks. In all of
the following example time series the pattern is presented
to the 20% of nodes with the lowest trophic level.

We find that the network structure can induce quite
heterogeneous dynamics. This is something that is not
noticeable when the recovery is working well. Let us con-
sider first the case of a dense network, with mean degree
100, as shown in figure[9] In this time series each colour
represents the pattern which has been most recently pre-
sented to the network, while the y-axis represents the or-



der parameter corresponding to that pattern. For a well
performing network, the order parameter quickly returns
near to 1 whenever a new pattern is presented. This is
the case for the network shown in figure[0] Due to the re-
covery being this good, and the edge density being high,
heterogeneous dynamics is not observed. Patterns are
recovered to the same extent in all parts of the network
hierarchy, and additionally the whole network is strongly
connected, so there is no difference in dynamics inside or
outside that component.

I I

Full Pattern Order Parameter

Time
Figure 9: Time Series of Pattern Order Parameter for
average degree 100 network with 500 nodes storing 20
patterns. Where each colour represents the pattern
most recently having been shown to the network. At
this edge density recovery is very consistent.

This is very different from the dynamics exhibited by
the sparse network used in figure [I0] which stores four
patterns. This network is a specific example of a network
which performs reasonably well, but it should be borne
in mind that many sparse networks fail very badly. The
dynamics are analysed by considering four different net-
work components (subgraphs): the whole system; the
largest strongly connected component; the bottom 20%
of the nodes by trophic level; and the top 20% of nodes
by level. Noting that these components are simply where
the data was collected and the presentation location was
unchanged. In the full system, figure recovery is
good for some patterns but fails badly for others. The
behaviour of each pattern is roughly consistent, and if a
pattern fails or succeeds at one presentation it will re-
peat the same behaviour at subsequent presentations.
The order parameter dips when a new pattern is pre-
sented, then moves to its new stable value. Additionally,
there are fluctuations around the stationary states and
updates to the system do not stop (i.e. some neurons
continue to change state in subsequent time steps). This
is different to the dynamics inside the largest strongly
connected component, where for the fully recovered
stable patterns updates stop and there are no fluctua-
tions. This highlights the stabilising effects of feedback
associated with being strongly connected. Among the
low level nodes, figure for those patterns which are
correctly recalled, the order parameter goes to 1 when the
new pattern is presented. However, if a pattern is not re-
covered by the low level nodes then this precludes the
possibility of that pattern being successfully transmitted
through the network. This means that if a pattern is
not recovered by the low level nodes, figure then it
will also fail to be recovered by the high level nodes

Full Pattern Order Parameter

Low Level Pattern Order Parameter Strong Component Pattern Order Parameter

High Level Pattern Order Parameter

5 R @ =®
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Time

(a) Full Pattern Order Parameter.
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(b) Strongly Connected Component.
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(c) Bottom 20% of nodes by trophic Level.
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(d) Top 20% of nodes by trophic level.

Figure 10: Time Series for different network components
for average degree 20 network with 500 nodes storing 4
patterns. Where each colour represents the pattern
most recently having been shown to the network.

Recovery by the high level nodes is the least consistent,
and fluctuates the most, since these nodes are furthest
from where the patterns are presented. In addition, the
order parameter initially drops to zero whenever a new
pattern is presented as it is not shown to any of the nodes
contained in this set.

These results might be different if the network included
basal nodes (those with no in-neighbours), and would
depend on what update rule we chose for these — e.g.
maintain their state indefinitely, update randomly, etc.

E. Search for Improvements to Network Structure

The results relating the distribution of trophic levels to
neural-network performance open the possibility of bias-
ing the network generation process so that it preferen-



tially leads to networks with topology better suited to
the task. A simple way to accomplish this is to generate
the networks in the same way as previously, but mod-
ify the probability of adding edges so that it is biased
towards adding edges to lower level nodes. This can be
accomplished by modifying the probability of placing and
edge so that

(hj —hj —
2T’Gen

1)?

Py =exp |— + ’Yih' ) (15)

where the yﬁi modification in the exponential acts to bias
the distribution towards high or low levels, depending
on the sign of v. In what follows we choose v = —0.5
in order to add more edges to nodes with lower trophic
level. One downside of this method is that it is harder
to control precisely the trophic incoherence of a network
and to span the full range of incoherence.
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Figure 11: Distribution of Performance for Biased
Networks biased. N = 500 (k) = 20.

The broad effects of biasing the network generation
and performance are demonstrated in figure This
shows that when edges are more likely to connect to low
level nodes, figure the very worse performing net-
works are essentially eliminated, and all the sparse net-
works recall at least a fraction of the pattern. This bi-
asing has no effect on performance when presenting the
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pattern to the random or higher level nodes, as they still
fail to force the system to change state when the pertur-
bation is applied to these nodes.

To demonstrate the importance of where feedback is
placed in the hierarchy we change the sign of the biasing
factor and make it more likely that edges are added to
the higher level nodes, figure[TIb] This creates networks
which are not suited to the recovery task and perform
badly in all cases. This is due to the fact that the edges
connecting to high level nodes do not allow both for the
pattern to be stable and for the information to be trans-
mitted across the system. One issue with biasing the
network generative process is that it becomes more dif-
ficult to control precisely the trophic coherence of the
network, which is why the range of trophic incoherence
is restricted in figure

The time series of pattern recovery for sparse biased
networks clearly demonstrate how this biasing procedure
modifies the dynamics of the system. Pattern recovery
across the whole system, figure is very consistent
compared to the unbiased networks (figure , which fully
recover some patterns and fail to recover others. This
time series is a representative example of the behaviour
seen in biased networks and comes from a single network.
The consistent level which they reach however is below
1 so the patterns are not fully recovered and the recov-
ery is not as high as the maximum seen in some specific
unbiased networks (figure [I0). Whether this is better
may depend on the context: remembering part of every
pattern so it can be identified may be preferable to re-
calling some patterns perfectly but not recovering others
at all. Additionally, for biased networks there are large
fluctuations and updates continue when the system has
reached the new state. This can be explained by look-
ing at the dynamics inside the largest strongly connected
component only, figure In this component recovery
is very consistent and all patterns are fully recovered, so
the network does much better when this component is
larger. It also explains why, in the time series for the dy-
namics of the full network, fluctuations around a stable
point are observed, since updates to neuron states stop in
the strongly connected component but continue outside
of it. The fact that the recovery is very good inside the
largest strongly connected component opens up the pos-
sibility of selectively generating networks which are both
biased towards lower level nodes, and have large strongly
connected components.

This is demonstrated in figure[T3] which shows the per-
formance of biased networks where the largest strongly
connected component comprises more than 60% of the
nodes. These networks are simply generated by repeat-
ing the generative process and discarding networks which
do not meet this requirement. The higher this thresh-
old, the more inefficient the process but the more likely
we are to keep only highly performing networks. At at
threshold of 60% all very poorly performing networks are
eliminated, and the recovery performance is consistently
around 0.6.



&

HA o a1

1000 2000 3000 4000 5000 6000 7000
Time

(a) Order Parameter of Whole Network

ST T T

1000 2000 3000 4000 5000 6000 7000
Time

Full Pattern Order Parameter

Strong Component Pattern Order Parameter

(b) Largest Strongly Connected Component Only

Figure 12: Time Series of Pattern Order Parameter
calculated inside the different components for average
degree 20 network with 500 nodes storing 4 patterns.
Generated with a bias towards adding edges to lower
level nodes. Where each colour represents the pattern

most recently having been shown to the network.

These results demonstrate that despite the variability
in the dynamics of directed sparse Hopfield networks, it
is possible to generate structures which perform well con-
sistently by tuning a few parameters: Tgpy to set the
trophic coherence, v to place edges preferentially at lower
level nodes, and the threshold for the minimum size of
the strongly connected component.
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Figure 13: Performance of Low Level Biased Networks
with average degree 20 and 500 nodes where the largest
Strongly Connected Component contains at least 60%
of the neurons.

There are many possible ways to modify network struc-
ture to maintain performance and we just give a small
sample here. Biasing is limited by the fact it reduces the
control of the trophic structure and that strongly biasing
may decrease the size of the strongly connect component
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which is needed for recovery. The best way to improve
network structure depends on the constraints, on whether
edges can be added or removed, and on how success is
defined. Biasing makes the recovery more consistent, but
the performance of unbiased networks may peak higher
for certain networks and patterns, which may be pre-
ferred in some situations.

VI. DISCUSSION AND CONCLUSION

We have shown that neural networks based on sparse,
trophically coherent graphs have a much wider range of
possible behaviour than ones based on either fully ran-
dom or complete graphs [8,[38],[39], where all nodes neces-
sarily have very similar dynamical roles. This symmetry
is broken in a coherent network, as different nodes can
have very different abilities to affect the dynamics of the
system. The interplay between trophic structure and dy-
namics has already been observed across a range of sys-
tems in the literature [I6, 20] 24]. It has also been shown
that the coherence of a network is linked to the non-
normality of the adjacency matrix [3] [6]. Non-normality
in networks has in turn been linked to sensitivity to per-
turbations and to the stability of the system across a wide
range of dynamics [41H45], which is consistent with our
results that more coherent networks are more sensitive
to targeted perturbations and less stable.

The behaviour observed in the system studied here re-
lies on two key facts: that the networks are sparse and
that the sets of input nodes are small. If the networks
are too dense then hierarchical structure is destroyed and
the asymmetry between nodes does not exist (there is a
limit to how coherent a dense network can be). More-
over, it is thanks to the network’s trophic coherence that
a small subset of nodes is able to drive the dynamics of
the whole system. Many real-world systems display both
of these properties. Additionally, they are often neither
highly coherent nor incoherent, but have trophic coher-
ence in the intermediate range which allows for a bal-
ance between stability and sensitivity to stimuli [3], 5l [6].
Therefore, we believe the principles studied here for the
case of Hopfield-like neural networks may be broadly ap-
plicably to a range of real-world systems. The limitations
of these methods are that since trophic incoherence is an
average global network property it lacks the precise de-
tail to characterise fully the behaviour of the system in
all cases. It is challenging to control precisely both the
trophic incoherence and another aspect of network struc-
ture, since one may restrict the other, as with the biasing
method. In future this work could be extended by look-
ing at a time series of patterns which are correlated with
each other [35], patterns correlated with the structure,
or networks with heterogeneous degree distributions and
varying in- and out-degree correlations.

In conclusion, we have demonstrated, through numer-
ical analysis, that trophic structure strongly shapes pat-
tern recovery in directed Hopfield-like networks. In par-



ticular, on a sparse, directed network a small number of
input neurons — which can be identified by their trophic
levels even in the absence of basal nodes — are able to
drive the system in such a way that it recovers patterns.
This would not be possible on either a complete or fully
random network, which require at least about 50% of
the nodes to receive the input in order to change state.
In order for such networks to recover patterns success-
fully, they must have the correct balance between feed-
back and directionality — a feature which is determined
by the trophic coherence. However, we observed that set-
ting the appropriate trophic coherence was not enough
to guarantee good performance. We found that by bi-
asing the network generation process so as to add edges
preferentially to lower-level nodes, and then discarding
networks with strongly connected components below a
minimum size, we could reliably produce architectures
that performed the task well.
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Appendix A: Software Tools Used

Various software packages were used manipulate the
networks and perform the simulations. The Python pack-
age Graph Tool [46] was used for some of the network
manipulation. Networkx [47] was used for Network draw-
ing and some network manipulation and analysis. The
Julia package LightGraphs.jl was used for the spectral
radius results [48]. All the updating and training of
the Hopfield-like networks was done with the aid of the
Cython package [49] to convert Python Code to C as pure
Python was found to be too slow to allow efficient study.

Appendix B: Network Generation

The detailed steps to the network generative process
are as follows:

1. Create the N nodes of the network and assign to
each node one in-coming edge, in each case from a
randomly chosen other node. After this, each node
has in-degree 1.

2. Compute the initial trophic levels, h, using equa-
tion [2] This is best solved iteratively, since this
method is fast and works even is there are small
disconnected components.
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Figure 14: An example of the distribution of trophic
incoherence with temperature like parameter, Tagn in
this generative model.

3. Add edges up to the desired edge number with
probability dependent on the trophic level differ-
ence between the nodes minus 1. The edge proba-
bility used was Gaussian and defined as

(hj —hj —

1)2
2TGEN ] ’ (BL)

P;; = exp [—

where Tgrn is a temperature-like parameter used
to control how coherent the network is: small Tarn
generates networks which are highly coherent.

4. Recompute the trophic Levels, h, including the
newly added edges. Then compute the incoherence
parameter, F', of the generated network.

This method works best for reasonably sparse net-
works, since when the edge density is too large it becomes
difficult to find configurations of high trophic coherence,
if they exist at all. On the other hand, if the edge den-
sity is very low the resulting network may not be even
weakly connected. However, for a large range of densities
it will encounter no issues. Due to the stochastic nature
of the method it is is not possible to predict precisely the
incoherence of a generated graph . For example 1000 net-
works generated with 500 nodes and 30 x 500 edges, and
temperature Togy = 1.3, cluster around F' =~ 0.59, with
most networks in the interval F' € (0.56,0.65). However
this level of precision is sufficient for analysing general
regions of behaviour with no issues.

The third step can be quite computationally inefficient
for large networks with many possible edges as the prob-
abilities for adding an edge at most locations are very
close to zero. This can be improved by more efficiently
sampling the probability distribution using the method
outlined below.



The goal of this sampling method is to set up the sam-
pling so that each time a random number is drawn it
results in an edge. This avoids repeatedly drawing num-
bers for the majority of edges which are unlikely to be
added. The steps are:

1. Label all the possible edges and probabilities with
an integer [ and P, respectively.

2. Compute the sum of all these probabilities,

S:ZP,.
l

3. Draw a random number, 7, between 0 and S.

4. Sum the probabilities one at a time until you reach
the random number, r.

5. Add an edge at the space, [, corresponding to the
probability P, which made the same greater than
r.

6. Set P, = 0 and repeat sets 2-6 until the required
edge number is reached.

This method is much more efficient: the sums can be
computed quickly as it avoids the many repeated random
number draws for every single missed edge that would
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otherwise be necessary. It is possible to also create vari-
ants of this method by modifying the initial structure to
which subsequent edges are added; or to recast the model
S0 as to start from a dense network and prune edges with
a similarly defined probability to generate networks of
the desired trophic incoherence.

Appendix C: Connectome of C.FElegans plotted by
trophic level
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Figure 15: Illustration of the the real world connec-
tome of C.Flegans shown which has intermediate incoher-
ence with node height drawn using Trophic Level. Data
from[50]. Drawn with Networkx Graph Package [47].
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