
Neurocomputing 122 (2013) 501–512
Contents lists available at ScienceDirect
Neurocomputing
0925-23
http://d

n Corr
E-m

P.Tino@
journal homepage: www.elsevier.com/locate/neucom
Time-dependent series variance learning with recurrent mixture
density networks

Nikolay Nikolaev a,n, Peter Tino b, Evgueni Smirnov c

a Department of Computing, Goldsmiths College, University of London, London SE14 6NW, UK
b School of Computer Science, The University of Birmingham, Birmingham B15 2TT, UK
c Department of Knowledge Engineering, Faculty of Humanities and Science, Maastricht University, Maastricht 6200, MD, The Netherlands
a r t i c l e i n f o

Article history:
Received 24 July 2012
Received in revised form
15 May 2013
Accepted 21 May 2013

Communicated by B. Hammer

maximum likelihood framework. Crucially, we calculate temporal derivatives through time for dynamic
Available online 10 June 2013

Keywords:
Mixture density neural networks
GARCH models
Real-time recurrent learning algorithm
12/$ - see front matter & 2013 Elsevier B.V. A
x.doi.org/10.1016/j.neucom.2013.05.014

esponding author. Tel.: +44 2079197854.
ail addresses: n.nikolaev@gold.ac.uk (N. Nikol
cs.bham.ac.uk (P. Tino),Smirnov@maastrichtun
a b s t r a c t

This paper presents an improved nonlinear mixture density approach to modeling the time-dependent
variance in time series. First, we elaborate a recurrent mixture density network for explicit modeling of
the time conditional mixing coefficients, as well as the means and variances of its Gaussian mixture
components. Second, we derive training equations with which all the network weights are inferred in the

estimation of the variance network parameters. Experimental results show that, when compared with a
traditional linear heteroskedastic model, as well as with the nonlinear mixture density network trained
with static derivatives, our dynamic recurrent network converges to more accurate results with better
statistical characteristics and economic performance.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

The dynamics of the time-dependent variance in series of
returns on prices, known also as the volatility, is of particular
interest in finance as it impacts the pricing of financial instru-
ments, and it is a key concept in market regulation. A popular tool
for capturing the volatility are the Generalized Autoregressive
Conditional Heteroskedastic (GARCH) models [7,15]. The current
research studies volatility models with various non-normal return
distributions [4,13], and flexible non-linear models [19,20,25,30].

The research into flexible models proposed non-linear GARCH
based on neural networks [5,14]. However, this approach to
volatility modeling using feed-forward neural networks cannot
handle general spatial–temporal information (beyond finite input
memory), and does not propagate through time gradient training
information. Temporal dimension was added to non-linear GARCH
with the recurrent density network (RDN) [18]. The RDN network
is driven by external inputs as well as by internal context signals
(dynamic state) that carry temporal information. The motivation
for using RDNs for volatility modeling comes from the following
advantages of recurrent networks: (1) they can learn time-varying
distributions as they explicitly describe heteroskedastic depen-
dencies in time series data; (2) they allow accommodation of non-
ll rights reserved.

aev),
iversity.nl (E. Smirnov).
linearities through the use of different activation functions; and
(3) they enable computation of analytical temporal derivatives,
and the implementation of dynamic learning procedures.

Recurrent mixture density networks (RMDN) [27,32,33] were
designed to capture general non-Gaussian density specifications of
‘arbitrary’ shapes using mixtures of Gaussians [6,28]. Such an
approach has been also applied to design mixtures of linear GARCH
in order to account for non-normality in returns [11,21,34]. Normal
mixture densities help to approximate the skewness and excess
kurtosis in time series data, and to achieve better fit compared to
single normal and Student-t densities [21]. Although these mixture
models account for spatiotemporal information, they still infer the
parameters with static algorithms and do not treat directly the
temporal dimension of the volatility model during training. The key
idea for making RMDN to represent mixture GARCH should be to
exploit the recurrent networks as dynamic machines that learn
time-dependent functions [36,37,38]. During training the para-
meters should be adapted in response to both the inputs and the
internal temporal context of stored activations from previous time
steps. This will turn the model into a dynamic function that reflects
the time-dependencies in the data.

This paper proposes an improved RMDN-GARCH network for
time-varying conditional density estimation in the general case
where the “emission model” is assumed to be a mixture of
Gaussians. The developed RMDN-GARCH architecture and
dynamic training algorithm provide a universal non-linear form-
alism that can learn parameters in non-Gaussian distributions
(captured by Gaussian mixtures) with analytical update formulas.

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2013.05.014
http://dx.doi.org/10.1016/j.neucom.2013.05.014
http://dx.doi.org/10.1016/j.neucom.2013.05.014
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neucom.2013.05.014&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neucom.2013.05.014&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.neucom.2013.05.014&domain=pdf
http://dx.doi.org/10.1016/j.neucom.2013.05.014


N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512502
There are two main contributions in this research: (1) the mixture
network architecture, including its models for the mixing coeffi-
cients, means and variances, is elaborated to specify separately the
linear and the non-linear terms (that is why the name RMDN-
GARCH is taken to denote close correspondence to GARCH), this
helps to tune more accurately the model to the data; and (2) we
formulate original temporal derivatives of the likelihood of the
mixture density network with respect to the recurrent variance
parameters to describe accurately the time-relationships in the
data. We derive dynamic likelihood gradients with respect to
the weights in the variance network, representing the mean, the
persistence and the moving average coefficients in the model.
The rationale for having dynamic derivatives is to facilitate the
convergence of the training process when used for learning by
optimization.

The temporal derivatives of the likelihood function include
terms computed following the real time recurrent learning (RTRL)
training algorithm [37,38] for recurrent networks, which not only
updates the weights but also memorizes temporal information
generated by the network node activations. Thus, the overall
model is dynamic and reacts to the current inputs as well as to
its internal network context (state) at a specific time step. The
proposed here RTRL algorithm yields temporal derivatives of the
log-likelihood function that are a generalization of the analytical
(closed-form) derivatives [16] for accurate estimation of linear
GARCH models.

Empirical investigations were conducted with the following
objectives: (1) to examine the influence of the network architec-
ture and dynamic training on mixture density time series model-
ing; and (2) to compare linear GARCH with RMDN-GARCH and
other recurrent density networks. First, we trained the models on
simulated series and show that our RMDN-GARCH learns more
accurate models with lower average fitting errors compared to the
previous RMDN [33]. Second, we applied the RMDN-GARCH to
real-world benchmark series and related its performance to non-
linear recurrent density networks and linear GARCH estimated by
maximum-likelihood using analytical derivatives [16] and Monte
Carlo MCMC sampling [24]. It was found that RMDN-GARCH leads
to results with better statistical characteristics and better average
out-of-sample economic performance than the other models.
Specifically, the dynamic RMDN-GARCH trained using RTRL deri-
vatives within a BFGS optimizer outperformed RMDN trained
using static backpropagation derivatives [33] as well as using
static derivatives computed by numerical differencing. Finally
versions using Student-t noise were evaluated to demonstrate
behavior under different distributional assumptions.

The remainder of this paper is organized as follows. Section 2
introduces the structure of nonlinear mixture GARCH models,
including our mixture density RMDN-GARCH network. Section 3
gives the likelihood derivatives, including the novel temporal
derivatives, and their use in the optimization algorithm for the
mixture density network. Section 4 presents experimental results
in a volatility inference task. Finally, we provide a discussion and
conclusion in Section 5.
2. Nonlinear mixture GARCH modeling

2.1. The GARCH(p,q) model

The volatility of returns on assets vary over time, and it is
modeled by an unobserved process of time-changing variance.
Consider the log-returns from a series of asset prices St ;1≤t ≤T ,
that is rt ¼ log ðSt=St−1Þ.

According to the generalized autoregressive conditional het-
eroskedastic (GARCH)(p,q) model [7], the dynamics of log-returns
on prices is described by the following equations:

rt ¼ μt þ et ð1Þ

μt ¼ a0 þ a1rt−1 ð2Þ

s2t ¼ α0 þ ∑
q

i ¼ 1
αie2t−i þ ∑

p

j ¼ 1
βjs

2
t−j ð3Þ

where μt and st are the mean and volatility of the returns
distribution, et∼N ð0; s2t Þ are zero-mean normal random variables
of variance s2t , a0 is a constant (bias), and a1 is an autoregressive
coefficient.

Let us denote the series of all past returns arrived up to time t
by Rt ¼ ðr1; r2;…; rtÞ. Then, the first two moments of the return
distribution at time t can be written as E½rt jRt−1� ¼ μt and

Var½rt jRt−1� ¼ E½ðrt−μtÞ2jRt−1� ¼ E½e2t jRt−1� ¼ s2t :

Besides the constant a0, free parameters in the model are the
mean α040, the persistences βj and the moving average coeffi-
cients αi. These parameters are restricted to insure positive
variance (αi≥0, βj≥0) and stationarity (∑q

i ¼ 1αi þ ∑p
j ¼ 1βjo1).

The GARCH model given by Eqs. (1)–(3) has the capacity to
capture the main features of typical return series, namely excess
kurtosis, small autocorrelation and high persistence of squared
returns [9]. However, linear GARCH models often fail to capture all
these features simultaneously. One approach to address this
problem that can specifically help to account for the excess
kurtosis and skewness is through treatment by non-Gaussian
distributions.

2.2. RMDN-GARCH(p,q) network model

We construct a time-conditional mixture model for returns on
asset prices using density functions ϕiðμi;t ; s2i;tÞ whose arguments
μi;t≡μi;tðrt−1Þ and si;t≡s2i;tðrt−1Þ are defined by nonlinear functions as
follows:

pðrt jRt−1Þ ¼ ∑
N

i ¼ 1
ηi;tϕiðμi;t ; s2i;tÞ ð4Þ

where ηi;t≡ηi;tðrt−1Þ are the mixing coefficients that change with the
time, ϕi represents the conditional density function of the returns
rt for the ith mixture component, and i is an index running over
the N mixands. The coefficients should satisfy ∑N

i ¼ 1ηi;t ¼ 1
(0oηi;to1).

This density function ϕi is typically chosen to be Gaussian:

ϕiðμi;t ; s2i;tÞ ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi
2πs2i;t

q exp −
ðrt−μi;tÞ2
2s2i;t

 !
ð5Þ

where dependencies on the past inputs is omitted for brevity.
It has been shown that such a mixture model is a universal

approximator in the sense that it can approximate any conditional
distribution rt jRt−1∼D with mean μt and variance s2t with an
arbitrary accuracy, provided that enough mixture components
are available and the parameters are appropriately selected [26].

The moments of the mixture distribution pðrt jRt−1Þ (Eq. (4)) can
be computed as follows:

μt ¼ ∑
N

i ¼ 1
ηi;t μi;t ð6Þ

s2t ¼ ∑
N

i ¼ 1
ηi;tðs2i;t−ðμi;t−μtÞ2Þ: ð7Þ

Such a mixture model is implemented here as a hybrid RMDN-
GARCH neural network architecture which produces non-linearities
through three modules: (1) a mixing network that infers the mixing



N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512 503
coefficients ηi;t
1; (2) a mean level network that generates the means

μi;t; and (3) a variance recurrent network that produces the volati-
lities s2i;t (Fig. 1). All network modules are designed to have one
hidden node with a linear function to feed one output node (so as to
generate exactly the linear part of the corresponding model), while
the remaining hidden nodes are made to use the hyperbolic tangent
activation function to produce non-linear extensions.

The mixing and mean level networks are feedforward multi-
layer perceptrons that yield non-linear autoregressive models
using the same inputs (return rt−l and constant 1) but through
different output activations:

ηi;t ¼ s ∑
K

k ¼ 1
uikg ∑

D

l ¼ 1
Uklrt−l þ Uk0

 !
þ ui0

 !
ð8Þ

μi;t ¼ ∑
K

k ¼ 1
vikg ∑

D

l ¼ 1
Vklrt−l þ Vk0

 !
þ vi0 ð9Þ

where s is the softmax activation function sðyiÞ ¼ expðyiÞ=
∑N

j ¼ 1 expðyjÞ [23], g is the hyperbolic tangent function
gðyÞ ¼ tanhðyÞ, D is the number of lagged inputs, K is the number
of hidden nodes, Ukl (Vkl) is the weight from the lth input node to
the kth hidden node, the weight uik (vik) connects the kth hidden
node to the ith output, Uk0 (Vk0) and ui0 (vi0) are constants.

The recurrent variance network consists of a layer of hidden
nodes, and a layer of output nodes that compute volatilities
hi;t ¼ s2i;t . The linear hidden nodes in this network generate exactly
the linear part of the model Eq. (3). The output nodes use the
absolute value function to guarantee positiveness of the volatility
[33]. The variance network accepts the errors e2t−l ¼ ðyt−l−μt−lÞ2 as
external inputs and the volatilities s2t−lþp as internal signals from
its context.2 The node activations serve as context that memorizes
the past information. Thus, the output at a particular time step t
depends not only on the recent returns, but also on the previous
volatilities stored in its context.

Let us adopt the following notation for the inputs to the
network at time t:

xt−l ¼
1 i:e: bias if l¼ 0
e2t−l if 1≤l≤p
ht−lþp if ðpþ 1Þ≤l≤ðpþ qÞ

8><
>: ð10Þ

where p is the number of lagged inputs, and q is the number of
recurrent connections.

These inputs feed the hidden nodes in the variance module to
compute the summations

yk;t ¼ ∑
pþq

l ¼ 0
Wklxt−l ¼ ∑

p

l ¼ 1
Wkle

2
t−l þ ∑

pþq

l ¼ pþ1
Wkl ht−lþp þWk0 ð11Þ

where Wkl are the input-to-hidden weights in the variance net-
work, and l enumerates the inputs.

The hidden nodes pass these summations through the corre-
sponding activation functions

zk;t ¼ gðyk;tÞ; and gðyk;tÞ ¼
yk;t linear
tanhðyk;tÞ hyperbolic tangent

(

ð12Þ

where the activation functions can also be sigmoidal, as standard
in neural network research.
1 The mixing network actually computes the prior probability ηi;t that the ith
mixture can infer the desired output rt.

2 The number of past values sent as inputs to this network is sufficient since we
use a recurrent architecture.
The output nodes are made using the absolute value function
f ðon;tÞ ¼ jon;t j so as to generate outputs hn;t ¼ s2n;t

hn;t ¼ f ðon;tÞ ¼ f ∑
K

k ¼ 1
wnkzk;t þwn0

 !

¼ f ∑
K

k ¼ 1
wnk g ∑

p

l ¼ 1
Wkle

2
t−l þ ∑

pþq

l ¼ pþ1
Wkl hn;t−lþp þWk0

 !
þwn0

 !

ð13Þ
where n is the output node index, and Wk0 and wn0 are the
weights on connections feeding 1.

These dynamical equations (11)–(13) describe the nonlinear
network model as sensitive not only to the external input variables
r2t−l through the error e2t−l, but also to the temporal variables ht−l at
specific time steps. These temporal variables capture information
from the past and send it via the recurrent connections, thus
providing memory capacity. This is what helps to capture time-
varying patterns in the data.
3. Dynamic learning of RMDN-GARCH

The learning problem is: given a trajectory of returns as
training data r1; r2;…; rt;…, sampled at discrete times 1≤t ≤T , find
the RMDN-GARCH parameters that best explain their changing
variance. The learning task is to find weights which maximize the
likelihood that the returns have been generated by a process
which variance is the same as the one modeled by the network.
Solutions are obtained through maximization of the instantaneous
log-likelihood

Lt ¼ log pðrt jRt−1Þ ¼ log ∑
N

i ¼ 1
ηi;tϕiðμi;t ; s2i;tÞ ð14Þ

The total likelihood L¼∑T
t ¼ 1Lt as a function of the parameters

in the recurrent mixture density network θ¼ fðuikÞKk ¼ 1;

ðUklÞDl ¼ 0; ðvikÞKk ¼ 1; ðVklÞDl ¼ 0; ðwikÞKk ¼ 1; ðWklÞpþq
l ¼ 0g2i ¼ 1 is minimized

iteratively

θ̂ ðiþ1Þ ¼ arg max
θ

∑
T

t ¼ 1
Ltðθ; θ̂ ðiÞÞ

� �
ð15Þ

starting with the estimates θðiÞ from the previous ith step.
The Broyden–Fletcher–Goldfarb–Shanno (BFGS) [17] optimiza-

tion method is preferred for training the RMDN-GARCH network.
The rationale is that BFGS is a second-order (quasi-Newton)
method that performs more efficient learning (stable convergence
with reasonable complexity) compared to gradient backpropaga-
tion methods [3].

3.1. Likelihood derivatives

The BFGS algorithm requires to find the derivatives of the log-
likelihood with respect to the weights in each particular network
module. The differentiation of the log-likelihood leads to terms
including the time-varying volatility, which help to capture the
correlation in time series. We obtain the following analytical
derivatives for the hidden-to-output node weights in the RMDN-
GARCH network (see Appendix):

∂Lt
∂uik;t

¼ ∂Lt
∂πi;t

∂πi;t
∂uik;t

¼ ðκi;t−ηi;tÞ
∂πi;t
∂uik;t

ð16Þ

∂Lt
∂vik;t

¼ ∂Lt
∂μi;t

∂μi;t
∂vik;t

¼ κi;t
ðrt−μi;tÞ

hi;t

� �
∂μi;t
∂vik;t

ð17Þ

∂Lt
∂wik;t

¼ ∂Lt
∂hi;t

∂hi;t
∂wik;t

¼ 1
2
κi;t
hi;t

ðrt−μi;tÞ2
hi;t

−1

 ! !
∂hi;t

∂wik;t
ð18Þ



Fig. 1. RMDN-GARCH: a recurrent mixture density neural network interpretation of a nonlinear GARCH model. The outputs of the particular network modules generate the
parameters of the conditional density model when given returns at their inputs (using also past volatilities from the context).

N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512504
where πi;t is the weighted sum at the mixing network output
πi;t ¼∑K

k ¼ 1uikgðUklrt−l þ Uk0Þ þ u0 (before passing it through the
softmax activation), and κi;t is the substitution3 (see (5))

κi;t ¼
ηi;t ϕi

∑N
j ¼ 1ηj;tϕj

:

The input-to-hidden node derivatives ∂Lt=∂Ukl;t , ∂Lt=∂Vkl;t , and
∂Lt=∂Wkl;t are obtained analogously.

The derivatives ∂πi;t=∂uik;t and ∂πi;t=∂Ukl;t in the mixing network,
as well as ∂μi;t=∂vik;t and ∂μi;t=∂Vkl;t in the mean level network can
be computed using the standard backpropagation algorithm for
feedforward neural networks [31]. However, the log-likelihood
derivatives ∂hi;t=∂wik;t and ∂hi;t=∂Wkl;t in the variance network are
dynamic and need a special treatment.

3.2. Temporal derivatives

The temporal derivatives ∂Lt=∂wik;t and ∂Lt=∂Wkl;t in the var-
iance network are computed according to the RTRL algorithm
[37,38] for recurrent neural networks in order not only to adjust
the weights using the instantaneous error information, but also to
take advantage of the full error flow through time. RTRL calculates
the temporal derivatives by evaluating recursively and storing
partial derivatives during a forward pass through the network.

The derivative of the output hn;t with respect to a particular
hidden-to-output weight wnk, 1≤n≤N, 1≤k≤K , at time t is (see
Appendix)

∂hn;t
∂wnk

¼ f ′ðon;tÞzk;t ð19Þ

where f ′ðon;tÞ is the derivative of the absolute value function f
defined by f ′ðon;tÞ ¼ on;t=jon;t j.

The temporal derivative of the output hn;t with respect to an
input-to-hidden node weight Wij, 1≤i≤K , 0≤j≤ðpþ qÞ, at time t is
computed in two steps (see Appendix)

∂hn;t
∂Wij

¼ f ′ðon;tÞ ∑
K

k ¼ 1
wnk

∂zk;t
∂Wij

� �
þ δnizj;t

 !
ð20Þ

∂zk;t
∂Wij

¼ g′ðyk;tÞ ∑
pþq

l ¼ pþ1
Wkl

∂ht−lþp

∂Wij

� �
þ δikxt−j

 !
ð21Þ

where δni is the Kroneker delta function: δni ¼ 1 if n¼ i and
0 otherwise, the initial state of the network is considered inde-
pendent from the weights, that is ∂h0=∂Wij ¼ 0, and g′ðyk;tÞ denotes
3 The variables κi;t are posterior responsibilities which are functions of the
inputs as well as the outputs of the mixtures, that is κi;t is the posterior probability
that the t-th mixture can generate the desired return rt.
the derivative of g which for tangential activations is
g′ðyk;tÞ ¼ ð1−y2k;tÞ.

The time argument of the weights is omitted in Eqs. (20) and
(21) assuming that they are modified slightly at each temporal
training step. Under the assumption ∂hn;t−lþp=∂Wij;t≈∂hn;t−lþp=∂
Wij;t−1 we can compute the quantity ∂hn;t−lþp=∂Wij;t−1 and use it
to obtain the weight updates. Having this simplification, however,
means that only an approximation to the exact gradient is
computed [38]. Practically the approximation is almost identical
to the precise gradient when the learning rate is sufficiently small.

The time complexity of this RTRL training algorithm is
Oðq3ðqþ pÞÞ, and its memory requirements are proportional to
Oðq2ðqþ pÞÞ [38]. The required memory is constant and does not
change with the increase of the number of the data points.
Although the complexity of this RTRL algorithm for training the
recurrent neural network module is high, it is reasonable to apply
it to small networks like the constructed here recurrent variance
network because we typically use small dimensions q¼1 (or 2)
and p¼2.
4. Applications to volatility inference

Experiments in volatility inference were conducted using
artificially generated series, and a benchmark series of DEM/GBP
exchange rates. Daily exchange rates were taken and transformed
into percentage nominal returns. The research was carried out to
examine: (1) the effect of separating the linear from the nonlinear
parts in the mixture network density model; (2) the influence of
dynamic training on the performance of recurrent non-linear
mixture density network models; and (3) to relate them to
standard linear GARCH models, as well as to models using
Student-t error distributions.

4.1. Processing simulated series

The logistic mixture model: The ability of the proposed here
approach to learn descriptions of stochastic processes was tested
over series generated by a logistic mixture model [39]. The model
was made flexible so that not only the volatility is time dependent
but also the mixing proportions are changing over time as follows:

pðrt jRt−1Þ ¼ η1;tϕðμt ; s21;tÞ þ η2;tϕðμt ; s22;tÞ
μt ¼ a0 þ a1rt−1
s21;t ¼ α01 þ α11e2t−1 þ β1s

2
1;t−1

s22;t ¼ α02 þ α12e2t−1 þ β2s
2
1;t−1

π1;t ¼ c0 þ c1rt−1
η1;t ¼ expðπ1;tÞ=ð1þ expðπ1;tÞÞ ð22Þ



Table 2
Average errors of fitting the high and low volatility regimes, computed by training
the two different network architectures RMDN-GARCH and RMDN-OLD using the
same BFGS optimizer with the same settings each over the same 1000 simulated
series.

Algorithms Regime Error

RMSE MAE RAE MPE

RMDN-GARCH 1 0.0664 0.0428 0.9294 8.1975
T¼500 2 0.1058 0.0754 0.9854 5.5863
RMDN-OLD 1 0.0783 0.0551 0.9733 11.2245
T¼500 2 0.1294 0.0822 0.9982 8.1954
RMDN-GARCH 1 0.0568 0.0348 0.7265 6.2217
T¼1000 2 0.0906 0.0641 0.9143 4.3528
RMDN-OLD 1 0.0682 0.0514 0.8816 10.3519
T¼1000 2 0.1178 0.0793 0.9624 7.8711
RMDN-GARCH 1 0.0487 0.0291 0.6027 5.3349
T¼1500 2 0.0826 0.0547 0.8218 3.8254
RMDN-OLD 1 0.0605 0.0417 0.8295 9.5972
T¼1500 2 0.1001 0.0661 0.9158 5.1682

Fig. 2. A generated return series using the logistic mixture model and its
approximation by the mean network module (as a mixture of the two outputs)
produced after training the RMDN(2,3,2)-GARCH(1,1) network model.

N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512 505
where ϕ is the Gaussian function, Eq. (5), the other mixing
coefficients are computed by η2;t ¼ ð1−η1;tÞ, the constants in the
mean equation are a0¼0.01, a1¼ 0:4, the volatility regime para-
meters are: a01 ¼ 0:01, α11 ¼ 0:1, β1 ¼ 0:75, a02 ¼ 0:04, α12 ¼ 0:15,
β2 ¼ 0:8, and the constants in the equation for the mixing
coefficient are c0¼0.01, c1¼0.95. The initial values are: r0¼0.1,
e20 ¼ 0 and s20 ¼ 0.

Using this process model there were generated three groups of
series with increasing length as follows: T¼500, T¼1000, and
T¼1500. From each length we made 1000 replicas using sampling
from the bimodal distribution defined by Eq. (22).

Network architecture and training: Since the objective of this
simulation study was to evaluate the learning potential of RMDN-
GARCH and to compare it with the previous RMDN, we designed
the network as in the previous research [32,33] with three hidden
nodes in each network. Each network module had two inputs
(constant 1 and rt−1), three hidden and two output nodes (Fig. 1).
This is actually an RMDN(2,3,2)-GARCH(1,1) model whose volatility
equation has one persistence β and one moving average coefficient
α. The initial weights on links feeding the linear terms in the mixing
network were computed using iteratively reweighted least squares
(IRLS) as suggested for such architectures using softmax activations
[23], and all remaining weights were set to zero. The initial weights
on connections feeding the linear terms in the mean level net were
computed using ordinary least squares (OLS) fitting an autoregres-
sive AR(1) model, while the remaining weights were set to zero. The
linear weights of the recurrent variance network were initialized
with sensible values as follows: a01 ¼ 0:005, α11 ¼ 0:15, β1 ¼ 0:8,
a02 ¼ 0:005, α12 ¼ 0:2, β2 ¼ 0:85.

Experimental results: Table 1 gives the estimated average para-
meters and their root mean squared errors (RMSE) in parentheses.
The RMDN-GARCHmixture density network was trained with a BFGS
optimizer [3] made with the proposed here temporal derivatives. The
settings of the optimizer were: Tolerance¼ 1:0e−10, MaxIterations¼
102 and FunctionEvaluations¼ 102. It should be noted that RMDN-
GARCH is a nonlinear model with much more parameters, while we
give in Table 1 only the parameters corresponding to the linear terms
in the model defined by Eq. (22). The values in this table show that
Table 1
Estimated average RMDN-GARCH parameters and their RMSE errors in parentheses
obtained after independent runs over 1000 simulated series of increasing sizes T
(500,1000,1500) generated with the chosen true parameters for the logistic mixture
model (Eq. (22)).

Parameter True RMDN-GARCH

T¼500 T¼1000 T¼1500

a0 0.01 0.0113 0.0112 0.0108
(0.0195) (0.0176) (0.0141)

a1 0.40 0.3921 0.3958 0.3967
(0.0529) (0.0422) (0.0396)

α01 0.01 0.0083 0.0098 0.0097
(0.0226) (0.0182) (0.0095)

α11 0.10 0.1033 0.0977 0.0964
(0.0310) (0.0282) (0.0253)

β1 0.75 0.7621 0.7623 0.7625
(0.0298) (0.0241) (0.0209)

α02 0.04 0.0375 0.0332 0.0346
(0.0154) (0.0138) (0.0122)

α12 0.15 0.1657 0.1633 0.1625
(0.0302) (0.0258) (0.0224)

β2 0.80 0.8076 0.8069 0.8061
(0.0285) (0.0241) (0.0203)

c0 0.01 0.0231 0.0254 0.0243
(0.0484) (0.0441) (0.0362)

c1 0.95 0.9408 0.9541 0.9575
(0.1065) (0.0892) (0.0714)

Fig. 3. Generated return series using the logistic mixture model and its time-
varying volatility (conditional variance) inferred by the recurrent network module
after training the RMDN(2,3,2)-GARCH(1,1) model.
the dynamic optimization of RMDN-GARCH leads to adequate para-
meters, although the precision varies with the sample sizes.

Runs over the same simulated time series were also conducted
with the previous network RMDN-OLD [33]. Both RMDN-GARCH
and RMDN-OLD were deliberately trained with the same optimi-
zer using the dynamic temporal derivatives proposed here to
make clear the differences in their performance due only to the
differences in their architectures. Table 2 offers averaged fitting
errors from the two different network architectures RMDN-GARCH
and RMDN-OLD each over the same 1000 simulated series. These
fitting errors were computed as the mean errors of approximating
the two true volatility regimes s21;t and s22;t , 1≤t ≤T , using the



Fig. 5. Probability density function inferred by the RMDN(2,3,2)-GARCH(1,1)
model, obtained with the averaged parameters from all runs over the series of
size 500, along with the starting density obtained with the initial parameters, and
the true density of the generative logistic mixture model.

N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512506
corresponding equations from Eq. (22). The results in Table 2
indicate that the separation of the linear from the nonlinear parts
in the model leads to more accurate models with lower root mean
squared error (RMSE), lower mean absolute error (MAE), lower
relative average error (RAE) (also known as the Theil's U2 statistic)
and lower mean percentage error (MPE). These results provide
empirical evidence that the developed RMDN-GARCH is an
improvement over the previous mixture density network
architecture.

Evidence for the quality of fitting the moments of the condi-
tional distribution of one of the generated series is provided in
Figs. 2–4. Fig. 2 plots a return series from a particular run along
with the computed mean return μt ¼∑2

i ¼ 1ηi;tμi;t by the mean level
module of the RMDN-GARCH network. Figs. 3 and 4 illustrate the
inferred volatility obtained in the same run. The curves in Fig. 3
demonstrate that the inferred volatility wraps closely the devia-
tions of the given returns, which indicates that the learning
algorithm works properly. Fig. 4 gives the approximated low and
high volatility regimes by the two outputs of the variance network
module of RMDN-GARCH. One can see that the variance network
identifies accurately the two regimes as its outputs are very close
to the given simulated regimes.

Fig. 5 offers a plot of the probability density function inferred
by the RMDN-GARCH mixture model, obtained with the averaged
parameters from all runs over the series of size 500, along with the
initial density obtained with the starting parameter values, and
the true density of the generative logistic mixture model. All
posterior distributions are obtained using nonparametric density
estimation. It can be observed in Fig. 5 that the learned posterior
distribution is close indeed to the true, unknown posterior
distribution.

Fig. 6 illustrates the evolution of the log-likelihood function
averaged after runs using the optimizer to learn the RMDN-GARCH
model over one series of size 500.
Fig. 6. Evolution of the log-likelihood function averaged after all the runs of the
optimizer to estimate the RMDN(2,3,2)-GARCH(1,1) model over one series of
size 500.
4.2. Processing real-world series

4.2.1. Studied models and algorithms
Linear model estimation: There were implemented two algo-

rithms for processing standard linear GARCH models: a maximum
likelihood estimation MLE algorithm using analytical derivatives
[16], and a Markov Chain Monte Carlo MCMC sampling algorithm
[24]. The MLE estimation was carried out with the same BFGS
optimizer [3] in order to facilitate comparisons.

In all experiments the BFGS optimizer was executed with the
following settings: Tolerance¼ 1:0e−10, MaxIterations¼ 102 and
FunctionEvaluations¼ 102. It should be noted that BFGS is a batch
(offline) algorithm that operates on the entire series taken as a
whole. Concerning these settings we would like to clarify that
Fig. 4. High and low volatility regimes extracted as components of the common
time-varying volatility from Fig. 1 obtained from the outputs of the RMDN(2,3,2)-
GARCH(1,1) variance network module.
there were conducted a large number of preliminary experiments
to determine these values so that the training process is fast and
efficient, that is there are no substantial error decreases after
doing more than the selected number of iterations and function
evaluations with the chosen tolerance level.

The MCMC algorithm [24] uses adaptive rejection metropolis
sampling. The sampler operates using priors and a likelihood
function programmed for a linear GARCH. This MCMC algorithm
was run for 5000 iterations after a burn-in period of 1000
iterations. All the algorithms were started with the same initial
values: mean μ¼ 0:01, persistence β¼ 0:85 and coefficient
α¼ 0:05. The volatility was initialized with the unconditional
variance s20 ¼ μ=ð1−α−βÞ [9].

Learning non-linear models: The proper architecture of the
RMDN-GARCH(1,1) network model for this task was determined
using a model selection technique, after dividing the data into a
training subset of the first 80% points, and a testing subset with
the remaining points. We started by estimating an RMDN network
with two hidden nodes in each of the mixing, mean level, and
variance networks, and computed the out-of-sample normalized
mean squared error (NMSE) over the testing subset. Next, we
expanded the hidden layer in each network to 3, 4, and 5 nodes
and estimated the out-of-sample error of the corresponding
model. The lowest NMSE was attained by the model with three



Table 3
Computed linear and non-linear GARCH(1,1) model parameters with different
estimation algorithms and their standard errors, obtained over the training series
of 1500 daily returns on DEM/GBP currency exchange rates.

Algorithms α0 α1 β

MLE 0.0121 0.1475 0.8064
(0.0047) (0.0395) (0.0435)

MCMC 0.0126 0.1395 0.8107
(0.0041) (0.0342) (0.0434)

RMDNND 0.0284 0.1954 0.7957
(0.0044) (0.0398) (0.0552)
−0.0051 0.1396 0.7624
(0.0023) (0.0462) (0.0561)

RMDNBP 0.0231 0.2086 0.7820
(0.0038) (0.0341) (0.0421)
−0.0039 0.1406 0.7343
(0.0018) (0.0357) (0.0436)

RMDNRTRL 0.0345 0.1863 0.7981
(0.0032) (0.0272) (0.0435)
−0.0087 0.0779 0.8653
(0.0017) (0.0308) (0.0407)

RDNt 0.0196 0.1875 0.8493
(0.0041) (0.0273) (0.0382)

MCMCt 0.0116 0.1320 0.8228
(0.0035) (0.0252) (0.0377)

MLEt 0.0114 0.1451 0.8127
(0.0043) (0.0285) (0.0386)

N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512 507
hidden nodes, so we selected the RMDN(2,3,2)-GARCH(1,1) topol-
ogy for the following experiments.

The weights in the mean level network on links feeding the
linear terms were computed using ordinary least squares (OLS)
fitting of an autoregressive AR(1) model, while the remaining
weights were set initially to zero. The weights in the mixing
network on connections feeding the linear terms were initialized
using iteratively reweighted least squares (IRLS) [23], and all
remaining weights were set to zero. The weights in the linear
part of the recurrent variance network were initialized with
plausible values as follows: a01 ¼ 0:005, α11 ¼ 0:15, β1 ¼ 0:8,
a02 ¼ 0:005, α12 ¼ 0:2, β2 ¼ 0:85.

The RMDN-GARCH was also trained with the BFGS optimizer
[3], which was implemented using backprop derivatives for
learning the mixing and mean level networks. Three different
implementations of the optimizer were made for the recurrent
variance network: RMDNRTRL using the temporal derivatives
obtained in this paper, RMDNBP using static backprop derivatives
as in previous research [32,33], and RMDNND using static deriva-
tives obtained by numerical differentiation. The objective was to
find out whether the dynamic learning improves the results on the
same network architecture.

Inference with heavy-tailed noise: We also implemented corre-
sponding versions of our models using the Student-t likelihood
function to investigate whether using this heavy tail distribution
can help to achieve better results. The following algorithms were
designed: MCMCt, MLEt, and a single dynamic recurrent density
network with one-mixand RDNt trained using RTRL derivatives.
The degrees of freedom parameter ν of the Student-t distribution
were found by MCMCt sampling to be ν¼ 6:05, and this value was
then also used in MLEt and RDNt.

4.2.2. Experimental technology
Investigations were carried out to evaluate the impact of the

volatility dynamics on the in-sample and out-of-sample perfor-
mance of the models. The given series was split into training and
testing subseries. The training series was used to infer the model
parameters and their standard errors. The out-of-sample accuracy
was examined by computing one-step-ahead volatility forecasts,
and rolling sequentially by one-step foreword over the testing
subseries. In particular, using information Rt−1 up to time t−1, the
volatility s2t at time t was calculated and compared to its observed
proxy—the squared return r2t . After predicting the volatility the
model was retrained, and this algorithm repeated till the end of
the testing series. The training subseries were overlapping but
their size was constant.

First, in-sample and out-of-sample statistical diagnostics were
obtained using the standardized residuals ϵ̂t ¼ ðrt−μtÞ=

ffiffiffiffiffi
ht

p
. We

calculated the coefficients of skewness and kurtosis, Durbin–
Watson (D–W) and Ljung–Box (L–B) autocorrelation statistics,
and the log-likelihood. Second, the predicted volatilities were
taken to calculate several measures of out-of-sample performance,
namely the normalized mean squared error (NMSE), the normal-
ized mean absolute error (NMAE), the hit rate (HR) and the
weighted hit rate (WHR) [33]

NMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T

t ¼ 1
ðr2t −s2t Þ2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T

t ¼ 1
ðr2t −r2t−1Þr2

s,

NMAE¼ ∑
T

t ¼ 1
jr2t −s2t j ∑

T

t ¼ 1
jr2t −r2t−1j

	

HR¼ ð1=TÞ ∑
T

t ¼ 1
γt ;

where γt ¼
1 if ðs2t −r2t−1Þðr2t −r2t−1Þ≥0
0 otherwise

(
ð23Þ
WHR¼ ∑
T

t ¼ 1
st jr2t −r2t−1j= ∑

T

t ¼ 1
jr2t −r2t−1j;

where st ¼ sgnððs2t −r2t−1Þðr2t −r2t−1ÞÞ ð24Þ

which relate the volatility estimate from the actual network model
s2t to the target return r2t assuming that it is the true volatility
generated by a naive model.

The NMAE measure is less sensitive to outliers than the NMSE,
although they both evaluate the discrepancy between the inferred
volatility s2t by the actual model, and the true volatility r2t from the
naive benchmark model. The HR and WHR measure the frequency
of correctly predicted directional changes by the models. The HR
varies between 0 and 1, and a value of 0.5 means that the model is
not better than a random generator. The WHR is in the worst case
−1 and in the best 1.

The effectiveness of the models in out-of-sample forecasting
was investigated using bootstrapped replicates of the DEM/GBP
series. We followed a bootstrapping technology [29] for GARCH
models. After fitting the model, its parameter estimates
â; b̂; fα̂0; α̂1; β̂g were taken to compute standardized residuals
ϵ̂t ¼ ðrt−μtÞ=

ffiffiffiffiffi
ht

p
. Next, samples from these standardized residuals

were drawn ϵ̂nt ¼ ϵ̂t−meanðϵ̂tÞ, in order to produce replicates of the
returns frn1; rn2;…; rnT g with the equation: rnt ¼ μn

t þ ϵ̂nt

ffiffiffiffiffi
hn

t

q
;1≤t ≤T .

This includes recursive calculation of time-dependent volatilities
hn

t as well as calculation of means by μn
t ¼ â þ b̂rnt−1 at each time

step using the parameters fα̂0; α̂1; β̂g. The process started with
μn

1 ¼ μ̂1 and hn

1 ¼ ĥ1. After that, the parameters were re-estimated
over the replicated returns leading to a new set of adapted
parameters ân

; b̂
n

; fα̂n

0; α̂
n

1; β̂
ng. Thus, we obtained 100 bootstrap

replicates from the DEM/GBP series which were taken to study the
predictive performance of the considered models.
4.2.3. Learning from the DEM/GBP series
A series of DEM/GBP currency exchange rates was taken [8] as a

benchmark [2]. The series consists of 1974 daily observations
recorded from 3 January 1984 to 31 December 1991, which were
divided into 1500 data for training and 474 for testing. Table 3
shows the values of the main three GARCH parameters found by
the studied algorithms. These values are very close to these



Table 5
Out-of-sample statistical diagnostics calculated with standardized residuals,
obtained by fitting GARCH(1,1) to the training series of daily returns on DEM/GBP
using the studied algorithms.

Algorithms Skewness Kurtosis D–W L–B(30) Log-lik.

MLE −0.4002 5.1838 1.9232 27.8543 −911.77
MCMC −0.4001 5.1517 1.9157 29.1331 −913.38
RMDNND −0.4072 5.2915 1.9156 29.6538 −859.59
RMDNBP −0.4027 5.2464 1.8941 29.1402 −857.62
RMDNRTRL −0.3975 5.1514 1.9116 30.3248 −833.52
RDNt −0.3912 5.2618 1.9054 28.7643 −852.98
MCMCt −0.3989 5.1552 1.9175 29.1615 −863.89
MLEt −0.4011 5.2130 1.9218 29.8568 −851.11

Table 6
Averaged out-of-sample errors and log-likelihoods of different GARCH estimation
methods computed with one-step-ahead forecasts, obtained via rolling regression
over the testing bootstrapped subseries of 474 future DEM/GBP exchange
rates data.

N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512508
obtained by relevant research: α0 ¼ 0:0108, α1 ¼ 0:1531 and
β¼ 0:80597 [2].

Tables 4 and 5 report the results from statistical tests on the in-
sample and out-of-sample standardized residuals from the mod-
els. It shows that MCMC, MCMCt, RMDNRTRL and RDNt lead to
models with close low skewness and kurtosis. All models have
similar values of the Durbin–Watson statistics close to 2.0, indicat-
ing that there is no significant autocorrelation in the residuals,
which is confirmed by the Ljung–Box test. The nonlinear mixture
model trained by RMDNRTRL outperforms the linear ones using
Gaussian and Student-t noise with respect to the log-likelihood
and several statistical characteristics (the MCMC algorithm also
helps to better capture the kurtosis), while the RMDNBP and
RMDNND are inferior in this context to RMDNRTRL and RDNt

obtained using dynamic derivatives. Both algorithms RMDNRTRL

and RDNt learn models with slightly better statistical character-
istics than the other volatility models. These nonlinear dynamic
mixture density networks fit better the returns. Overall, all
mixture models are more likely than the GARCH models as they
show lower GMLE estimates.
Algorithms NMSE NMAE HR WHR Log-lik.

MLE 0.7582 0.9158 0.6575 0.5768 −389.22
MCMC 0.7596 0.9317 0.6492 0.5779 −390.41
RMDNND 0.7726 0.9653 0.6473 0.5781 −367.34
RMDNBP 0.7731 0.9641 0.6491 0.5627 −366.58
RMDNRTRL 0.7562 0.9049 0.6535 0.5824 −356.76
RDNt 0.7592 0.8982 0.6526 0.5795 −364.59
4.2.4. Predictive performance
The average forecasting results are given in Table 6. One can see

that the dynamically trained mixture RMDNRTRL network demon-
strates improved performance, compared to the previous
approaches. Our findings can be summarized as follows:
MCMCt 0.7598 0.9246 0.6515 0.5792 −369.38
MLEt 0.7661 0.9325 0.6497 0.5744 −363.15
1.
Tab
In-s
by
usin

A

M
M
R
R
R
R
M
M

Table 7
The lowest average NMSE and NMAE errors were obtained after
dynamic training of the mixture RMDNRTRL model and the RDNt

model with t-Student noise—they beat not only the linear
models, but also the static nonlinear mixture RMDNBP and
RMDNND models.
Computed p-values of the paired t-test (relating RMDNRTRL to the linear models)
with null hypothesis that the averaged forecasting NMSE errors are not statistically
2.
different.

pair MLE MCMC MCMCt MLEt
RMDNRTRL 0.1561 0.1424 0.1587 0.1611
The dynamic training of the nonlinear network-based models
RMDNRTRL and RDNt lead to better average ‘economic’ perfor-
mance as indicated by their higher HR and WHR rates. The
linear model estimated by MLE achieved highest HR, while the
linear model trained by Monte Carlo sampling using Student-t
noise (MCMCt) also showed good economic performance.
3.
Table 8
Computed p-values of the paired t-test (relating RMDNRTRL to the nonlinear models)
with null hypothesis that the forecasting NMSE errors are not statistically different.

pair RMDNND RMDNBP RDNt

RMDNRTRL 0.1557 0.1125 0.1229
The highest average log-likelihood was achieved by the
RMDNRTRL model, with MLEt being the second, and RDNt being
the third.

The reasonable question that arises after looking at the results
in Table 6 is as to what degree the differences between the models
are statistically significant. In order to find out, we applied the
paired t-test to the predicted average NMSE obtained from the
studied models. There were considered the bootstrapped replicas
of the original series, and there were produced 100 average NMSE
errors from each model (that is, each model was rolled over the
corresponding 100 replicated testing subseries, and the computed
le 4
ample statistical diagnostics calculated with standardized residuals, obtained
fitting several GARCH(1,1) to the training series of daily returns on DEM/GBP
g the studied algorithms.

lgorithms Skewness Kurtosis D–W L–B(30) Log-lik.

LE −0.3865 5.2274 1.9324 28.3489 −912.841
CMC −0.4006 5.1403 1.9160 29.2031 −913.447
MDNND −0.4053 5.3312 1.9115 29.7462 −865.221
MDNBP −0.4026 5.2861 1.8961 29.1403 −862.682
MDNRTRL −0.3971 5.1706 1.9117 30.3248 −838.525
DNt −0.3685 5.3115 1.9053 28.5802 −857.724
CMCt −0.3988 5.1332 1.9165 29.2136 −868.791
LEt −0.3892 5.3718 1.9573 26.4898 −850.624
one-step ahead forecasting errors over each subseries path of size
474 were averaged). The key idea behind this technology was to
generate independent error samples from each model, having also
in mind that the errors are assumed to be normally distributed.

Tables 7 and 8 present the calculated p-values from the paired
difference tests. Table 7 relates the RMDNRTRL model to the linear
models, and Table 8 relates it to the nonlinear models trained with
the corresponding algorithms. One can see in these tables that the
null hypothesis that there is no difference between them at the 0.1
(0.9 percept) level is rejected. That is, the mean differences
between the errors of the developed RMDNRTRL model and the
remaining models are greater than zero.

Fig. 7a plots the returns and two curves produced by adding
twice the square root of the inferred volatility. This figure shows
that the deviations of the volatility learned by RMDNRTRL training
of RMDN-GARCH wrap closely the given target returns. Fig. 7b
presents a correlogram of the standardized residuals. The correlo-
gram of the residuals demonstrates that the autocorrelation in the
residuals up to 30 lags is small and close to zero. Fig. 7c gives a Q–Q



Fig. 7. (a) Return series from DEM/GBP exchange rates, recorded from 3 January 1984
to 31 December 1991, and their time-varying volatility (conditional variance) curves
produced by an RMDN-GARCH(1,1) model estimated by BFGS optimization using RTRL
temporal derivatives. (b) Correlogram of the standardized residuals computed with
RMDN-GARCH(1,1) volatilities. (c) Quantile–quantile plot of the standardized residuals
computed with RMDN-GARCH(1,1) volatilities. (d) Histogram of the standardized
residuals computed with RNN-GARCH(1,1) volatilities.

N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512 509
plot that relates the standardized residuals to the normal distribu-
tion, and illustrates that the residuals are almost normal in the
middle and only deviate from normality in the tails at the corners,
i.e. there is no significant deviation from normality in them. Fig. 7d
offers a Gaussian approximation to the histogram of the standar-
dized residuals.

Fig. 8 illustrates the confidence intervals of the forecasted
volatility to show its degree of variability over the bootstrapped
replicas of the financial exchange rates series.
4.2.5. Discussion
The main objective of our approach is modeling and prediction

of the (unobserved) instantaneous second-order moment of the
time-dependent distributions of time series. This is a micro-level
view of the underlying volatility process, which is different from
the macro-level view of complexity science [12,35]. In particular,
we model in detail the heteroscedastic nature of the stochastic
process given the observed data. As in any modeling approach, we
impose certain assumptions on the nature of state-conditional
noise and dependency structure over time. The appropriateness of
our assumptions is then tested on a hold-out sample of data not
used in model building.

This research uses mixtures of Gaussians to approximate any
‘reasonable’ (e.g. smooth) density function to arbitrary precision
assuming a sufficient number of mixture components. However,
the use of Gaussian mixtures in our approach has a stronger focus
as financial returns are typically fat-tailed and a single Gaussian
would be inappropriate. A two-component mixture allows us to
describe a broad and a more peaked Gaussian, which is usually
sufficient to capture the returns' variability. Alternatively, the
Student t-distribution, with appropriately set number of degrees
of freedom could be used, however, the mixture formulation is
more general.

Modeling time-dependent variance and heteroscedastic noise
have been addressed from various perspectives, for example
within the popular kernel framework [10]. The main (not the only
one) difference between this kernel approach and our approach is
that while Cawley et al. formulate a ‘static’ regression model that
can deal with different noise variances in different regions of the
input space, our approach is dynamic and employs state-space
modeling as the main representation mechanism for dealing with
temporal dependencies. One can envisage using the kernel
approach with a time lag (sliding input window). This however
would require an imposition of a fixed model order. Our state-
space approach is more flexible and general.
Fig. 8. Confidence intervals (95%) of time-varying volatility forecasts obtained by
running the MT(2)-GARCH(1,1) model over 100 bootstrapped replicas of the DEM/
GBP exchange rates series.



N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512510
5. Conclusion

This paper presented a recurrent mixture density network
approach to nonlinear volatility modeling of the dynamic evolu-
tion of the conditional variance in financial time series. The
empirical results demonstrate that the presented approach learns
accurate RMDN-GARCH models of the time-varying conditional
moments of the returns, including the skewness and the kurtosis.
It should be noted, however, that the ‘vanishing gradient’ problem
cannot be easily avoided in any RMDN formulation (unless one
considers specialized architectures). Nevertheless, the empirical
investigations showed that temporal propagation of error infor-
mation is useful in fitting GARCH models as RMDN-GARCH net-
works using temporal derivatives achieve good statistical
characteristics and forecasting potential that outperform results
from previous approaches. The model can be easily extended to
include negative correlation between the return and the volatility.
Various error functions that discount the effect of outliers can be
applied to develop robust training algorithms for the mixture
density network [1].

Further research will investigate as to what degree the RMDN-
GARCH networks can produce accurate density forecasts and can
be efficient in various practical financial applications, such as
value-at-risk estimation and derivative pricing.
Appendix A. Gradient computations in the RMDN-GARCH
network

The estimation of the mixture density recurrent RMDN-GARCH
network weight parameters requires the computation of the
gradients of the log-likelihood with respect to each of them. Each
of the gradients, given by Eqs. (16)–(18), consist of two multipliers
obtained following the chain rule. The first multiplier is the
derivative of the instantaneous log-likelihood with respect to the
particular network output, and the second is the output derivative
with respect to the weight.

Likelihood derivatives in the mixing network: The log-likelihood
derivatives in the mixing network are convenient to tackle with
through the mixing network output sums πi;t ¼∑K

k ¼ 1uikgðUklrt−1 þ
Uk0Þ þw0 according to Eq. (8), that is before passing them through
the softmax activation function sðπi;tÞ to compute the output
ηi;t ¼ expðπi;tÞ=∑N

j ¼ 1 expðπj;tÞ. Then, the differentiation of the
instantaneous log-likelihood Lt with respect to the mixing network
output sums πi;t is carried out as follows [22]:

∂Lt
∂πi;t

¼ ∑
N

n ¼ 1

∂Lt
∂ηn;t

∂ηn;t
∂πi;t

ðA:1Þ

The first factor ∂Lt=∂ηn;t is obtained in the following way:

∂Lt
∂ηn;t

¼ ϕn

∑N
j ¼ 1ηj;tϕj

ηn;t
ηn;t

¼ κn;t
ηn;t

ðA:2Þ

which uses for clarity the substitution

κn;t ¼
ηn;tϕn

∑N
j ¼ 1ηj;tϕj

ðA:3Þ

The calculation of the second factor ∂ηn;t=∂πi;t involves two
cases. First, when of n¼ i the derivative is

∂ηn;t
∂πi;t

¼
expðπn;tÞ∑N

j ¼ 1expðπj;tÞ−expðπn;tÞexpðπi;tÞ
ð∑N

j ¼ 1 expðπj;tÞÞ2

¼ expðπn;tÞ
∑N

j ¼ 1 expðπj;tÞ
−
expðπn;tÞexpðπi;tÞ
ð∑N

j ¼ 1 expðπj;tÞÞ2

¼ ηn;t−ηn;tηi;t ðA:4Þ
Second, in case of n≠i the derivative is

∂ηn;t
∂πi;t

¼ −expðπn;tÞexpðπi;tÞ
ð∑N

j ¼ 1expðπj;tÞÞ2
¼−ηn;tηi;t ðA:5Þ

Considered together these two cases lead to the equation

∂ηn;t
∂πi;t

¼ δn;iηn;t−ηn;tηi;t ðA:6Þ

using the Kroneker delta function δn;i ¼ 1 if n¼ i and 0 otherwise.
Therefore, the derivative of the instantaneous log-likelihood

with respect to the output sums becomes

∂Lt
∂πi;t

¼ ∑
N

n ¼ 1

κn;t
ηn;t

ðδn;iηn;t−ηn;tηi;tÞ

¼ κi;t
ηi;t

ηi;t− ∑
N

n ¼ 1

κn;t
ηn;t

ηn;tηi;t

¼ κi;t−ηi;t ∑
N

n ¼ 1
κn;t ¼ κi;t−ηi;t ðA:7Þ

where the variable κi;t denotes a kind of posterior probability.
Likelihood derivatives in the mean level network: The differentia-

tion of the instantaneous log-likelihood Lt with respect to the
mean network outputs μi;t is carried out using the chain rule

∂Lt
∂μi;t

¼ ∂Lt
∂ϕi

∂ϕi

∂μi;t
ðA:8Þ

The first factor ∂Lt=∂ϕi is obtained in the following way:

∂Lt
∂ϕi

¼ πi;t
∑N

j ¼ 1πj;tϕj
ðA:9Þ

The second factor ∂ϕi=∂μi;t is calculated as follows:

∂ϕi

∂μi;t
¼ ϕi

ð−2ðrt−μi;tÞÞ
2hi;t

ð−1Þ ¼ ϕi
ðrt−μi;tÞ

hi;t
ðA:10Þ

Hence, the derivative of the instantaneous log-likelihood with
respect to the mean network outputs is

∂Lt
∂μi;t

¼ κi;t
ðrt−μi;tÞ

hi;t
ðA:11Þ

where κi;t is the variable already defined above.
Likelihood derivatives in the variance network: The differentia-

tion of the instantaneous log-likelihood Lt with respect to the
variance network outputs hi;t is carried out using the chain rule

∂Lt
∂hi;t

¼ ∂Lt
∂ϕi

∂ϕi

∂hi;t
ðA:12Þ

The first factor ∂Lt=∂ϕi has already been computed above. The
second factor ∂ϕi=∂hi;t is obtained in the following way:

∂ϕi

∂hi;t
¼ 1ffiffiffiffiffiffi

2π
p exp −

ðrt−μi;tÞ2
2hi;t

 !
−

1
2hi;t

ffiffiffiffiffiffiffi
hi;t

p
 !

þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
2πhi;t

p exp −
ðrt−μi;tÞ2
2hi;t

 !
− −

ðrt−μi;tÞ2
2hi;t

 #" !

¼ −
1
2
ϕi

1
hi;t

þ 1
2
ϕi

ðrt−μi;tÞ2

h2
i;t

¼ −
1
2
ϕi

hi;t
1−

ðrt−μi;tÞ2
hi;t

 !

¼ 1
2
ϕi

hi;t

ðrt−μi;tÞ2
hi;t

−1

 !
ðA:13Þ



N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512 511
Finally, the derivative of the instantaneous log-likelihood with
respect to the variance network outputs becomes

∂Lt
∂hi;t

¼ 1
2
κi;t
hi;t

ðrt−μi;tÞ2
hi;t

−1

 !
ðA:14Þ

where κi;t is an already defined variable.
Appendix B. Derivation of the RTRL algorithm for the
recurrent variance network

Applying the RTRL algorithm [37,38] to compute the RMDN-
GARCH training rules begins with computation of the derivative of
the instantaneous loss with respect to each weight. According to
the chain rule we obtain the following two kinds of derivatives for
the hidden to output node weights wnk, 1≤n≤N, 1≤k≤K , and for
the input to hidden node weights Wij, 1≤i≤K , 0≤j≤ðpþ qÞ:
∂Lt
∂wnk

¼ ∂Lt
∂hn;t

∂hn;t
∂wnk

¼ εt
∂hn;t
∂wnk

ðB:1Þ

∂Lt
∂Wij

¼ ∂Lt
∂hn;t

∂hn;t

∂Wij
¼ εt

∂hn;t
∂Wij

ðB:2Þ

where the derivatives εt ¼ ∂Lt=∂hn;t have been already obtained.
The derivatives of the output with respect to the incoming

weights are taken in the following way:

∂hn;t
∂wnk

¼ ∂hn;t

∂on;t
∂on;t
∂wnk

¼ f ′ðon;tÞ
∂ ∑K

k ¼ 1wnkzk;t

 �

∂wnk
¼ f ′ðon;tÞzk;t

The derivatives of the output with respect to input to hidden
weights are taken in two steps as follows:

∂hn;t
∂Wij

¼ ∂hn;t
∂on;t

∂on;t
∂Wij

¼ f ′ðon;tÞ
∂½∑K

k ¼ 1wnkzk;t �
∂Wij

¼ f ′ðon;tÞ ∑
K

k ¼ 1
wnk

∂zk;t
∂Wij

þ zk;t
∂wnk

∂Wij

� �

¼ f ′ðon;tÞ ∑
K

k ¼ 1
wnk

∂zk;t
∂Wij

� �
þ δnizj;t

 !
ðB:3Þ

∂zk;t
∂Wij

¼ ∂zk;t
∂yk;t

∂yk;t
∂Wij

¼ g′ðyk;tÞ
∂½½∑pþq

l ¼ 0Wklxt−l�
∂Wij

¼ g′ðyk;tÞ ∑
pþq

l ¼ 0
Wkl

∂xt−l
∂Wij

þ xt−l
∂Wkl

∂Wij

� �

¼ g′ðyk;tÞ ∑
p

l ¼ 1
Wkl

∂e2t−l
∂Wij

" #
þ ∑

pþq

l ¼ pþ1
Wkl

∂ht−lþp

∂Wij

� �
þ δikxt−j

 !

¼ g′ðyk;tÞ ∑
pþq

l ¼ pþ1
Wkl

∂ht−lþp

∂Wij

� �
þ δikxt−j

 !
ðB:4Þ

which uses the fact that ∂e2t−l=∂Wij ¼ 0.
Both equations for the derivatives of the dynamic variables are

similar in that their rightmost multipliers in the parentheses
contain two similar terms. The first term accounts for the implicit
effect of the weight Wij on the network node activations zk;t and
ht−lþp, while the second term is the explicit effect of the weight Wij

on the particular ith network node.

References

[1] H. Allende, R. Torres, R. Salas, C. Moraga, Robust learning algorithm for the
mixture of experts, in: Proceedings of the Iberian Conference on Pattern
Recognition and Image Analysis, Lecture Notes in Computer Science, vol. 2652,
Springer, Berlin, 2003, pp. 19–27.

[2] D. Ardia, Financial Risk Management with Bayesian Estimation of GARCH
Models: Theory and Applications, Springer-Verlag, Berlin, 2008.
[3] R. Battiti, F. Masulli, BFGS optimisation for faster and automated supervised
learning, in: Proceedings of the International Neural Networks Conference
(INNC-90), vol. 2, Kluwer Academic Publ., 1990, pp. 757–760.

[4] L. Bauwens, C.M. Hafner, S. Laurent, Handbook of Volatility Models and Their
Applications, John Wiley and Sons, Hoboken, NJ, 2012.

[5] M. Bildirici, O.O. Ersin, Improving forecasts of GARCH family models with the
artificial neural networks, Expert Syst. Appl. 36 (4) (2009) 7355–7362.

[6] C. Bishop, Neural Networks for Pattern Recognition, Oxford University Press,
Oxford, UK, 1995.

[7] T. Bollerslev, Generalized autoregressive conditional heteroskedasticity, J.
Economet. 31 (1986) 307–327.

[8] T. Bollerslev, E. Ghysels, Periodic autoregressive conditional heteroskedasti-
city, J. Business Econ. Stat. 14 (1996) 139–151.

[9] M.A. Carnero, D. Peña, E. Ruiz, Persistence and kurtosis in GARCH and
stochastic volatility models, J. Finan. Economet. 2 (3) (2004) 319–342.

[10] G.C. Cawley, N.L.C. Talbot, R.J. Foxall, S.R. Dorling, D.P. Mandic, Heteroscedastic
kernel ridge regression, Neurocomputing 57 (2004) 105–124.

[11] X. Cheng, P.L.H. Yu, W.K. Li, On a dynamic mixture GARCH model, J. Forecast.
28 (3) (2008) 247–265.

[12] M. Costa, A.L. Goldberger, C.-K. Peng, Multiscale entropy analysis of complex
physiologic time series, Phys. Rev. Lett. 89 (6) (2002).

[13] P.J. Deschamps, Bayesian estimation of generalized hyperbolic skewed student
GARCH models, Comput. Stat. Data Anal. 56 (2012) 3035–3054.

[14] R.G. Donaldson, M. Kamstra, An artificial neural network—GARCH model of
international stock return volatility, J. Empirical Finan. 4 (1) (1997) 17–46.

[15] R.F. Engle, Autoregressive conditional heteroscedasticity with estimates of the
variance of UK inflation, Econometrica 50 (1982) 987–1007.

[16] G. Fiorentini, G. Calzolari, L. Panattoni, Analytical derivatives and the compu-
tation of GARCH estimates, J. Appl. Economet. 11 (1996) 399–417.

[17] R. Fletcher, Practical Methods for Optimization, second ed., John Wiley and
Sons, New York, 1987.

[18] B. Freisleben, K. Ripper, Volatility estimation with a neural network, in:
Proceedings of the IEE/IAFE Computational Intelligence for Financial Engineer-
ing Conference (CIFEr-97), IEEE Press, 1997, pp. 177–181.

[19] V.V. Gavrishchaka, S.B. Ganguli, Volatility forecasting from multiscale and
high-dimensional market data, Neurocomputing 55 (1–2) (2003) 285–305.

[20] I.A. Gheyas, L.S. Smith, A novel neural network ensemble architecture for time
series forecasting, Neurocomputing 74 (18) (2011) 3855–3864.

[21] M. Haas, S. Mittnik, M.S. Paoella, Mixed normal conditional heteroskedasticity,
J. Finan. Economet. 2 (2004) 211–250.

[22] L.U. Hjorth, Regularization in Mixture Density Networks, Technical Report
NCRG/99/004, Aston University, Birmingham, UK, 1999.

[23] M.I. Jordan, R.A. Jacobs, Hierarchical mixtures of experts and the EM
algorithm, Neural Comput. 6 (1994) 181–214.

[24] S. Kim, N. Shephard, S. Chib, Adaptive rejection metropolis sampling within
Gibbs sampling, Appl. Stat. 44 (1998) 155–173.

[25] W. Li, J. Liu, J. Le, Using GARCH-GRNN model to forecast financial time series,
in: Proceedings of the 20th International Conference on Computer and
Information Sciences (ISCIS'05), Lecture Notes in Computer Science, vol.
3733, Springer-Verlag, Berlin, 2005, pp. 565–574.

[26] G.J. McLachlan, K.E. Basford, Mixture Models: Inference and Applications to
Clustering, Marcel Dekker, New York, 1988.

[27] T. Miazhynskaia, G. Dorffner, E.J. Dockner, Risk management application of the
recurrent mixture density network models, in: International Conference on
Artificial Neural Networks ICANN-2003, Lecture Notes in Computer Science,
vol. 2714, Springer, Berlin, 2003, pp. 589–596.

[28] D. Ormoneit, R. Neuneier, Experiments in predicting the German stock index
DAX with density estimating neural networks, in: Proceedings of the IEEE/
IAFE 1996 Conference on Computational Intelligence for Financial Engineering
(CIFEr 96), New York, 1995, pp. 66–71.

[29] L. Pascual, J. Romo, E. Ruiz, Bootstrap prediction for returns and volatilities in
GARCH models, Comput. Stat. Data Anal. 50 (2006) 2293–2312.

[30] F. Pérez-Cruz, J.A. Afonso-Rodriguez, J. Giner, Estimating GARCH models using
support vector machines, J. Quant. Finan. 3 (3) (2003) 163–172.

[31] D.E. Rumelhart, G.E. Hinton, R.J. Williams, Learning internal representations by
error propagation, in: D.E. Rumelhart, J.L. McLelland (Eds.), Parallel Distributed
Processing: Explorations in the Microstructure of Cognition, vol. 1, The MIT
Press, Cambridge, MA, 1986, pp. 318–362. (Chapter 8).

[32] C. Schittenkopf, G. Dorffner, E.J. Dockner, Volatility prediction with mixture
density networks, in: L. Niklasson, M. Boden, T. Ziemke (Eds.), Proceedings of
the Eighth International Conference on Artificial Neural Networks (ICANN-98),
Lecture Notes in Computer Science, vol. 1240, Springer, Berlin, 1998,
pp. 929–934.

[33] C. Schittenkopf, G. Dorffner, E.J. Dockner, Forecasting time-dependent condi-
tional densities: a semi non-parametric neural network, J. Forecast. 19 (4)
(2000) 355–374.

[34] H. Tang, K.C. Chiu, L. Xu, Finite mixture of ARMA-GARCH model for stock price
prediction, in: Proceedings of the Third International Workshop on Computa-
tional Intelligence in Economics and Finance (CIEF'2003), North Carolina, USA,
2003, pp. 1112–1119.

[35] M. Uddin Ahmed, D.P. Mandic, Multivariate multiscale entropy: a tool for
complexity analysis of multichannel data, Phys. Rev. E 84 (6) (2011).

[36] P. Werbos, Backpropagation through time: what it does and how to do it, Proc.
IEEE 78 (1990) 1550–1560.

[37] R.J. Williams, D. Zipser, A learning algorithm for continually running fully
recurrent networks, Neural Comput. 1 (1989) 270–280.

http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0005
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0005
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0005
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0005
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref2
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref2
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0010
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0010
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0010
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref4
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref4
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref5
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref5
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref6
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref6
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref7
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref7
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref8
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref8
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref9
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref9
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref10
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref10
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref11
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref11
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref12
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref12
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref13
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref13
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref14
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref14
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref15
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref15
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref16
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref16
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref17
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref17
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0015
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0015
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0015
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref19
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref19
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref20
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref20
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref21
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref21
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0020
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0020
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref24
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref24
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref25
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref25
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0025
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0025
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0025
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0025
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref27
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref27
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0030
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0030
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0030
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0030
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0035
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0035
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0035
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0035
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref30
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref30
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref31
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref31
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref32
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref32
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref32
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref32
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref33
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref33
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref33
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref33
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref33
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref34
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref34
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref34
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0040
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0040
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0040
http://refhub.elsevier.com/S0925-2312(13)00537-7/othref0040
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref36
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref36
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref37
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref37
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref38
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref38


N. Nikolaev et al. / Neurocomputing 122 (2013) 501–512512
[38] R.J. Williams, D. Zipser, Gradient-based learning algorithms for recurrent
networks and their computational complexity, in: Y. Chauvin, D.E. Rumelhart
(Eds.), Back-Propagation: Theory, Architectures and Applications, Lawrence
Erlbaum Publ., Hillsdale, NJ, 1995, pp. 433–486.

[39] C.S. Wong, W.K. Li, On a logistic mixture autoregressive model, Biometrika 88
(3) (2001) 833–846.
Nikolay Nikolaev received the PhD degree in Compu-
ter Science and Engineering from the Technical Uni-
versity, Sofia, Bulgaria, in 1992. From 1992 to 1993, he
conducted postdoctoral research in machine learning at
the University of Wales, Cardiff, UK. From fall 1993, he
was a Lecturer in Computer Science at the American
University, Bulgaria. In fall 2000, he joined the Depart-
ment of Mathematical and Computing Sciences, Gold-
smiths College, University of London, London, UK, as a
Lecturer in Computing. In 2000 and 2001, he was a
Research Fellow with the evolutionary computation
group at The University of Tokyo. His theoretical

research interests include the following: neural net-

works sequential Bayesian inference, stochastic volatility, dynamic nonlinear
GARCH modeling. His current application interests include: financial value-at-risk
estimation, portfolio allocation, volatility arbitrage and statistical pairs trading.
Peter Tino (MSc, Slovak University of Technology; PhD,
Slovak Academy of Sciences) was a Fulbright Fellow
with the NEC Research Institute, Princeton, NJ, USA, and
a Post-Doctoral Fellow with the Austrian Research
Institute for AI, Vienna, Austria, and with Aston Uni-
versity, Birmingham, UK. Since 2003, he has been with
the School of Computer Science, University of Birming-
ham, Edgbaston, Birmingham, UK, where he is cur-
rently a Reader in complex and adaptive systems. His
current research interests include dynamical systems,
machine learning, probabilistic modeling of structured
data, evolutionary computation, and fractal analysis.

Peter was a recipient of the Fulbright Fellowship in

1994, the UK and Hong-Kong Fellowship for Excellence in 2008, three Outstanding
Paper of the Year Awards from the IEEE Transactions on Neural Networks in 1998
and 2011 and the IEEE Transactions on Evolutionary Computation in 2010, and the
Best Paper Award at ICANN 2002. He serves on the editorial boards of several
journals.
Evgueni Smirnov is an Assistant Professor of Computer
Science at the Department of Knowledge Engineering,
Maastricht University, The Netherlands. He graduated
in Computer Science from the Technical University of
Sofia, Bulgaria, in 1988, and he earned his PhD degree
in Artificial Intelligence from Maastricht University in
2001. His theoretical research interests are in the
machine-learning field: meta-learning, ensemble
learning, reliable prediction, kernel methods, version
spaces, and complexity. His current application inter-
ests include: applications of data mining in medicine,
transportation, and machinery-automation.

http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref39
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref39
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref39
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref39
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref40
http://refhub.elsevier.com/S0925-2312(13)00537-7/sbref40

	Time-dependent series variance learning with recurrent mixture density networks
	Introduction
	Nonlinear mixture GARCH modeling
	The GARCH(p,q) model
	RMDN-GARCH(p,q) network model

	Dynamic learning of RMDN-GARCH
	Likelihood derivatives
	Temporal derivatives

	Applications to volatility inference
	Processing simulated series
	Processing real-world series
	Studied models and algorithms
	Experimental technology
	Learning from the DEM/GBP series
	Predictive performance
	Discussion


	Conclusion
	Gradient computations in the RMDN-GARCH network
	Derivation of the RTRL algorithm for the recurrent variance network
	References




