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Abstract

We introduce topographic versions of two latent class models (LCM) for col-

laborative filtering. Latent classes are topologically organized on a square grid.

Topographic organization of latent classes makes orientation in rating/preference

patterns captured by the latent classes easier and more systematic. The variation

in film rating patterns is modelled by multinomial and binomial distributions with

varying independence assumptions. In the first stage of topographic LCM construc-

tion, self-organizing maps with neural field organized according to the LCM topology

are employed. We apply our system to a large collection of user ratings for films.

The system can provide useful visualization plots unveiling user preference patterns

buried in the data, without loosing potential to be a good recommender model. It

appears that multinomial distribution is most adequate if the model is regularized

by tight grid topologies. Since we deal with probabilistic models of the data, we can

readily use tools from probability and information theories to interpret and visualize

information extracted by our system.
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1 Introduction

The amount of available information is steadily increasing. We can be easily overloaded

with information of different nature and quality. When deciding which book to read, which

film to watch, or which web-site to visit, people often rely on advise given by other people

(Hofmann, 2001). This is possible only inside a small communities, where people know

other peoples’ interests. In many situations we would like to automate the process of
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sharing evaluations and making recommendations among people that potentially do not

know each other but have some “common tastes”. One method addressing this problem

is collaborative filtering (CF). Recommendations in CF are produced by leveraging the

existing user preferences (ratings/profiles).

There are two main approaches to CF, namely memory-based and model-based. In the

former approach, in order to recommend a new item to a particular user, we take into ac-

count ratings from people with “similar” interests. The latter approach uses probabilistic

modeling (e.g. probabilistic latent class models (LCM)) to infer new recommendations.

The main advantage of the model-based approach is that it is able to automatically dis-

cover preference patterns in user profile data without suffering the flaw of memory based

approaches – the inability to account for the fact that one person can be a reliable recom-

mender for another person on a subset of items, but not necessarily for all possible items

(Hofmann, 2001).

While much work has focused on designing accurate and fast algorithms for rating pre-

dictions, relatively few attempts have been made to implement systems for understanding

and visualization of principal user preference patterns/rating trends buried inside poten-

tially very large and sparse body of collaborative filtering data. For example, (Igo et

al., 2002) designed a recommender system that makes recommendations in real-time and

uses multidimensional visualization to visualize the recommender systems’ results. Shared

Wisdom through the Amalgamation of Many Interpretations (SWAMI) by (Fisher et al.,

2000) is a framework for building and studying collaborative filtering systems that contains

a visualization component. The visualization component supports creation of informative

pictures for both developers and end users by enabling e.g. views of sparse user rating

matrix and structure in user/rating-item correlation matrices. Such methods, however,

are not model-based, i.e. they do not represent hidden preference trends in the data based

on a consistent visualization-driven model formulation of user ratings. In this paper we
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introduce one possible approach to model based visualization for understanding collabo-

rative filtering data. Namely, we propose to make use of preference patterns extracted by

LCM with a large number of latent classes endowed with a two-dimensional topological

organization. The purpose of topological organization of latent classes is twofold: (1) it

enables visualization of common interest/taste patterns in an easily accessible way, (2)

it constrains the model so that employing a large number of latent centers (needed for

detailed data analysis) does not result in a strongly overfitting model.

The paper is organized as follows. In section 2 we describe latent class models for user

ratings and in Section 3 we endow their latent space with a grid topology. Section 4 is

devoted to Expectation-Maximization algorithm for training the models. The experiments

are described in section 5. The results are presented in section 6. Section 7 contains

example visualization plots. In section 8 we discuss the experimental findings and exam-

ine sensitivity of the models to variations in the construction parameters. The paper is

concluded in section 9 by summarazing key results of this study.

2 Latent Class Models for User Ratings

In this section we briefly describe latent class approach to modeling user ratings introduced

in (Hofmann, 2001; Hofmann and Puzicha, 1999). There are three sets we will work with:

the set U of users, the set of films (in general - the set of items), Y , and the set V of rating

values that are used by users to evaluate films.

We would like to predict the rating vu,y ∈ V given by a user u ∈ U to a film y ∈ Y . With

each triplet (u, y, vu,y) we associate a latent variable (class) zu,y ∈ Z = {1, 2, . . . , K} that

“explains” why the user u rates the film y by vu,y. Triplets (u, y, vu,y) are either actually

observed or just hypothetical entities (in most of the cases).

The latent variables z ∈ Z index ”abstract” classes of users in two types of models:
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• Type I – given a film y, all users from class z tend to adopt the same (class-specific)

rating pattern expressed through conditional distribution P (v|y, z) over evaluations

from V . Given a user u and a film y, the probability of vote v is modeled as

P (v|y, u) =
∑

z∈Z

P (v|y, z)P (z|u), (1)

where P (z|u) is the probability that the user u “participates” in class z.

• Type II – all users from class z tend to adopt the same preferences over the [rating,

film] pairs (v, y). Here we predict the rating in conjunction with a selection of films

(Hofmann, 2001). Given a user u, the probability of a pair (v, y) is modeled as

P (v, y|u) =
∑

z∈Z

P (v, y|z)P (z|u). (2)

Actually, classes z are not meant to represent a clear-cut clustering of users according

to their voting preferences, but rather they express “common interest patterns” among the

users found in the ratings (Hofmann, 2001). P (z|u) then represents to what extend the

user u participates in the common interest pattern z.

Given a set of observation triplets, free parameters of the model, P (z|u) and P (v|y, z),

are determined by an expectation-maximization procedure outlined in (Hofmann, 2001).

3 Introducing a Topology into Latent Class Models

Many variants of such topographic representations of data patterns can be found in the ma-

chine learning literature. Perhaps the most famous example is the Kohonen self-organizing

map (SOM) (Kohonen, 1982, 1990). More recently, a statistically principled reformulations

and extensions of SOMs appeared in e.g. (Bishop, 1998; Kaban and Girolami, 2001). Of

particular interest to us is the link between SOMs and vector quantization through noisy

communication channels established in (Buhmann, 1993; Hofmann and Buhmann, 1998;
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Luttrell, 1989). Briefly, in the information theoretic interpretation of SOM, the topological

organization of codebook vectors (that correspond to nodes (classes) on the latent grid)

emerges through non-uniformity of the channel noise: to minimize the average quantization

error at the receiving end of the communication channel, the codebook vectors that are

more likely to be corrupted into each other should represent “similar” data patterns, i.e.

should lie “close” to each other in the data space.

We endow the latent classes with a topographic organization. Latent classes are orga-

nized on the grid topology that places latent classes on an easily readable two dimensional

grid, where similar classes tend to lie close to each other.

Topology is introduced into the latent space via the channel noise methodology (Hof-

mann, 2000). We place latent classes on a regular two-dimensional grid in [−1, 1]2. Chanel

noise is then expressed through the neighborhood function

P (z2|z1) =
exp

(

−‖z1−z2‖2

2σ2

)

∑

z∈Z exp
(

−‖z1−z‖2

2σ2

) . (3)

For latent classes z1 and z2 lying close to each other1 on the grid, the probability of

corrupting one into the other is high. The parameter σ > 0 determines “specificity” of

the topological neighborhood for class z1: low values of σ correspond to sharply peaked

localized transition probabilities concentrated on close neighbors of z1, while large values

of σ induce general broad neighborhoods spanning large areas of the latent grid.

It is convenient to work with two copies ZY and ZZ of the latent space Z. For each

user u ∈ U , the film-conditional ratings v (type I) or pairs (v, y) (type II) are generated as

follows:

1. randomly generate a latent class index zY ∈ ZY by sampling the user-conditional

probability distribution P (·|u) on ZY .

1with respect to the metric induced by the Euclidean norm ‖ · ‖
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2. instead of using the class zY to index the “common interest patterns” P (v|y, zY )

(type I) or P (v, y|zY ) (type II), we transmit the class identification zY through a

noisy communication channel, and receive (a possibly different) class index zZ ∈ ZZ

with probability P (zZ |zY ).

3. randomly generate a film-conditional rating v with probability P (v|y, zZ) (type I) or

a pair (v, y) with probability P (v, y|zZ) (type II).

The models for user ratings have now the following form (see eqs. (1), (2))

P (zZ |u) =
∑

zY ∈ZY

P (zZ |zY )P (zY |u), (4)

P (v|y, u) =
∑

zZ∈ZZ

P (v|y, zZ)P (zZ |u) [type I] (5)

P (v, y|u) =
∑

zZ∈ZZ

P (v, y|zZ)P (zZ |u) [type II] (6)

4 Parameter Estimation

Given a set D = {(u1, y1, v1), ..., (uN , yN , vN)} of N observation triplets (u, y, vu,y), the log

likelihood of the data D is

L =
∑

u

∑

y∈Yu

logP (vu,y|y, u) [type I] (7)

L =
∑

u

∑

y∈Yu

logP (vu,y, y|u) [type II], (8)

where Yu is the set of films evaluated by the user u,

Yu = {y ∈ Y| (u, y, vu,y) ∈ D}. (9)

Following (Hofmann, 2001), we denote by ρ(v, y, zZ) the probabilities P (v|y, u) and

P (v, y|u) in type I and type II models, respectively.

To fit model parameters P (zY |u) and ρ(v, y, zZ) to the data D, we use Expectation-

Maximization (EM) algoritm (Dempster, 1977) that maximizes likelihood L. The EM
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algorithm is a standard algorithm for maximum likelihood estimation in latent variable

models. It iterates two steps - Expectation (E) and Maximization (M) - until convergence.

Detailed derivations of update equations are presented in Appendix B-C.

4.1 E-step

In the E-step, the algorithm computes the expected values of latent variables using the

current values of the model parameters:

P (zY | y, u, v) =
P (zY |u)

∑

zZ
ρ(v, y, zZ)P (zZ |zY )

∑

z′
Y
P (z′Y |u)

∑

zZ
ρ(v, y, zZ)P (zZ |z′Y )

, (10)

P (zZ | y, u, v) =
ρ(v, y, zZ)

∑

zY
P (zZ |zY )P (zY |u)

∑

z′Z
ρ(v, y, z′Z)

∑

zY
P (z′Z |zY )P (zY |u)

. (11)

4.2 M-step

In the M-step, the algorithm re-estimates the model parameters by maximizing the ex-

pected complete data log-likelihood evaluated in the E-step. To derive the update equa-

tions, we need to determine the types of distributions for P (zY |u) and ρ(v, y, zZ). It is

natural to assume multinomial P (zY |u). However, for ρ(v, y, zZ) we use either multino-

mial, or binomial distribution. Multinomial distribution simply models probabilities of

occurrence of ratings v. In the other hand, binomial distribution respects the ordering of

rating values v ( i.e. it takes into account that ratings 4 and 5 are closer to each other

than 1 and 5) and imposes the assumption of unimodal rating distribution.

For models of type I (ρ(v, y, zZ) = P (v|y, zZ)) we simply model P (v|y, u) as a multino-

mial or binomial distribution. For models of type II (ρ(v, y, zZ) = P (v, y|zZ)) we cannot

directly use binomial distribution that respects ordering, because there is no ordering on

the set of pairs (v, y). Thus, we assume conditional independence of v and y, given abstract
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class zZ , a widely used assumption in latent space modeling: P (v, y|zZ) = P (v|zZ)P (y|zZ).

We use either multinomial, or binomial distribution for the rating probability P (v|zZ). In

both cases P (y|zZ) is multinomially distributed. In summary, we work with the following

models:

• type I

– multinomial P (v|y, zZ) (I-Mult),

– binomial P (v|y, zZ) (I-Bin).

• type II

– joint multinomial P (v, y|zZ) (II-Mult),

– P (v, y|zZ) = P (v|zZ)P (y|zZ), where both P (y|zZ) and P (v|zZ) are multinomials

(II-IndM),

– P (v, y|zZ) = P (v|zZ)P (y|zZ), where P (y|zZ) is multinomially and P (v|zZ) is

binomially distributed (II-IndB).

Update equation for P (zY |u) is the same for all types of models:

P (zY |u) =

∑

y∈Yu
P (zY | y, u, vu,y)

|Yu|
. (12)

4.2.1 Type I and II – Multinomial ρ(v, y, zZ)

When ρ(v, y, zZ) is multinomially distributed, the update equations for ρ(v, y, zZ) are

ρ(v, y, zZ) = P (v| y, zZ) =

∑

u∈Uv,y
P (zZ | y, u, v)

∑

v′

∑

u∈Uv′,y
P (zZ | y, u, v′)

[type I] (13)

ρ(v, y, zZ) = P (v, y| zZ) =

∑

u∈Uv,y
P (zZ | y, u, v)

∑

v′,y′

∑

u∈Uv′,y′
P (zZ | y′, u, v′)

[type II] (14)

where Uv,y is the set of users that evaluated film y with rating v,

Uv,y = {u ∈ U| (u, y, v) ∈ D}. (15)
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4.2.2 Type II with Conditional Independence

Assume P (v, y|zZ) = P (v|zZ)P (y|zZ), with both P (y|zZ) and P (v|zZ) multinomially dis-

tributed. Update equations are given by:

P (y|zZ) =

∑

u∈Uy
P (zZ | y, u, vu,y)

∑

y′

∑

u∈Uy′
P (zZ | y′, u, vu,y′)

, (16)

P (v|zZ) =

∑

y

∑

u∈Uy,v
P (zZ | y, u, v)

∑

v′

∑

y

∑

u∈Uyv′
P (zZ | y, u, v′)

. (17)

4.2.3 Type II – Binomial P (v|zZ)

When P (v, y|zZ) = P (v|zZ)P (y|zZ) and P (v|zZ) is binomially and P (y|zZ) multinomially

distributed, the update equation for P (y|zZ) is the same as in eq. (16).

P (v|zZ) =
(

V

v

)

pzZ

v(1− pzZ
)V−v is a binomial distribution (see appendix A) with mean

pzZ
· V and shape parameter pzZ

. Rating values v come form V = {1, 2, ...|V|}, and so

V = |V|. Update equation for parameter pz is given by2:

pz =

∑

y

∑

u∈Uy
P (zZ | y, u, vu,y)vu,y

V
∑

y

∑

u∈Uy
P (zZ | y, u, vu,y)

. (18)

4.2.4 Type I – Binomial P (v|y, zZ)

If P (v|y, zZ) is binomially distributed, then parameter pz,y of the distribution is updated

according to:

pz,y =

∑

u∈Uy
P (zZ | y, u, vu,y)vu,y

V
∑

u∈Uy
P (zZ | y, u, vu,y)

. (19)

2To keep the notation readable, from now on, we will not write the explicit reference to the copy of ZZ

of the latent space Z when referring to the shape parameter pzZ
corresponding to the latent class zZ , i.e.

we write pz instead of pzZ
.
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4.3 Topographic initialization with SOM

It is well-known that the EM algorithm can be strongly sensitive to initialization of

the model parameters. Successful application of latent-space modeling with maximum-

likelihood parameter estimation via EM is therefore dependent on the initial position in

the parameter space. Ideally we would like the parameters of our LCM to be initialized

in a relatively fast, non-probabilistic manner, while respecting the imposed topology of

latent classes in LCM. We propose to do so by running SOM on a data set R of user rat-

ings across films Y derived from the data D = {(u1, y1, v1), ..., (uN , yN , vN)} of observation

triplets (un, yn, vn). The number of nodes in SOM is equal to the number of latent classes,

K, and the grid topology of SOM mimics the topology of latent classes in LCM induced

by the channel noise. Denote by |Y| size of the film set Y . For each user u that pro-

duced a rating in D, the set R contains a |Y|-dimensional vector vu = (vu,1, vu,2, ..., vu,|Y|)

representing ratings by u across films y ∈ Y . We assume that ratings v ∈ V are positive

numbers. When user u does not rate film y, we set by default vu,y = 0. Since the users

typically vote only on a small fraction of the films, the rating data is usually sparse and

so the distance between the codebook prototype vectors of SOM and the data points is

computed only on the observed values3 vu,y 6= 0 in R.

Units in the neural field of SOM are considered nodes of a grid. Each node is associated

with a |Y|-dimensional weight vector. Topologically close nodes are connected by arc of

length 1. The distance between nodes i and j in the neural field is equal to the length

of the shortest path from i to j. We used exponentially shrinking Gaussian neighborhood

function.

After training the SOM, the user conditional latent priors P (z|u) in LCM are estimated

3An alternative is to use the default value 0 (or e.g. mid-point in the rating scheme) in place of missing

ratings and compute the distances using all the dimensions. Because of the data sparseness, this approach

can introduce a significant bias towards the default rating value.
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by consulting memberships of users u to clusters defined nodes z ∈ Z = {1, 2, ..., K} of

the SOM. The binary memberships are further “softened” by the following transforma-

tion: P (z|u) = A, if the user u belongs to the cluster defined by the node z of SOM;

P (z|u) = (1 − A)/(K − 1), otherwise. The parameter A is set by postulating that if u

belongs to the cluster z, P (z|u) should be B > 1 times higher than P (z ′|u) for all the other

z′. Hence, A = B/(K − 1 +B).

The rating patterns ρ(v, y, z) = P (v|y, z) in type I models are estimated by calculating

for each film y and latent class z the empirical distribution of ratings for film y by the

users belonging to the class z. Due to the data sparseness, we perform a smoothing of the

empirical estimates by applying Laplace correction ((Jelinek, 1998)):

P (v|y, z) =
N(v, y, z) +m

m|V|+
∑

v′∈V N(v′, y, z)
, (20)

where m is a positive number and N(v, y, z) is the number of times in the data set D that

users belonging to the cluster (SOM center) z rated the film y by v. Usually m = 1, or

m = |V|−1. Here we use the latter choice. The parameter m can be viewed in the Dirichlet

prior interpretation for the multinomial distribution P (v|u, z) as the effective number of

times each rating value v ∈ V was used to rate the film y by the collection of users from

class z prior to evaluations collected in our data set D.

In models of type II, ρ(v, y, z) = P (v, y|z) are estimated by calculating for each latent

class z the empirical distribution of [rating,film] pairs (v, y) across users belonging to the

cluster z. Laplace correction now reads:

P (v, y|z) =
N(v, y, z) +m

m|V||Y|+
∑

v′∈V

∑

y′∈Y N(v′, y′, z)
. (21)

The parameter m can now be considered the effective number of times each [rating,film]

pair was considered by the collection of users from class z prior to creating the data set
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D. Suggested value for m is now (|V||Y|)−1

5 Experiments

In this section we demonstrate latent class models with grid topology of K = 8 × 8 = 64

latent classes. We train models of types I and II with different distribution models for

ρ(v, y, zZ), as described in Section 4.2. Specificity of the topological neighborhood, σ (see

eq. (3)), was set to 0.5. Parameter B involved in smoothing memberships of users u to

nodes of SOM (see section 4.3) was set to 5.

5.1 Data

We experimented with the publicly available EachMovie dataset4 containing ratings for

films. The data set contains ratings by 61, 265 users for 1623 films. User ratings are

expressed on a 6-point scale from 0.0 to 1.0. In our experiments, the ratings are transformed

to V = {1, 2, . . . , 6}. We selected a set of 100 most rated films. The number of users that

rated at least one film from the selected set was 60, 895. The final number of ratings was

1, 472, 253. Note that the data is still quite sparse. Out of 6, 000, 895 possible ratings of

100 films by 60, 895 users, only 1, 472, 253 ratings (24.5%) are observed.

5.2 Outline of the experiments

We partitioned the set of ratings into two sets – training and test sets. The training set D

is used to train the models and visualize the data. The test set T is used for evaluation of

generalization capabilities of the models within the set of users contained in D5.

4http://www.research.compaq.com/SRC/eachmovie/
5LCM studied in this paper are not not generative probabilistic models and hence cannot be consis-

tently used to produce ratings for previously unknown users. However, they can be used to recommend
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Similarly to (Breese et al., 1998; Hofmann, 2001), we applied all but one protocol: one

randomly selected rating from each user having at least 10 ratings was assigned to the test

set. The test set consists of 3.065% from all ratings, i.e. 45, 136 ratings.

The models are trained on the training set D. After the initial SOM-based phase

(see section 4.3) the cluster memberships of users are ”softened” according to the scheme

described in Section 4.3, models are trained with the EM algorithm (likelihood typically

levelled up after 50 training iterations) and data are visualized.

We use normalized negative log likelihoods

NNLtrain = −
1

|D|

∑

(u,y,vuy)∈D

log P̃ (vuy, y, u) (22)

and

NNLtest = −
1

|T |

∑

(u,y,vuy)∈T

log P̃ (vuy, y, u) (23)

of ratings on the training set D and test set T , respectively. Here, P̃ (v, y, u) = P (v|y, u)

and P̃ (v, y, u) = P (v, y|u) for models of types I and II, respectively. Normalized negative

log likelihood measures how well the probabilistic model explains the observed data. Lower

values of NNL indicate better compatibility of the model with observed data.

Besides validating the probability distributions given by our models, we take a more

pragmatic view and check the ability of the models to make useful recommendations on a

previously unseen test set. We do so by employing five additional measures found in the

literature. The measures can be divided into two categories:

• Statistical accuracy metrics compare the estimated and observed user ratings:

– mean absolute deviation of estimated ratings ru,y from the observed ones vu,y

(e.g. (Hofmann, 2001)):

unseen items (films) to users contained in the training corpus. Here we are mainly concerned with ana-

lyzing preference patterns within large collections of rating data and so, strictly speaking, we do not need

generative reformulations of LCM (see e.g. (Schein et al., 2001))
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MAD =
1

|T |

∑

(u,y,vu,y)∈T

|ru,y − vu,y|, (24)

where ru,y is the most probable rating under the model,

ru,y = argmax
v∈V

P (v|y, u). (25)

For model of type II, the probability P (v|y, u) is computed by

P (v|y, u) =
P (v, y|u)

∑

v∈V P (v, y|u)
. (26)

– ratio of correctly predicted votes (Hofmann, 2001):

CPV =
1

|T |

∑

(u,y,vu,y)∈T

E0(u, y, vu,y), (27)

where

E0(u, y, vu,y)







1 if ru,y = vu,y,

0 otherwise.
(28)

This measure, termed in (Hofmann, 2001) Prediction accuracy, calculates the

ratio of exactly correct rating predictions. A drawback of CPV is that it equally

penalizes situations of ‘near miss‘, such as vu,y = 1, ru,y = 2, and cases of

obviously wrong estimates, e.g. vu,y = 1, ru,y = 5. Whereas in the context of

collaborative filtering the former case would still constitute a useful information,

the latter case is clearly undesirable. The next category of measures, used e.g.

in (Billsus, 1998), takes a more pragmatic view when assessing models used for

collaborative filtering.

• Decision-support accuracy metrics evaluate effectivity of the method in helping the

user select high-quality items. Collaborative filtering is a binary operation - user

either decides to select an item, or not. When users select items with e.g. estimated
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rating greater than 4, it is not important whether the estimated rating is 1, 2 or 3

(Good et al., 1999).

Let TP be the set of observations with positive observed ratings, i.e. observations

(u, y, vu,y) ∈ T having vu,y ≥ t, where t is a threshold. TR is the set of obser-

vations with positive estimated ratings, i.e. observations (u, y, vu,y) ∈ T for which
∑

r≥t P (r|y, u) >
∑

r<t P (r|u, y).

We set the threshold value t to 4. Viewing collaborative filtering as a binary classi-

fication problem (recommend/reject an item) suggests the following three measures:

– Precision is the percentage of recommendations that are relevant (Billsus, 1998;

Soboroff and Nicholas, 1999),

Precision =
|TR ∩ TP |

|TR|
. (29)

– Recall is the percentage of positive observations that will indeed be recom-

mended (Soboroff and Nicholas, 1999),

Recall =
|TR ∩ TP |

|TP |
, (30)

– F-measure is often used as it is easy to optimize either of the two previous

measures separately (Billsus, 1998),

F-measure =
2 · Precision · Recall

Precision + Recall
. (31)

6 Results

Results for five different noise models introduced in section 4.2 are presented in Table 1. To

study the influence of introducing grid topology on latent classes (beneficial for the purposes

of visualization), we also constructed LCM with the same number of latent classes K = 64,
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NNLtrain NNLtest MAD CPV Precision Recall F

I-Bin 1.39 1.45 1.27 0.31 0.86 0.73 0.79

I-Mult 1.27 1.42 1.21 0.32 0.86 0.75 0.80

II-IndB 5.66 5.64 1.40 0.28 0.85 0.70 0.77

II-IndM 5.56 5.54 1.37 0.29 0.86 0.66 0.66

II-Mult 5.53 5.53 1.31 0.31 0.86 0.68 0.76

Table 1: Evaluation of models with grid latent class topology.

NNLtrain NNLtest MAD CPV Precision Recall F

I-Bin 1.25 1.46 1.21 0.32 0.87 0.76 0.81

I-Mult 0.97 2.37 1.31 0.29 0.85 0.75 0.80

II-IndB 5.14 7.76 1.76 0.24 0.85 0.56 0.67

II-IndM 4.94 10.43 1.51 0.26 0.84 0.65 0.73

II-Mult 4.90 11.25 1.40 0.27 0.85 0.66 0.74

Table 2: Evaluation of models without topology on latent classes.

but without constraining the latent classes by any topology. This situation is equivalent

to setting the ‘neighborhood width’ σ to a very small number. Such topology-free models

are initialized using K-means clustering. Unlike in SOM, K-means clustering does not

constrain the codebook vectors by any neighborhood topological structure. Results for

topology-free models are shown in Table 2.

In general, the NNL values for models of type I on training data are smaller for multi-

nomial distribution than for the binomial distribution. For topology-free models, binomial

distribution beats multinomial distribution on test data. This indicates that binomial dis-

tribution better regularizes the models with no topology by introducing less degrees of

freedom (free parameters) and by imposing a unimodal structure on ordered rating values
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v. The tight grid topology is a strong regularization factor in itself, enabling the more

flexible multinomial rating distribution to be efficiently used. The overall advantage of

using the binomial distribution is reflected by similar NNL on both training and test sets.

Results for models of type II tell us the same story. The multinomial models are more

flexible than the binomial ones, and so lead to lower NNL on the training data. The price

to be paid, as evidenced by the test set results, is that for topology-free models, overfitting

of the training set is much worse for multinomial models than for the binomial ones.

Comparing the models as recommender systems, by concentrating on recommendation

decisions themselves, and not their probabilities, leaves the models on a more levelled

footing. The difference between models with topology-constrained latent classes and those

with unconstrained latent space is less pronounced. On average, the models distribute the

probability mass on the ‘correct side’ of the rating scale V (as evidenced by MAD and

precision/recall/F values). However, constrained models are more conservative in putting

too much probability mass on a particular rating based on evidence from training data.

This leads to better NNL values on test data. The average absolute deviation of estimated

ratings from the observed ones is in most cases in a tolerable range 1.2–1.4. CPV values

are quite low, because MAD is greater than one, but as explained earlier, for purposes

of collaborative filtering, the most relevant measures are the decision-support accuracy

measures such as precision, recall and F-measure.

To summarize, from the practical point of view of using our models as recommender

systems, introduction of topology into the latent space (desirable for visualization purposes)

does not harm the models’ recommendation performance. Furthermore, when evaluating

the systems as probabilistic models of data, slightly better NNL values of unconstrained

models on the training set are achieved only at the price of strong overfitting of the training

data.
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7 Visualization

In this section we visualize the “common interest patterns” found by models with latent

classes organized in the grid topology. To describe the latent organization, it is convenient

to label classes on the grid according to their “chessboard position”: columns are repre-

sented by letters and rows by numbers. For example, A1 stands for the bottom left latent

class on the grid.

Models of type I and II model different distributions and thus they are suitable for

different type of visualization.

7.1 Models of Type II

Models of type II are appropriate in cases where P (y|u) =
∑

v,zZ
P (v, y|zZ)P (zZ |u) is an

interesting quantity to model, irrespective of the actual vote (Hofmann, 2001). Similarly,

these models are suitable for visualizing the most probable films for each abstract class,

i.e. films with largest P (y|z) =
∑

v P (v, y|z). For each latent class on the grid, we present

5 most probable films.

In order to understand to what degree are the films in particular classes similar or

dissimilar, in addition to film names, we show genre codes from Internet Movie Database6.

The film genres were not explicitly used in training the models. The genres are rep-

resented by abbreviations shown in Table 3. There are 17 genres which we order into

a template [A,V,N,L,C,P,D,F,Y,H,M,U,R,S,T,W,E]. Each film is represented a string

created from the template, where we substitute ’-’ for the genres into which the film is

not categorized. Note that one film is usually categorized into more than one genre.

As an example, a film categorized as action, crime and thriller will be represented by

[A,-,-,-,C,-,-,-,-,-,-,-,-,-,T,-,-].

6http://www.imdb.com
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Abbreviation Genre

A Action

V Adventure

N Animation

L Classic

C Comedy

P Crime

Abbreviation Genre

D Drama

F Family

Y Fantasy

H Horror

M Musical

U Mystery

Abbreviation Genre

R Romance

S Sci-Fi

T Thriller

W War

E Western

Table 3: Genre abbreviations.

Consider the II-IndB model as an example. Tables with genre codes and names of the

5 most probable films for each latent class are presented in Tables 4 and 5. There are clear

patterns in genre codes for the most probable films associated with latent classes. For

example, class A2 contains action thrillers and movies associated to D2 are dramas. Note

the topological organization of the latent classes: genre patterns are similar for classes that

are close to each other. For example, adjacent classes E4, E5 contain romantic comedies

and classes A2, A3 consist of action thrillers.

Figures 1 (a) and (b) show normalized entropies

H[P (y|z)] =
∑

y∈Y

P (y|z) log|Y| P (y|z) (32)

and

H[P (v|z)] =
∑

v∈V

P (v|z) log|V| P (v|z) (33)

of the class-conditional film and rating distributions P (y|z) and P (v|z), respectively. In

the case of joint multinomial model for films and ratings, the rating and film distributions

can be obtained by marginalization. Shown are also the means and modes of the rating

distributions P (v|z) (Figures 1 (c) and (b), respectively). It is interesting that the low-

rating region E2–E3 and F2–F3 (mostly action comedies and dramas) has high film entropy
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Figure 1: Model of type II – GTop II-IndB. Shown are the entropies H[P (y|z)] (a) and

H[P (v|z)] (b) as well as means (c) and modes (d) of the class-conditional rating distribu-

tions P (v|z).

and the high-rating region H4–H7 (mostly non-action crime and drama) is associated with

low rating entropy. It seems that the low-rating sentiment for action films in the region E2–

E3 and F2–F3 is quite far reaching: many films get captured by this region (as evidenced by

the high film entropy). On the other hand, there are relatively few films in the region H4–

H7 (low film entropy) and the positive rating opinion is quite unified in its concentration

on high values (low rating entropy).

Such visualization plots can be utilized in several ways. As an example, consider a

romance oriented TV station that have recently aired films Sleepless nights in Seattle,
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Pretty woman and Ghost. All three films were highly rated. In this situation the Table

5 can be used to select further films to air. Highly rated romantic films are concentrated

in abstract classes E4–E6. It may be a good idea to select films that are highly probable

under those classes. Films supported by the neighboring classes could also be selected.

For example, one can pick romantic comedies Mrs. Doubtfire, Four weddings and the

funeral, or thrillers The Firm, The Client and/or dramas such as Philadelphia or The

Piano. On the other hand, for a well-balanced program, films from different areas of the

grid should be selected in batches. Such manipulations can be extended by constructing

several visualization plots based on ratings from different geographical regions, times of

day, etc.

7.2 Models of Type I

Models of type I are suitable for highly interactive and selective inspection of recommen-

dation patterns in the database. For example, given the latent class z, it is possible to

visualize the rating distribution P (v|y, z) for each fixed film y. By inspecting the latent-

class-conditional rating distributions P (·|y, z), we can demonstrate that “similar” films

tend to have similar rating distributions. For illustration purposes, we choose four films:

two are romantic comedies – Ghost and Pretty Woman, one film is a criminal horror –

Silence of the Lambs, the last film is a criminal drama – Pulp Fiction.

As an example, figure 2 show means of P (v|y, z) for the four chosen films in the I-Bin

model. Rating patterns for two romantic comedies in Figures 2(a) and 2(b) are very similar.

In contrast, a very different distribution is obtained for the criminal horror (Figure 2(c)).

Not surprisingly, rating patterns in Figure 2(c) are similar to those for the criminal drama

in Figure 2(d).

As an example of using type-I visualization plots, consider a TV station that has

already selected films to air. Rating patterns of type I can help in the process of film-
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----C--------S--- AV----D------ST-- A---C--------S--- ------D-------T-- A------------ST-- A-----D-------T-- ------D---------- AV--C-------R-T--
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AV----D------ST-- ------D--H------- A-----D-------T-- A---CP--Y-------- -VN----F--M------ AV-------H---ST-- --N----F--M-R---- ------D----------

AV---P--Y---R-T-- AV--CP--------T-- AV---P--------T-- A-----D-------T-- A------------ST-- A-----D--------W- --N-C--FY-M------ -----P---H----T--

A-----D-------T-- AV---P--------T-- -V--C------------ A-----D-------T-- ----C-D-Y---R-T-- A------------ST-- AV---------U--T-- ------D----------

AV---P--Y---R-T-- AV--CP--------T-- A-----D-------T-- ------D-------T-- ----C-------R---- ------D--------W- A----P--Y-----T-- ----C-D----U--T--

A----P--Y-----T-- A-----D-------T-- A-----D-------T-- AV-------H---ST-- ----C-D-----R---- ----C-D---------- ----C--F--------- -----P---H----T--

AV--CP--------T-- AV--C-------R-T-- --N-C--FY-M------ --N----F--M-R---- ------D-------T-- AV---------U--T-- ----C------------ -----PD----------

----C------------ --N-C--FY-M------ AV--C-------R-T-- A------------ST-- ----C-D-Y---R-T-- -----P---H----T-- AV---P--Y---R-T-- ------D------ST--

AV------Y----S--- --N----F--M-R---- AV--CP--------T-- -VN----F--M------ ----C-DF--------- A-----D--------W- AV----D------ST-- A---CPD----------

----C------------ ------D---------- ------D---------- AV-------H---ST-- ----C-D-----R---- ----C-------R---- ----C-DFY-------- ------D--------W-

-V--C------------ -----PD---------- -----P---H----T-- ----C-D---------- ----C-------R---- ------D---------- A----P------R-T-- -----PD----------

-----PD---------- -V----D---------E -----PD---------- A-------------T-- A-----D-------T-- ------D---------- -----P-----U--T-- ------D----------

AV---P--Y---R-T-- ------D---------- ------D---------- A------------ST-- ----C-D-Y---R-T-- A---CPD---------- ----C-D----U--T-- -----P-----U--T--

--N-C--FY-M------ -----P---H----T-- AV---------U--T-- -VN----F--M------ ----C-------R---- ------D--------W- -----P---H----T-- -----P---H----T--

A----P--Y-----T-- A----P--Y-----T-- -V----D---------E ----C-D---------- ----C-D-----R---- ------D-----R---- ----C------------ -----P-----U--T--

AV--C-------R-T-- AV--C-------R-T-- ------D---------- AV-------H---ST-- ----C-------R---- ----C-------R---- -V--C------------ ----C-D-----R----

-V----D---------E -V----D---------E --N-C--FY-M------ AV---------U--T-- ----C-DF--------- A---CPD---------- A----P------R-T-- ----CP--------T--

-----PD---------- ------D---------- AV---------U--T-- A------------ST-- ----C-------R---- ----C-------R---- ----C------------ -----PD----------

AV---P--Y---R-T-- --N-C--FY-M------ -----PD---------- A-------------T-- -----------U--T-- ------D---------- ----C--------S--- ------D-----R----

--N-C--FY-------- A-------------T-- AV---P--------T-- ----C--F--------- ------D--H------- ----C--FY-------- ----C-D-----R---- ----C-------R----

A-------------T-- ------D------ST-- ------D------ST-- ----C-------R---- ----C-DFY-------- A---C------------ ------D------ST-- ------D-----R----

AV------------T-- A-----D-------T-- A-------------T-- ----C-D-Y---R-T-- AV----D------ST-- AV----D------ST-- -----PD---------- -----PD----------

A-----D-------T-- --N-C--FY-------- AV-----FY-------- ----C-DF--------- ----C------------ A----P-------S--- ------D-----R---- ------D------ST--

A------------ST-- ----C-------R---- A---CPD---------- ------D-------T-- A----P------R-T-- ----C-----------E ----CP--------T-- A----PD----------

A------------ST-- A-----D-------T-- A-------------T-- A----PD---------- A-----D--------W- ----C------------ ----C-D-----R---- AV-L----Y----S---

A-----D-------T-- A------------ST-- AV------------T-- ------D------ST-- ----C-D-----R---- A-------------T-- ------D-----R---- ----CP--------T--

AV------------T-- ------D---------- A-------------T-- ------D---------- AV-----FY-------- ----C--F--------- ----C-------R---- AV-L----Y----S---

A-----D-------T-- --N-C--FY-------- A-----D-------T-- -----PD---------- A-----D-------T-- A---CP--------T-- --N-C--FY-------- --N-C--FY--------

A-----D-------T-- A-----D-------T-- ----C--F--------- A-----D-------T-- ----C-------R---- A-----D-------T-- ----C-------R---- -----PD----------

----C-------R---- ----C-------RS--- AV------------T-- ------D-----R---- AV------------T-- AV------------T-- ----C-D-------T-- AV-----------S---

A------------ST-- ----C--F--------- A-----D-------T-- ----C-------R---- A------------ST-- A------------ST-- ----C-------RS--- ----C--FY-M------

----C-------RS--- ----C--FY-M------ AV------------T-- ----C-D-----R---- A-------------T-- A-----D-------T-- A-----D-------T-- AV-L----Y----S---

A-----D-------T-- AV------------T-- ----C-------R---- ----CP--------T-- ----C-------R---- ----C-------R---- ----C-------R---- ------D-Y---R----

A-----D-------T-- ----C-------R---- A-------------T-- ----C-D-------T-- ----C-------R---- A-------------T-- A------------ST-- AV-L----Y----S---

Table 4: Model of type II – GTop II-IndB: genre codes of the 5 most probable films in each latent class.
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Coneheads Waterworld Demolition Man Disclosure Terminator 2: J The Net Apollo 13 True Lies

Beverly Hills C Addams Family V The Santa Claus The Net Jurassic Park Stargate Dances With Wol Star Trek: Gene

Congo Cliffhanger Disclosure Outbreak The Fugitive Cliffhanger Aladdin Die Hard: With

Ace Ventura: Wh City Slickers I The Net The Firm Speed True Lies Clear and Prese Batman (1989)

Addams Family V The Specialist The Mask The Mask Forrest Gump The Santa Claus True Lies Clear and Prese

Cliffhanger Outbreak Crimson Tide The Firm Speed Forrest Gump Dances With Wol Braveheart

Stargate Stargate Star Trek: Gene While You Were Mrs. Doubtfire The Fugitive Apollo 13 Forrest Gump

Waterworld Interview with Outbreak The Mask The Lion King Jurassic Park Beauty and the The Shawshank R

Batman Forever Die Hard: With Goldeneye Crimson Tide Terminator 2: J Braveheart Aladdin The Silence of

The Net Goldeneye Dumb and Dumber Outbreak Ghost Terminator 2: J The Fugitive Apollo 13

Batman Forever Die Hard: With Clear and Prese The Firm Pretty Woman Schindler’s Lis Batman (1989) Seven

Batman (1989) Clear and Prese Crimson Tide Jurassic Park Sleepless in Se Forrest Gump Home Alone The Silence of

Die Hard: With True Lies Aladdin Beauty and the The Firm The Fugitive Addams Family V Pulp Fiction

Ace Ventura: Pe Aladdin True Lies Terminator 2: J Ghost The Silence of Batman Forever 12 Monkeys

Stargate Beauty and the Die Hard: With The Lion King Mrs. Doubtfire Braveheart Waterworld Get Shorty

Ace Ventura: Pe Apollo 13 The Shawshank R Jurassic Park Sleepless in Se Four Weddings a Babe Schindler’s Lis

Dumb and Dumber Pulp Fiction The Silence of Forrest Gump Four Weddings a Philadelphia Natural Born Ki Pulp Fiction

Pulp Fiction Dances With Wol Pulp Fiction Speed In the Line of Quiz Show The Usual Suspe The Shawshank R

Batman Forever The Shawshank R Apollo 13 Terminator 2: J Ghost Get Shorty Seven The Usual Suspe

Aladdin The Silence of The Fugitive The Lion King Pretty Woman Schindler’s Lis The Silence of The Silence of

Batman (1989) Batman (1989) Dances With Wol Forrest Gump Sleepless in Se The Piano Ace Ventura: Wh The Usual Suspe

True Lies True Lies Apollo 13 Jurassic Park Dave Four Weddings a Dumb and Dumber Sense and Sensi

Dances With Wol Dances With Wol Aladdin The Fugitive Mrs. Doubtfire Get Shorty Natural Born Ki Fargo

Pulp Fiction Apollo 13 The Fugitive Terminator 2: J Pretty Woman Clueless Ace Ventura: Pe Dead Man Walkin

Batman Forever Aladdin Pulp Fiction Speed The Client Quiz Show Coneheads Leaving Las Veg

Toy Story Broken Arrow Goldeneye Home Alone Interview with The Santa Claus Sense and Sensi The Birdcage

Broken Arrow 12 Monkeys 12 Monkeys Pretty Woman Babe Beverly Hills C 12 Monkeys Leaving Las Veg

Mission: Imposs Twister Broken Arrow Ghost Waterworld Waterworld Dead Man Walkin Dead Man Walkin

Twister Toy Story Jumanji Mrs. Doubtfire Addams Family V Judge Dredd Leaving Las Veg 12 Monkeys

Independence Da The Birdcage Get Shorty The Firm Natural Born Ki City Slickers I Fargo Heat

Independence Da The Rock Broken Arrow Heat Braveheart Happy Gilmore Sense and Sensi Star Wars

Twister Independence Da Mission: Imposs 12 Monkeys The American Pr Broken Arrow Leaving Las Veg Fargo

Mission: Imposs Mr. Holland’s O The River Wild Mr. Holland’s O Jumanji Father of the B The Birdcage Return of the J

The Rock Toy Story Twister Dead Man Walkin Crimson Tide Rumble in the B Toy Story Toy Story

Eraser Twister Father of the B The Rock French Kiss Twister The Truth about Dead Man Walkin

Grumpier Old Me The Nutty Profe Executive Decis Leaving Las Veg Mission: Imposs Mission: Imposs The Cable Guy Star Trek: Firs

Independence Da Father of the B Eraser The Birdcage Independence Da Independence Da The Nutty Profe Willy Wonka and

The Nutty Profe Willy Wonka and Mission: Imposs Sense and Sensi The River Wild Twister Twister Return of the J

Eraser Executive Decis Sabrina Fargo Sabrina Sabrina Grumpier Old Me Phenomenon

Twister Grumpier Old Me The River Wild The Cable Guy The Truth about The River Wild Independence Da Star Wars

Table 5: Model of type II – GTop II-IndB: names of the 5 most probable films for each latent class.
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Figure 2: Model of type I – GTop I-Bin. Shown are the means of the class-and-film-

conditional rating distributions P (v|y, z) for the following films: Ghost (a) Pretty Woman

(b) The Silence of the Lambs (c) and Pulp Fiction (d).

preview selection. One can compare rating pattern of the currently broadcasted film with

rating patterns of films scheduled to be aired in the near future. It may be appropriate to

select for preview a film with rating pattern similar to that of the currently aired film.

8 Discussion

In general, model-based approaches to data visualization introduce some sort of a-priori

topological structure on the modeling elements of the system. The topological structure
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(e.g. neighborhood organization on a square grid) reflects the nature of the visualization

space (e.g. computer screen). For example, SOM can be viewed as a constrained vec-

tor quantization, where quantization centers are constrained to respect the neighborhood

structure (e.g. 2-dimensional grid) imposed a-priori before fitting the data. Its analog

on the side of probabilistic modeling of data, Generative Topographic Mapping (GTM)

(Bishop, 1998), constrains means of local Gaussian noise models (corresponding to code-

book vectors in SOM) to lie on a smooth two-dimensional manifold in the high dimensional

data space. Naturally, one can often obtain better modeling capabilities with less complex

unconstrained models7 (e.g. using a smaller number of freely movable codebook vectors

in vector quantization, or smaller unconstrained mixtures of Gaussians in case of Gaus-

sian mixture modeling), but at the price of loosing natural visualization predispositions of

appropriately constrained models.

When the task we are facing is, for example, building a good density model for a given

data set of vectorial data, without any concern for data visualization, then a suitable

approach may be to use e.g. mixtures a Gaussians, with appropriately chosen number of

mixture components using a model selection technique. On the other hand, for model based

visualization of vectorial data, we may use many Gaussian components, but constrain them

with a tight two-dimensional grid neighborhood structure. Such a constrained mixture of

Gaussians may not be able to compete with appropriately constructed (probably smaller)

unconstrained mixture of Gaussians on the grounds of density modeling, but it is suitable

for data visualization and importantly, the tight grid topology prevents constrained models

with many components (suitable for high-quality visualization) from excessively overfitting

the data. The issue of data explanation vs. data prediction is covered e.g. in (Ripley, 1998).

7When data distribution has a known structure (e.g. noisy 2-dimensional manifold embedded in a high

dimensional space), appropriately constrained models (e.g. GTM with 2-dimensional latent space) will be

better modeling candidates.
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NNLtrain NNLtest MAD CPV Precision Recall F

σ = 0.25 1.34 1.44 1.25 0.31 0.86 0.75 0.80

σ = 1.0 1.47 1.50 1.32 0.29 0.84 0.71 0.77

σ = 1.5 1.53 1.54 1.33 0.29 0.84 0.71 0.77

B = 2 1.39 1.45 1.26 0.31 0.86 0.73 0.79

B = 10 1.39 1.45 1.27 0.31 0.86 0.74 0.79

Table 6: Evaluation of I-Bin with varying parameters.

Comparing constrained and unconstrained LCM for collaborative filtering as proba-

bilistic models of data (see NNL values in tables 1, 2), we see that there is almost no

overfitting in constrained models, moreover, the test set NNL values of constrained models

are not too far from the training set NNL values of unconstrained models that overfit the

training data. Hence, in our case, the constrained models combine a potential for model

based data visualization with good quality probabilistic modeling (within the realm of

LCM). They can be utilized, even though we stress that this is not the primary goal of

their construction, in producing practical recommendations, as evidenced by the Precision,

Recall and F-measures.

Some of the model construction parameters, such as the neighborhood width σ and

smoothing parameter B in the SOM initialization phase, were set in the experiments to

fixed values. It is appropriate to study sensitivity of the models to changes in those

parameters. Table 6 shows results for models I-Bin with varying parameters σ and B.

Models with varying σ were trained with B set to 5. Outcomes show that the smaller

the σ is, i.e. the tighter is the neighborhood, the better the models fit the data. Model

performance is quite stable with a slight tendency of broader neighborhoods to result in

more rigid models loosing precision of the fit. Models with varying B have σ set to 0.5.

Model performance is stable with respect to varying values of parameter B.
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Figure 3: (a) Means of P (v|y, zZ) for film Ghost after SOM-based initialization. (b) Means

of P (v|y, zZ) for film Ghost after training.

We also give an example of how the rating distributions evolve during training, starting

from the initial SOM-based phase. We inspected evolution of P (zY |u) during the training

process for several users u. Initially, the probability of one latent class (winner node

from SOM) is B times greater than those of the other classes. As an example consider

I-Bin model and user no. 2 from the training set. The mode of P (zY |u) has moved from

latent class I5 (winner in SOM) to H1. Furthermore, contrary to the SOM-based initial

flat distribution P (zY |u), except for one mode, after training, the highly probable classes

(given the user u) are located in the upper-left corner of the grid around H1 (I1-I3, H1-H3,

G-1-G2 and F1-F2).

Rating distributions P (v|y, zZ) in class-I models evolve from initially scattered prob-

ability mass into more coherent, topologically organized distributions. An example of

evolution of means of rating distributions P (v|y, zZ) for movie Ghost in the I-Bin model

can be seen in figure 3.

We experimented with initialising the constrained models using topology-free K-means

clustering. Compared with SOM-based initialization, the NNL results on both training
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and test sets were consistently slightly worse. Shared topology between neural field in

SOM and latent classes in LCM results in better initialization of the E-M algorithm that

(by its nature) is bound to converge to a local optimum in the likelihood landscape.

As mentioned in the introduction, while much work has focused on designing competi-

tive algorithms for rating predictions, few attempts have been made to implement systems

for understanding and visualization of principal user preference patterns buried inside large

and sparse collections of collaborative filtering data. Closest to our system is the Shared

Wisdom through the Amalgamation of Many Interpretations (SWAMI) system by (Fisher

et al., 2000). SWAMI is an interesting framework for building and studying collaborative

filtering systems. It contains a visualization component enabling e.g. views of movie-to-

movie correlation matrix based on user votes, or film-by-user matrix. Explanatory power of

such figures is, however, greatly hampered by the huge dimensionality of matrices involved,

as well as sparsity in collaborative filtering data collections.

The system supports simple histogram plots showing e.g. distribution of rating values

across the rating dataset, number of movies with at least n votes (for varying n), etc. His-

tograms for individual movies, such as distribution of rating values for a selected movie,

are also possible. Such plots are helpful in getting a feeling for the collaborative filtering

data at hand either on a very global level (e.g.distribution of rating values across the set),

or on detailed levels of individual films/users. However, to unveil interesting hidden rating

patterns buried inside the set, one must operate on ‘intermediate’ levels of film/user group-

ings. To this end, the authors of SWAMI applied PCA analysis using movie-to-movie and

user-to-user correlation matrices. Attempts with user-to-user correlation matrix had to

be abandoned because of large dimensionality of the correlation matrix. Using full Each-

Movie dataset, they found (after applying several necessary noise reduction techniques)

six groups of films corresponding to six most dominant eigenvectors of the movie-to-movie

correlation matrix based on user ratings. As an example, we site the first three film group-
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ings: ‘highbrow to lowbrow’ (The Postman, Mighty Aphrodite, Richard III,...), ‘classics

to contemporary’ (The Bridge on the River Kwai, 20,000 Leagues Under the Sea, The

Great Escape, ...), ‘girls’ movies to boy’s movies’ (Black Beauty, A Little Princess, How

to Make an American Quilt, ...). While interesting in themselves, the problem of such

‘eigenfilm/eigentaste’ approaches (see also (Goldberg et al., 2001)) is that the groupings

are not results of a principled modeling approach in which formation of such groups is an

integral part of the rating model. So it is not clear what the groupings represent and how

they relate to each other. Film/user groupings in our topologically constrained LCM follow

naturally from a principled model formulation aimed at explaining rating data using ap-

propriate noise distributions. Moreover, since our visualizations are based on probabilistic

models of data, many refinements leading to useful additional information are naturally

possible, for example plots of means, modes, and entropies of rating distributions.

9 Conclusions

We have developed topographic versions of two latent class models for collaborative fil-

tering. Topographic grid organization of the latent space enables us to better understand

hidden patterns in large and sparse rating databases. The preference patterns can be in-

spected in a variety of ways. Our system is a probabilistic model of the data, and so we can

readily use tools from probability and information theories to interpret and visualize trends

captured by the abstract latent classes. In this respect, we have by no means exhausted

the full range of possibilities. For example, besides means presented in the paper we could

use modes, entropies and mutual information to detect dependencies between ratings and

films in the models. Topographic organization of the latent classes makes orientation in

those trends easier and more systematic.

We used different distribution models to account for (class conditional) variations in
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user ratings. We found that multinomial distribution is adequate if the model is regularized

by the tight grid topology on the latent space. For LCM with a large number of latent

classes, binomial distribution may be more appropriate, since it adds an extra degree of

regularization by having fewer free parameters and by imposing a unimodal structure on

ordered set of rating values.

We demonstrated our system on a large collection of user ratings for films. In the

future we plan to experiment with different methods of initialization and to study variants

of EM-algorithm presented in the literature (e.g. (Hofmann and Puzicha, 1999)) in order

to speed up the training process. Also, the probabilistic character of the model may allow

for a principled interactive construction of a hierarchy of topographic latent class models

(see e.g. (Tino and Nabney, 2002)), where we would be able to interactively “zoom in”

into interesting user groups and rating patterns.
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Appendix

A Binomial Distribution

Distributions from the exponential family have the form

pG(v|θ) = exp{θv −G(θ)}p0(v),

where G is the cumulant function. Binomial distribution

f(v) =

(

V

v

)

pv(1− p)V−v (34)

is a member of the exponential family and so can be rewritten as

f(v) = exp{v log
p

1− p
+ V log(1− p) + log

(

V

v

)

},

where

θ = log
p

1− p
, and p =

eθ

1 + eθ
and 1− p =

1

1 + eθ
.

Cumulant function is then:

G(θ) = V log(1 + eθ),

the link function is:

g(θ) = G′(θ) = V
eθ

1 + eθ
= V p,
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and

G′′(θ) = V
eθ

(1 + eθ)2
.

B E-step

B.1 E-step for Type I Models

We estimate

P (zY | y, u, v) =
P (v| y, u, zY )P (zY | y, u)

∑

z′Y
P (v| y, u, z′Y )P (z′Y | y, u)

.

By model assumptions, P (zY | y, u) = P (zY |u) and

P (v| y, u, zY ) =
∑

zZ

P (v, zZ | y, u, zY )

=
∑

zZ

P (v| y, u, zY , zZ)P (zZ |y, u, zY )

=
∑

zZ

P (v| y, zZ)P (zZ |zY ),

and so

P (zY | y, u, v) =
P (zY |u)

∑

zZ
ρ(v, y, zZ)P (zZ |zY )

∑

z′Y
P (z′Y |u)

∑

zZ
ρ(v, y, zZ)P (zZ |z′Y )

. (35)

Analogously,

P (zZ | y, u, v) =
P (v| y, u, zZ)P (zZ | y, u)

∑

z′
Z
P (v| y, u, z′Z)P (z′Z | y, u)

,

where P (v| y, u, zZ) = P (v| y, zZ) and

P (zZ | y, u) =
∑

zY

P (zZ , zY | y, u)

=
∑

zY

P (zZ | zY , y, u)P (zY | y, u)

=
∑

zY

P (zZ |zY )P (zY |u).

Hence,

P (zZ | y, u, v) =
ρ(v, y, zZ)

∑

zY
P (zZ |zY )P (zY |u)

∑

z′Z
ρ(v, y, z′Z)

∑

zY
P (z′Z |zY )P (zY |u)

. (36)
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B.2 E-step for Type II Models

We write

P (zY | y, u, v) =
P (v, y| u, zY )P (zY | u)

∑

z′
Y
P (v, y| u, z′Y )P (z′Y | u)

,

where

P (v, y| u, zY ) =
∑

zZ

P (v, y, zZ | u, zY )

=
∑

zZ

P (v, y| u, zY , zZ)P (zZ |u, zY )

=
∑

zZ

P (v, y| zZ)P (zZ |zY ),

and so P (zY | y, u, v) is updated as prescribed by eq. (35).

Analogously,

P (zZ | y, u, v) =
P (v, y| u, zZ)P (zZ | u)

∑

z′Z
P (v| y, u, z′Z)P (z′Z | y, u)

,

where P (v, y| u, zZ) = P (v, y| zZ) and

P (zZ | u) =
∑

zY

P (zZ , zY | u)

=
∑

zY

P (zZ | zY , u)P (zY | u)

=
∑

zY

P (zZ |zY )P (zY |u).

Hence, (36) is the update equation for P (zZ | y, u, v).

C Derivation of Parameter Estimates for M-step

To derive update equations for the model free parameters P (zY |u) and ρ(v, y, zZ) in the

Expectation-Maximization (EM) framework (Dempster, 1977), we introduce (latent) indi-

cator variables δu,y,vzY ,zZ
for couples of latent classes (zY , zZ) ∈ ZY × ZZ : δu,y,vzY ,zZ

= 1, if in

the process of generating the rating v for the film y by the user u, the latent class zY was
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first selected and then transmitted through the noisy channel as the class zZ ; otherwise

δu,y,vzY ,zZ
= 0. The complete data log-likelihood reads:

LC =
∑

u∈U

∑

y∈Yu

∑

zY ∈ZY

∑

zZ∈ZZ

δu,y,vu,y
zY ,zZ

log{ρ(vu,y, y, zZ)P (zZ |zY )P (zY |u)}. (37)

It will be more convenient to represent LC as

LC =
N
∑

n=1

∑

u∈U

∆un
u

∑

y∈Y

∆yn
y

∑

v∈V

∆vn
v

∑

zY ∈ZY

∑

zZ∈ZZ

δu,y,vzY ,zZ

log{ρ(v, y, zZ)P (zZ |zY )P (zY |u)}, (38)

where ∆α
a = 1 if and only if a = α, otherwise ∆α

a = 0. We also write

∆α1,...,αm
a1,...,am

=
m
∏

i=1

∆αi
ai
.

C.1 M-step for Type I and II – Multinomial ρ(v, y, zZ)

For multinomially distributed ρ(v, y, zZ), the M-step equations maximize the expected8

complete data log-likelihood, extended with Lagrange multiplier terms to account for

proper normalization:

< LC > =
N
∑

n=1

∑

u,y,v

∆un,yn,vn
u,y,v

∑

zY ,zZ

P (zY , zZ | y, u, v)

{log ρ(v, y, zZ) + logP (zZ |zY ) + logP (zY |u)}

+
∑

u

λu

(

∑

zY

P (zY |u)− 1

)

+T (ρ), (39)

where

T (ρ) =
∑

y,zZ

λy,zZ

(

∑

v

P (v| y, zZ)− 1

)

[type I]

T (ρ) =
∑

zZ

λzZ

(

∑

v,y

P (v, y| zZ)− 1

)

[type II]. (40)

8with respect to posterior distribution of hidden variables δu,y,v
zY ,zZ

on ZY ×ZZ
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By setting ∂<LC>
∂ρ(v,y,zZ)

= 0, determining the corresponding Lagrange multiplier, and re-

alizing that
∑

zY
P (zY , zZ | y, u, v) = P (zZ | y, u, v), we arrive at the update equation for

ρ(v, y, zZ):

ρ(v, y, zZ) = P (v| y, zZ) =

∑

u∈Uv,y
P (zZ | y, u, v)

∑

v′

∑

u∈Uv′,y
P (zZ | y, u, v′)

[type I] (41)

ρ(v, y, zZ) = P (v, y| zZ) =

∑

u∈Uv,y
P (zZ | y, u, v)

∑

v′,y′

∑

u∈Uv′,y′
P (zZ | y′, u, v′)

[type II] (42)

where Uv,y is the set of users that evaluated film y with rating v,

Uv,y = {u ∈ U| (u, y, v) ∈ D}. (43)

Update equation for P (zY |u) is derived by setting ∂<LC>
∂P (zY |u)

= 0, determining the La-

grange multiplier λu, and realizing that
∑

zZ
P (zY , zZ | y, u, vu,y) = P (zY | y, u, vu,y) and

∑

y∈Yu

∑

z′
Y
P (z′Y | y, u, v) = |Yu|, where |Yu| is the number of films evaluated by the user

u:

P (zY |u) =

∑

y∈Yu
P (zY | y, u, vu,y)

|Yu|
. (44)

C.2 M-step for Type II with Conditional Independence

For P (v, y|zZ) = P (v|zZ)P (y|zZ), with both P (y|zZ) and P (v|zZ) multinomially dis-

tributed, the expected complete data log likelihood can be expressed as

< LC > =
N
∑

n=1

∑

u,y,v

∆un,yn,vn
u,y,v

∑

zY ,zZ

P (zY , zZ | y, u, v)

{logP (v|zZ) + logP (y|zZ)

+ logP (zZ |zY ) + logP (zY |u)}

+
∑

u

λu

(

∑

zY

P (zY |u)− 1

)

+
∑

zZ

λvzZ

(

∑

v

P (v|zZ)− 1

)
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+
∑

zZ

λyzZ

(

∑

y

P (y|zZ)− 1

)

(45)

Maximizing < LC > with respect to P (v|zZ):

∂ < LC >

∂P (v|zZ)
=
∑

y

∑

u∈Uy,v

∑

zY

P (zY , zZ | y, u, vu,y)
1

P (v|zZ)
+ λvzZ

= 0, (46)

where Uyv is a set of users that rated film y with rating v. Then

P (v|zZ) = −

∑

y

∑

u∈Uy,v
P (zZ | y, u, v)

λvzZ

(47)

Substituting P (v|zZ) back to the constraint we get

λvzZ
= −

∑

v

∑

y

∑

u∈Uy,v

P (zZ | y, u, v). (48)

and so

P (v|zZ) =

∑

y

∑

u∈Uy,v
P (zZ | y, u, v)

∑

v′

∑

y

∑

u∈Uyv′
P (zZ | y, u, v′)

. (49)

Maximizing < LC > with respect to P (y|zZ):

∂ < LC >

∂P (y|zZ)
=
∑

u∈Uy

∑

zY

P (zY , zZ | y, u, vu,y)
1

P (y|zZ)
+ λzZ

= 0, (50)

where Uy is a set of users that rated film y. Then

P (y|zZ) = −

∑

u∈Uy
P (zZ | y, u, vu,y)

λzZ

. (51)

Similarly to P (v|zZ), we get

P (y|zZ) =

∑

u∈Uy
P (zZ | y, u, vu,y)

∑

y′

∑

u∈Uy′
P (zZ | y′, u, vu,y′)

. (52)

C.3 M-step for Type II – Binomial P (v|zZ)

Now

P (v|zZ) = exp{v θz −G(θz) + log p0(v)}.
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The expected complete data log likelihood for model of type II is:

< LC > =
N
∑

n=1

∑

u,y,v

∆un,yn,vn
u,y,v

∑

zY ,zZ

P (zY , zZ | y, u, v)

{[v θz −G(θz) + log p0(v)] + logP (y|zZ)

+ logP (zZ |zY ) + logP (zY |u)}

+
∑

u

λu

(

∑

zY

P (zY |u)− 1

)

+
∑

zZ

λzZ

(

∑

y

P (y|zZ)− 1

)

(53)

Maximizing < LC > with respect to the parameter θz amounts to

∂ < LC >

∂ θz
=
∑

y

∑

u∈Uy

∑

zY

P (zY , zZ | y, u, vu,y)[vu,y − g(θz)] = 0. (54)

After realizing that
∑

zY
P (zY , zZ | y, u, vu,y) = P (zZ | y, u, vu,y) and substituting for g(θz)

we get:

∑

y

∑

u∈Uy

P (zZ | y, u, vu,y)[vu,y − V
eθz

1 + eθz
] = 0

∑

y

∑

u∈Uy

P (zZ | y, u, vu,y)vu,y = V
eθz

1 + eθz

∑

y

∑

u∈Uy

P (zZ | y, u, vu,y)

∑

y

∑

u∈Uy
P (zZ | y, u, vu,y)vu,y

V
∑

y

∑

u∈Uy
P (zZ | y, u, vu,y)

=
eθz

1 + eθz
= pz. (55)

Maximization of < LC > with respect to P (y|zZ) is analogous to (50) – (52):

P (y|zZ) =

∑

u∈Uy
P (zZ | y, u, vu,y)

∑

y′

∑

u∈Uy
P (zZ | y′, u, vu,y′)

. (56)

C.4 M-step for Type I – Binomial P (v|y, zZ)

Binomial distribution P (v|y, zZ) can be written in the functional form

P (v|y, zZ) = exp

{

v θz,y −G(θz,y) + log

(

V

v

)}

. (57)
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The expected complete data log likelihood for model of type I is

< LC > =
N
∑

n=1

∑

u,y,v

∆un,yn,vn
u,y,v

∑

zY ,zZ

P (zY , zZ | y, u, v)

{[v θz,y −G(θz,y) + log p0(v)]

+ logP (zZ |zY ) + logP (zY |u)}

+
∑

u

λu

(

∑

zY

P (zY |u)− 1

)

(58)

Maximizing < LC > with respect to parameter θz,y,

∂ < LC >

∂ θz,y
=
∑

u∈Uy

∑

zY

P (zY , zZ | y, u, vu,y)[vu,y − g(θz,y)] = 0. (59)

we get

pz,y =

∑

u∈Uy
P (zZ | y, u, vu,y)vu,y

V
∑

u∈Uy
P (zZ | y, u, vu,y)

. (60)
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