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Abstract: 
We present novel, low-cost and non-invasive potential diagnostic biomarkers of 
schizophrenia. They are based on the “mirror-game”, a coordination task in which two 
partners are asked to mimic each other’s hand movements. In particular, we use the 
patient’s solo movement, recorded in the absence of a partner, and motion recorded 
during interaction with an artificial agent, a computer avatar or a humanoid robot. In 
order to discriminate between patients and controls we employ statistical learning 
techniques, which we apply to nonverbal synchrony and neuromotor features derived 
from the participants’ movement data. The proposed classifier has 93% accuracy and 
100% specificity. Our results provide evidence that statistical learning techniques, 
nonverbal movement coordination and neuromotor characteristics could form the 
foundation of decision support tools aiding clinicians in cases of diagnostic 
uncertainty. 



Introduction 
Schizophrenia is a neurodevelopmental disorder that appears to originate from 
disruptions in brain development caused by both genetic and environmental factors1-3. 
With mean lifetime prevalence just below 1%, schizophrenia ranks among the most 
substantial causes of death worldwide4 and is considered as one of the top 25 leading 
causes of disability5. Due to the high prevalence and lack of entirely satisfactory 
treatments, a significant research effort has been focused on developing methods for 
early diagnosis and designing effective preventive interventions3,6. 

As defined by the National Institute of Health working group, a biomarker “is a 
characteristic that is objectively measured and evaluated as an indicator of normal 
biological processes, pathogenic processes, or pharmacologic responses to an 
intervention”7. Biomarkers can thus play a critical role in performing a diagnostic 
procedure (diagnostic biomarkers), predicting diagnostic conversion (predictive 
biomarkers), as well as predicting and monitoring clinical response to psychosocial or 
pharmacological treatments (prognostic biomarkers)8-10. In the last 20 years 
increasingly sensitive and sophisticated assessment tools have been developed and 
used to identify multiple environmental, neural, molecular and genetic variables as 
risk factors and potential biomarkers for schizophrenia10-12. Nevertheless, valid 
biomarkers for this condition are still lacking or being evaluated8. 

Long-term persistence of motor and movement impairments in schizophrenia patients 
have been known since its early description by Bleuler13, and through the years 
multiple indicators of schizophrenia based on neuromotor characteristics and 
variables have been proposed14-16. Many of them are based on motor and socio-motor 
impairments, which encompass both neurological soft signs (NSS)17 and other 
movement deficits18-24. More specifically, schizophrenia is associated with 
psychomotor slowing21,25, characterised by larger reaction times as well as deficits in 
motor coordination, poor performance in complex motor tasks20,26-28 and weaker 
interpersonal coordination29,30. Another class of motor-related abnormalities observed 
in schizophrenia patients are extrapyramidal symptoms and signs that include: 
dystonia (continuous spasms and muscle contractions), akathisia (motor restlessness), 
dyskinesia (irregular, jerky movements) and parkinsonism characterised by rigidity, 
bradykinesia (slowness of movement) and hypokinesia (decreased bodily 
movement)26,31. The above mentioned motor abnormalities contribute to the deficits in 
nonverbal behaviours and in nonverbal synchrony that have been observed in the 
structured and unstructured social interactions with schizophrenia patients22,29,32, 
which together with deficits in facial behaviour33 lead to patients’ social-cognitive 
impairments and low social competence. 
There is now clear evidence that neuromotor abnormalities are present before the 
onset of the disease and constitute important indicator of schizophrenia14,15. In fact, 
NSS such as poor coordination, clumsiness and unfamiliar movements or 
mannerisms, have been recognised as possibly the most common motor abnormalities 
among children that later developed schizophrenia16. Typically, these symptoms are 
assessed by a highly skilled clinician during a structured neurological interview, that 
includes different observational and evaluator-dependent motor-response tests, e.g. 
finger-thumb opposition (touching fingers in turn with the thumb), bringing the finger 
to the nose (with eyes closed), diadochokinesis (test of ability to make antagonistic 
movements in quick succession), rapid manipulation of matchsticks or pegboards, 
finger following, copying of simple geometric figures18,27. Furthermore, it is 



noteworthy that although schizophrenia patients are known to have deficits in 
interpersonal interactions22,29,32, most of the motor assessment tasks do not take into 
account the motor abnormalities that are present during an interaction with another 
person23,29,30. This is, however, changing and newly proposed measures of 
extrapyramidal symptoms and NSS are data-driven and are often based on 
interpersonal interactions, e.g. indices based on digitised hand-writing26 or on video 
recordings of face-to-face interaction with schizophrenia patients22,32. 
In our study, we employ neuromotor characteristics extracted from participants’ 
motion recorded during two different conditions of a simplified “mirror-game 
scenario”; a joint-action task, considered currently a paradigm for studying 
interpersonal coordination34,35, in which two participants are asked to mimic each 
other’s movements. In the solo condition, each participant is asked to move in a 
natural, interesting manner in the absence of a partner (Fig. 1a), while in the leader-
follower condition the participant is instructed to follow as accurately as possible the 
motion of the other player acting as the leader (Fig. 1b). We demonstrate that 
movement properties measured in the solo condition allow for quantification of 
extrapyramidal symptoms in a manner similar to what has been shown in previous 
literature26. In contrast coordination measures extracted from the leader-follower 
condition capture changes related to psychomotor slowing21,25 and deficits in 
interpersonal synchrony22,29,32. In so doing, the two distinct conditions of the mirror 
game make it possible to capture and quantify complementary characteristics of intra- 
and interpersonal motor behaviour. 

 

 
 

Fig. 1 Illustration of the main experimental set-up and of the experimental conditions. (A) Solo 
condition of the mirror game, hand movement of the participant along a line is recorded on a computer. 
(B) In the leader-follower condition participant is following motion of a computer avatar that is 
displayed on the screen. 

 
To quantify participants’ movements, we develop a data-driven, objective 
methodology based on different aspects of the recorded motion. Furthermore, we use 
personalised artificial agents (computer avatars and a humanoid robot) acting as 
leaders in the leader-follower condition 35-37. Notably, this allows us to achieve 
discrimination on the level of individuals, in line with previous work12,15. 
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The artificial agents used in our experiments are driven by a cognitive architecture 
based on feedback-control theory modelling of perception-action behaviour38-40, 
which was developed within the scope of the European Alterego project 
(http://www.euromov.eu/alterego/). Importantly, in addition to generating a leader’s 
motion with desired level of difficulty for each individual player, the cognitive 
architecture allows for a bi-directional feedback between the participant and the 
artificial agent. Such feedback is one of the aspects of the complex social interactions 
that constitute the basis of the socio-motor coordination in joint-action tasks41. In fact, 
the bi-directionality of the feedback is a unique feature of the proposed methodology, 
which differentiates it from other motor assessment tools. Finally, interaction with 
artificial agents contributes to the objective nature of the proposed methodology that 
is practically impossible to achieve in classical interactions between human subjects 
(i.e. clinicians and patients). Namely, artificial agents allow us to eliminate effects of 
negative attitudes that are often present in interactions between non-clinical 
individuals and patients42,43. 
 

Results 
The two main results of our study are the classification methodology and the set of 
unbiased, data-driven neuromotor markers of schizophrenia, which are extracted from 
recordings of participants’ spontaneous hand motion35 and their movement during 
interaction with an artificial agent. We begin by presenting the neuromotor markers 
(features) extracted from the data recorded in solo condition and the results of a 
classification based on them. Next, we present neuromotor markers (features) 
extracted from data recorded in the leader-follower condition of the mirror game in 
which the participant is instructed to follow the motion of a computer avatar35, 
complimented by the corresponding classification results. We, then, validate the 
neuromotor markers (features) extracted from data recorded in the leader-follower 
condition as well as the classification pipeline using data collected in an independent 
experiment with a humanoid iCub robot involving different group of patients and 
control subjects36. Finally, we demonstrate that the classification is significantly 
improved by applying majority rule to combine the results obtained for the solo and 
leader-follower conditions. We show, additionally, that the classification based on the 
proposed biomarkers is complementary to classifier based on the NSS evaluated by an 
expert clinician. Details of the experimental protocols, features and of the 
classification algorithm can be found in Materials and Methods. 
Classification - solo condition 

In the solo condition we recorded each participant’s spontaneous movement limited 
only by the physical set-up of the recording equipment, see Materials and Methods 
for details. The motivation for using features of the solo movements as biomarkers 
stems from our recent finding that individual people have unique, time-persistent 
motor signatures35 and from research showing that fine-motor skills are affected in 
schizophrenia, e.g., person’s handwriting26. 

In order to capture nuances of the solo movement (Fig. 2a) we propose three features 
for its classification. Two of the features are derived from a stochastic model of hand 
motion which follows the integrated human movement framework44; for a description 
of the model see the Supplementary Note. Specifically, the two features are: ΔP0, 
histograms (bar plots) of lengths of movement segments in the left and right direction 



(Fig. 2b), and distributions of coefficients of the stochastic model of the hand motion. 
The third feature is the global wavelet spectrum (Fig. 2d) that captures frequencies of 
different oscillations observed in the motion45. 
 

 
Fig. 2 Features based on the solo movement. (A) Position time trace from a solo recording, blue bars 
indicate lengths of movement segments in the left and right direction ΔP0. (B) Histogram of the values 
of ΔP0 from panel (A). (C) Time-frequency plot of the wavelet transform of the time series from panel 
(A). Colour indicates power for given frequency at a given time. (D) Global wavelet spectrum 
computed as mean (over time) of the signal representation in panel (C). 

 

The results of the data classification from the solo condition can be found in Table 1 
(row Solo). 
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Table 1 Results of classification based on different features 

Data Ctrls/Pts TN FP TP FN Accuracy Sensitivity Specificity Precision 

Solo (S)a 29/30 28 1 27 3 0.9322 0.9 0.9655 0.9642 

Leader-Follower (L-F)b 29/30 28 1 17 13 0.7627 0.5667 0.9655 0.9444 

Majority: S and L-Fc 29/30 29 0 26 4 0.9322 0.8667 1 1 

Validation: iCub L-Fd 22/22 21 1 17 5 0.8636 0.7727 0.9545 0.9444 

NSSe 26/30 25 1 24 6 0.8750 0.8000 0.9615 0.9600 

a) Results of classification based on Solo condition features. Majority rule applied to results of classification based on the 
separate features extracted from the solo data. Results of classification using the separate features can be found in Supplementary 
materials – Table S1. 

b) Results of classification based on the leader-follower condition in the avatar experiment. Majority rule applied to results of 
classification based on the separate features extracted from the leader-follower data. Results of classification using the separate 
features can be found in Supplementary materials –Table S2. 

c) Results of majority rule applied to results of classification of Solo condition and Leader-Follower condition. Majority rule 
applied to results of classification based on all the separate features presented in the Supplementary Materials - Tables S1 and S2. 

d) Results of classification based on the leader-follower condition recorded in the iCub experiment. Majority rule applied to 
results of classification using the separate features extracted from the leader-follower data. Results of classification using the 
individual features can be found in Supplementary materials – Table S3. 

e) Results of classification based on the NSS. Best classification was achieved using: gait - arms swinging, salivation and arms 
dropping as defined in17 (linear discriminant classifier with leave-one-out validation). Exactly the same results (in terms of 
participants classified as patients) were obtained for several other combinations of features. 

TP – true positive, FP – false positive, TN – true negative, FN – false negative. Definitions of classification measures can be 
found in Methods. 

 
Classification – leader-follower condition 

A number of studies have shown that schizophrenia patients behave differently during 
social interactions22,23,29,30,32. To capture some basic aspects of the differences in the 
socio-motor coordination in data collected in the leader-follower condition, we use 
features derived from the relative phase (Fig 3b), which captures the time lag between 
two participants and is a well-established method for analysing inter-personal 
coordination35,46,47. The two features are: a distribution of lags between phases of 
oscillations with different frequencies observed in the movements of the leader and 
follower |ϕr(f)| (Fig. 3c), and a histogram of the relative phase during interaction, ϕr(t) 
(Fig. 3e), which describes changing time lag between movements of the leader and 
the follower. 

The features selected for analysis of the leader-follower condition provide information 
complementary to that based on solo condition, as we anticipate that the properties of 
the motion of participants following an artificial agent would be affected mostly by 
reduced reaction times, deficits in motor coordination and nonverbal synchrony, and 
to a smaller extent by some of the extrapyramidal symptoms and signs. 
 



 
Fig. 3 Features based on the artificial-agent leader – human follower interaction. (A) Position time 
traces of a leader (black) and follower (green). (B) Time-frequency plot of the cross-wavelet 
coherence48. Arrows indicate relative phase (3 o’clock indicates in-phase). Colour indicates degree of 
“overlap” between wavelet spectra of the two time series. (C) |ϕr(f)| – distribution of absolute phase lag 
over frequencies, computed as the absolute value of a circular mean (over time) of relative phase angles 
from the regions encircled by the black lines in panel (B). (D) Estimate of the relative phase ϕr(t), 
computed as circular mean (over frequencies) of the relative phase angles from panel (B) for 
frequencies lower than 2Hz, y-axis in radians. (E) Histogram of the relative phase ϕr(t) from panel (D). 

 

The results of the classification based on the leader-follower condition can be found 
in Table 1 (row Leader-Follower). It is worthy of note that, although the accuracy of 
the classification is lower than in the case of the solo condition, the classifier still has 
very high specificity and precision (only single participant from the control group was 
misclassified). 
Classification – majority rule over solo and leader-follower conditions 

Next we apply the majority vote rule to all results of classifications based on the 
separate features extracted from the data collected in the solo and leader-follower 
conditions. This allows us to achieve unprecedentedly high 93% accuracy, and 
remarkably completely eliminates false positives; see Table 1 (row Majority: S and L-
F) for the other classification measures. This result demonstrates the synergy of using 
different neuromotor biomarkers for classification. Notably the majority rule 
significantly increases the classification precision and specificity, as it classifies a 
participant as a patient only if irregularities are observed in more than half of the 
analysed neuromotor biomarkers. Thus, in order to eliminate type I errors (false 
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positives), i.e. misclassifying controls as patients, it is beneficial to use as much 
information as possible and base the final classification on more than one feature. 

Validation and comparison of the avatar and iCub experiments 

The data collected in the independent iCub experiment36 allows us to validate the 
classification algorithm as well as compare the performance of our methodology 
when using two very different types of leader’s movement. We emphasize that for 
validation we use exactly the same algorithm and features as those used for the 
classification based on the data collected in the leader-follower condition of the avatar 
experiment. Results of the validation can be found in the Table 1 (row Validation: 
iCub L-F). In particular, the results presented in Table 1 (row Validation: iCub L-F) 
show that the proposed method consistently achieves high specificity and precision. 
This is even more significant considering the differences in the experimental 
protocols, see Methods and Methods – Experiments for details. 
Furthermore, our results show increase in sensitivity (ratio of correctly classified 
patients) 57% avatar experiment vs. 77% iCub experiement and accuracy (ratio of 
correctly classified participants) 76% avatar experiment vs. 86% iCub experiment. 
We presume that the increase in sensitivity and accuracy is due to the difference in the 
reference trajectories used in the two experimental conditions. Specifically, the iCub 
experiment used the same set of reference trajectories for every participant, while in 
the avatar experiment the reference trajectory was individualised for every person as it 
was generated using pre-recorded solo movement data of that person. Furthermore, 
due to the hardware limitations, the motion of the iCub robot was slower and had 
shorter range than the motion of the virtual avatar. In our opinion, the observed 
difference in the discriminative power of classification based on coordination 
measures might indicate that the slower and less familiar motion of the iCub robot 
was more difficult to follow for patients than their own more familiar movement. 
Interestingly, this observation echoes our recent finding that following own 
movements is an easier task than following a trajectory different from our preferred 
style of motion35.  
These observations are further corroborated by the fact that there is only a single false 
positive error in both cases, i.e., the obtained specificity and precision have effectively 
the same value, the highest possible value other than 100% (100% is obtained in case 
of lack of false positive errors). Single false positive error suggests that the type of 
reference trajectory affected only performance of the patients in the leader follower 
task. It is possible, that following atypical movement requires more mental effort from 
patients than controls19. Therefore, in future applications it is reasonable to expect 
higher discriminative power in the case of classification based on coordination 
measures if the movement of the leader is atypical and less familiar, e.g. as in our case 
slower and with shorter physical range. 
Finally, we compared if the TP (patients classified as patients) and FN (patients 
classified as controls) for the leader-follower condition in the two experiments differ 
with respect to the positive and negative syndrome scale (PANSS) as assessed by an 
expert clinician. We found that the FN group in the avatar experiment has lower level 
of negative syndromes (p=0.022 using Mann-Whitney-Wilcoxon U) as well as lower 
general psychopathology score (p=0.011 using Mann-Whitney-Wilcoxon U) than the 
TP group; this observation agrees with previously reported results49. Such differences, 
however, are not observed in the TP and FN groups from the iCub experiment 
(p=0.082 for negative syndromes and p=0.61 for general psychopathology score; both 



based on Mann-Whitney-Wilcoxon U). These findings suggest that severity of the 
symptoms affects the level of coordination when the patients are following familiar 
motion and further indicate that using atypical movement in the leader-follower 
condition could be advantageous for classification purposes. We did not find any such 
correlation for the solo condition of the avatar experiment.  
Classification – comparison of the majority vote rule with NSS 

We next compare results of the classification based on the majority vote rule with 
those obtained from the classification based on the standardised set of NSS17, which 
were evaluated by an experienced psychiatrist during a neurological examination that 
was performed before each experiment. Hence, the evaluator was blind to the 
patient’s mirror game performance. For three participants from the control group the 
NSS data was unavailable. 

For NSS classification, the same methodology treating each variable in a 
questionnaire as a feature was employed (algorithm modifications are detailed in 
Methods). The best classification (Table 1, row NSS) was achieved using the 
following features: gait - arms swinging, salivation and arms dropping as defined in17 
Direct comparison between the results presented in Table 1, demonstrates that 
classification based on the neuromotor biomarkers performs slightly better than the 
classification based on the NSS. 
Dependence of the results on the equivalent chlorpromazine dose 

Finally, we tested whether the results of our classifications obtained by means of the 
majority rule and based on the NSS depend on the equivalent chlorpromazine dose of 
psychotropic medication of the patients. When comparing doses in the groups given 
by TP and FN (Majority: S and L-F classification) the probability that doses in the 
two groups are the same is equal to p=0.9714 using Mann-Whitney-Wilcoxon U; for 
TP and FN (NSS classification) the probability that doses in the two groups are the 
same is equal to p=0.8849 using Mann-Whitney-Wilcoxon U. All the performed 
statistical tests confirm that the classification outcomes are unaffected by the dose of 
medication taken by the patients. This analysis did not include one patient for whom 
we do not have data. 

Discussion 
The method developed in our study uses neuromotor biomarkers based on movement 
characteristics, fine-motor coordination and visual-motor coordination to discriminate 
between schizophrenia patients and control subjects on the level of individuals. We 
have also validated the proposed classification pipeline using data collected in an 
independent experiment with a humanoid iCub robot36. The proposed biomarkers 
allow for more accurate classification, in particular with regard to higher specificity 
and precision compared to existing methods based on neuromotor biomarkers14,15,18 
and are as accurate as some proposed classifiers based on neuroimaging, cognitive, 
genetic and socio-environmental features11,50. Furthermore, classification results using 
the NSS (Table 1, row NSS) demonstrate that statistical learning techniques have 
potential to form a basis for the development of quantitative clinical decision support 
tools for analysing data collected during routine neurological examinations. Although, 
the samples in the individual experiments in our study can be considered small, when 
considered together they have a sample size (N=109, 52 patients) that is typical for 
neuroimaging biomarker studies11. Additionally, the fact that our findings have been 
validated in two independent experiments strengthens our conclusions. 



The advantage of using the simplified mirror-game34,35 is that the recorded data can be 
analysed in an un-biased and quantitative manner, while allowing for a degree of 
spontaneity of human motion and interaction. Furthermore, the investigated 
conditions encompass, in a natural way, individual as well as inter-personal aspects of 
NSS and neuromotor deficits. In particular, the leader-follower task and the bi-
directional feedback offered by the cognitive architecture allow to capture some 
aspects of motor abnormalities that are related to social communication. On the other 
hand, exploiting artificial agents allows for high degree of control over the 
experimental conditions, which is practically unachievable in experiments involving 
interactions with human partners. In particular, interactions with artificial agents are 
free of negative attitudes and prejudices toward patients, that are often held by non-
clinical individuals42,43. We thus reveal that such objective, highly controllable and at 
the same time flexible (personalisable) setting, involving aspects of socio-motor 
interaction, is better suited to test psycho-motor differences between controls and 
schizophrenia patients than the existing motor assessment tools. The observed lack of 
100% accuracy (FN>0 for all classification results) and the correlation between 
classification results for the leader-follower condition in the avatar experiment and the 
severity of the patients’ negative syndromes as well as their general psychopathology 
score (measured with PANSS) indicate that patients display different degrees of 
socio-motor impairments. However detailed investigations of the differences between 
patients’ sub-groups is beyond the scope of this paper. 
The main limitation of our study, which also applies to all other studies using 
biomarkers and classification techniques (including neuroimaging studies), is the fact 
that the collected data comes from medicated patients. This is important because most 
of the anti-psychotic drugs have side effects that influence neuromotor behaviour3,16. 
These side effects typically include tardive or withdrawal dyskinesia (involuntary or 
abnormal movements), parkinsonism (tremor, bradykinesia, slowness, rigidity), and 
akathisia (the feeling of inner restlessness and associated need to be in constant 
motion, e.g., rocking or leg crossing). Although we do not know to what degree the 
patients, and hence the results of the current study are affected by the side effects of 
antipsychotic medications, we have verified that our results do not depend on the 
equivalent chlorpromazine dose prescribed to individual patients. It is worthy of note 
that there is a growing body of evidence suggesting that changes in kinematics are 
inherent to schizophrenia and can be observed before onset of psychosis14,15,18,21,27,31 
as well as in medication-free patients17,21,25-27. Moreover, it has been demonstrated 
that subtle hand motor dysfunctions can be differentiated from drug-induced 
extrapyramidal dysfunction26. Future research with pre-medication and medication-
free participants is needed in order to assess diagnostic potential (diagnostic 
biomarker) of the proposed methodology. 
Furthermore, translation of the presented methods to everyday clinical practice 
requires clinical trials that would evaluate socio-motor functioning in at risk 
populations and that would be followed up over time. We believe that such studies, 
requiring significant effort, are worthwhile because of advantages of the proposed 
method. Firstly, the experimental set-up with the computer avatar can be easily placed 
in a clinical environment. It consists of simple and off-the shelf technology, namely a 
wide-angle camera connected to a computer with installed cognitive architecture, and 
is significantly cheaper than any neuroimaging equipment. Secondly, the 
measurement procedure is quick and non-invasive, and has play-like qualities that 
make it a potentially attractive diagnostic tool for children. This aspect of our method 



could become particularly important as early screening is considered a key element in 
prevention and treatment of schizophrenia 6,16,50. Finally, considering existing results 
showing that schizophrenia and social phobic patients have different coordination 
patterns51, we believe that the proposed method has a differential diagnostic potential. 
If successfully confirmed in future research, it could then inform preventive 
interventions that could target not only schizophrenia but also a broader range of 
mental disorders8,52. 
Even though, it is only recently that the motor systems domain has been 
acknowledged as an important factor that could allow for broader understanding of 
neural substrates of schizophrenia and other mental disorders28, interpersonal 
coordination has already been recognised as a potential component of new therapeutic 
protocols based on social-priming and similarity24,53. Consequently, interaction with 
artificial agents could become a part of future therapeutic protocols that would allow 
for real-time monitoring of therapy progress. 

Materials and Methods 

Patients were recruited from the University Department of Adult Psychiatry (CHRU 
Montpellier, France) and fulfilled the Diagnostic and Statistical Manual of Mental 
Disorders criteria for schizophrenia. Diagnoses were established using the Structured 
Clinical Interview for DSM–IV-TR (SCID49). All patients received antipsychotic 
medication. The patients were in the stable phase of the illness according to the 
current treating psychiatrist and as defined by having no hospitalisations or changes in 
housing in the month prior to entering the study. 

Exclusion criteria were substance dependency other than cannabis or tobacco, 
substance abuse other than cannabis or alcohol, and co-morbid neurological disorder. 

Age and gender-matched healthy participants were recruited from a call for 
participation on the hospital’s website and local community. They had no lifetime 
history of any psychosis or affective disorders diagnosis according to the MINI54. 
Controls with a family member with bipolar or schizophrenia disorders were 
excluded.  
All participants were native French speakers with a minimal reading level validated 
using the National Adult Reading Test f-NART55.  
All participants provided written informed consent, prior to the experiment approved 
by the National Ethics Committee (CPP Sud Mediterannee III, Nımes, France, 
#2009.07.03ter and ID-RCB-2009-A00513-54) conforming to the Declaration of 
Helsinki. The methods in the current study were carried out in accordance with the 
approved guidelines. 

NSS were evaluated by experienced clinicians (clinical psychiatrists) trained in them, 
and blind to the patient’s mirror game performance 17. 

Demographics of the participants in all the experiments can be found in Table 2. 
  



 
Table 2 Social, demographic and clinical information of schizophrenia patients and healthy controls in 
the avatar and iCub experiments. PANSS stands for the positive and negative syndrome scale. U - 
Mann-Whitney test, Chi2 - Chi-squared test.  

Avatar experiment Patients (N=30) Controls (N=29) Statistics 

  Mean Min-Max Mean Min-Max  

Age (years) 32.5 18-58 30 22-49 U=423.5, p=0.54 

Sex (male/female)  25/4  27/3  Chi2=0.2, p=0.65 (Pearson) 

      

iCub experiment Patients (N=22) Controls (N=22) Statistics 

 Mean Min-Max Mean Min-Max  

Age (years) 29 21-45 28 19-46 U=218, p=0.57 

Sex (male/female)  17/5  15/7  Chi2=0.11, p=0.735 (Yate) 

      

PANSS iCub (N=22) Avatar (N=30) Statistics 

 Mean Min-Max Mean Min-Max  

PANSS Positive  10.5 7-18 9.4 7-15 U=284.5, p=0.39 

PANSS Negative 11.36 7-22 15.1 7-33 U=216, p=0.035 

PANSS Psychopathology 22.9 17-35 27.1 19-38 U=176, p=0.0065 

PANSS Total 44.77 31-66 51.1 35-75 U=210, p=0.039 

 
All data analysis and modeling was performed in Matlab. 

Experiments 

The cognitive architecture used in the experiments uses nonlinear control algorithms 
coupled with a kinematic model of the arm motion to generate the artificial agent’s 
movement (Fig. 1b. The artificial agent’s movement is based on a pre-generated 
trajectory that is modulated, in real-time, in response to the human player’s 
performance38-40. 

Experiment with computer avatar (solo condition and leader-follower condition): 

- 29 controls and 30 patients. 

- Physical movement range 180 cm. In solo and leader-follower conditions, 
participants were standing in front of a display showing the computer avatar. 
A horizontal string was mounted in front of the participant. A ball with a small 
handle was mounted on the string. Participants were instructed to move the 
ball left and right along the string. 

- Solo condition instruction: Play the game on your own, create interesting 
motions and enjoy playing. 

- Avatar leader – human follower condition: 12 recordings (30 sec.) 

- Reference trajectory: participant’s own pre-recorded motion 

- Solo condition: 4 recordings (60 sec.) 



- Solo condition was recorded before (1 trajectory) and between the Leader-
Follower trials (3 trajectories). 

- Recorded position data in arbitrary units in range [0,1]; original sampling rate 
c.a. 40 Hz (interpolated in post processing to exactly 40Hz). Low-pass 
filtering with 2Hz cut-off done using phase preserving Butterworth filter of 
degree 2. 

Experiment with iCub robot (leader-follower condition):  

- 22 controls and 22 patients.  
- Robot leader – human follower: 15 recordings (60 sec.).  

- Physical movements range c.a. 30 cm. 
- Reference trajectories: 3 slow, 2 fast (all 5 trajectories were slower than 

typical solo motion). Trajectories were generated using the generative process 
described in Supplementary Materials – Generative process, and were based 
on uniform distributions of durations and lengths of movement segments, not 
on pre-recorded trajectories. 

- Recorded position data is in arbitrary units in range [0,1]; original sampling 
rate 200 Hz. Low-pass filtering with 2Hz cut-off done using phase preserving 
Butterworth filter of degree 2. Data was next down-sampled to 20 Hz. 

The main differences between the avatar and iCub experimental protocols are: 

- Duration of the leader-follower task: 30 sec. in the avatar experiment vs. 60 
sec. in the iCub experiment; 

- Type of reference trajectory: participant’s own trajectory (different for each 
participant) in the avatar experiment vs. generated human-like slow trajectory 
in the iCub experiment (the same set of trajectories for all the participants); 

- Motion of the iCub robot was much slower then of the computer avatar; speed 
was limited by the robot hardware limitations; 

- Physical range of motion: 180cm in the avatar experiment vs. 30 cm in the 
iCub experiment; the range was limited by the robot hardware limitations. 

Features 

In contrast to most biomarker studies, rather than using indices based on a single 
number, we propose features that are distributions of values. We are using 
distributions because they can be quantitatively compared with each other, while 
preserving significantly more information about a sample than for example its mean. 
In consequence, this allows for more accurate discrimination between subjects. 
Solo condition: 

- ΔP0, distributions (histograms with 51 equally distributed bins) of signed 
lengths of movement segments, a part of the position trace between two 
consecutive points were direction of movement changes (Fig. 2b). For analysis 
the position time-series were concatenated before computing ΔP0 and their 
histograms. 

- Global wavelet spectrum (GWS) (Fig. 2d). For analysis GWS from all the 
recorded trials are averaged before being analysed. The wavelet transform is 
computed using the toolbox described in48; with default parameter settings. 



- Distributions (2D histograms on a 100 by 100 grid) of coefficients of the 
stochastic model of hand motion – a feature inspired by learning in the model 
space approach56; the generative process used to model human movement 
follows the integrated human movement framework presented in previous 
work44. For analysis the position time-series are concatenated before 
computing the coefficients of generative process. A detailed description of the 
stochastic model of hand motion can be found in Supplementary Note. 

Leader-follower condition: 

- Distributions of the absolute phase lag over frequencies, |ϕr(f)|, computed as 
the absolute value of a circular mean (over time) of relative phase angles from 
the significant regions of cross-wavelet coherence (Fig. 3c). For analysis 
distributions from all the recorded trials are averaged before being analysed. 
The cross-wavelet coherence is computed using the toolbox described in48; 
with default parameter settings. 

- Distributions (histogram with 51 equally distributed bins) of the relative phase 
during interaction, ϕr(t) (Fig. 3e); for analysis time-series of ϕr(t) are 
concatenated before computing histograms. Estimate of the ϕr(t) is computed 
as a circular mean (over frequencies) of the relative phase angles from the 
significant regions of cross-wavelet coherence for frequencies lower than 2Hz. 

Number of bins in the ΔP0, histograms of ϕr(t) and 2D histograms of the generative 
process coefficients are chosen empirically in a manner that assured good 
representation of the data; results are not sensitive to small changes in number of bins. 
Number of frequencies over which the |ϕr(f)| and the GWS depends on the parameter 
setting for the computations of wavelet transform and cross-wavelet coherence. 

As already mentioned, all features are based on combined data collected in a given 
condition for each individual participant, this ensures the statistically significant 
discriminative power provided by larger samples or longer time-series. 
Classification algorithm 

Below we specify all steps of our classification and illustrate their application in 
regard to the distribution of absolute phase lag over frequencies, |ϕr(f)|, computed for 
the data from the iCub experiment as an example. Since all our features are 
distributions we use the same procedure for classifying them. In particular our 
approach is a dissimilarity-based classification method that uses isometrical 
embedding of dissimilarity data57. Our methodology can be summarised in the 
following steps: 
Step 1 
We compute the earth mover’s distances58,59 between all distributions constructed 
from the data; for applications of the earth mover’s distances in movement science 
see35; for each feature we obtain one matrix of size 44x44 in the iCub experiment and 
59x59 in the Avatar experiment. 

Step 2 
We convert the distances matrix (comprising dissimilarities between the participants, 
based on a particular feature) into points in an abstract geometric space using 
Multidimensional Scaling (MDS), which is a standard data mining technique60. 
Step 3 



In order to classify the points in the MDS-space obtained in the previous step we use 
standard linear and pseudo-quadratic discriminant analysis as implemented in Matlab. 
We use simpler discriminants, rather than support vector machines, because they are 
faster and would be easier to implement and use in real clinical practice. Additionally, 
we found the computational cost of obtaining optimal parameters for finding support 
vectors to be quite high. 

Step 4 
In the spirit of successful strategy of selecting regions of interest from the classifiers 
applied to neuroimaging data61 we next select the subset of dominant dimensions of 
the MDS-space. In order to find the best subset we compare the results of the 
classifications for all possible combinations of sets of up to 6 coordinates out of first 
15 dimensions generated with MDS. This step is necessary, since we do not know 
what the interpretable, and significant for discrimination, correlates are of the 
dominant MDS-space coordinates. 

Step 5 
For each set of coordinates we run classification applying leave-one-out cross-
validation scheme. Leave-one-out cross-validation scheme provides a conservative 
estimate of accuracy in case of a small number of datasets. The scheme corresponds 
to the situation that we would like to classify a new participant using classifier based 
on all the available data. We use the leave-one-out cross-validation scheme also 
because schizophrenia is a spectrum disease and it is possible that only subpopulation 
of schizophrenia patients would have symptoms that manifest as neuromotor 
biomarkers. 
Step 6 
For each set of the coordinates we compute the following classification measures: 

Accuracy = (TP+TN) ⁄ N, 

Sensitivity = TP ⁄ (TP + FN) = TP ⁄ NPt,t, 
Specificity = TN ⁄ (TN + FP) = TN ⁄ NCt,t, 

Precision = TP ⁄ (TP + FP) = TP ⁄ NPt,p. 
Here: N is total number of participants, TN is number of true negative (controls 
classified as controls), FN is number of false negative (patients classified as controls), 
FP is number of false positive (controls classified as patients), TP is number of true 
positive (patients classified as patients), NCt,t is number of true controls, NPt,t is 
number of true patients and NPt,p is number of predicted patients. Precision is also 
known as positive predictive power/ value (PPP/ PPV). 
Step 7 
The results of our classification methodology are determined on the basis of the set of 
the coordinates that give highest accuracy. If two sets of coordinates have the same 
accuracy, we choose the one with higher precision. If more than one set of coordinates 
have the same accuracy and precision, we use all of them as classifiers and apply 
majority rule to their outcomes. Additionally, we compare results obtained with linear 
and pseudo-quadratic discriminant and choose the one with highest accuracy. In cases 
when the accuracy is the same for both discriminants, we choose the one with higher 
precision. 



Majority rule 
Majority rule means that we classify a participant as a patient only if s/he is indicated 
as a patient by results of more than half of classifications based on separate features, 
e.g., 2 out of 2, 2 out of 3, 3 out of 4, 3 out of 5, etc. 

Illustrative example of the MDS-space and of the Step 7 of the classification 
algorithm 

Figure 4A shows an example representation of the 44 participants using first two 
dominant dimensions of the MDS-space based on distances between |ϕr(f)| computed 
for the data from the iCub experiment. Each point corresponds to a participant, red 
dots indicate patients and blue controls. The points corresponding to patients and 
controls occupy two different regions in the MDS-space (Fig. 4a). 
We next compare results of classification using different sets of coordinates of the 
MDS-space based on the EMDs between |ϕr(f)| distributions (Fig. 4b and 4c). Even 
though, the results are already satisfying for the classifiers based on the first n 
dominant coordinates of the MDS-space (black crosses – First coordinates), we 
notice that the accuracy does not increase monotonically, suggesting that the first n 
coordinates are not the optimal set for creating a classifier. In order to validate this 
observation further, we analyse results the classification using the sets of n optimal 
coordinates chosen on the basis of the accuracy criterion (green circles – Best 
coordinates). In particular, we observe that for the best coordinates the accuracy of 
the classification increases monotonically with the number of coordinates n, also the 
final accuracy when using the set of 6 best coordinates is higher than one achieved 
using the first 6 dominant coordinates. 

 
Fig. 4 Illustrative example of the MDS-space and of the Step 7 of the classification algorithm. (A) 
Two first coordinates of the MDS-space computed from the EMDs between distributions of absolute 
phase lag over frequencies |ϕr(f)|. Red dots indicate patients while blue dots indicate controls. 
Corresponding classification measures are: accuracy=0.7727, sensitivity=0.7272, specificity=0.8181, 
precision=0.8000. Panel (B) shows accuracy and (C) precision of classification as a function of number 
of the coordinates. Black crosses show result of classification using the first n dominant coordinates. 
Green circles show result of the best classification using the set of n coordinates out of 15 dominant 
coordinates. 
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Modifications of the algorithm for classification based on questionnaires 

For classification of the questionnaires data we start from Step 4 of the above 
algorithm, i.e. we treat the values in the questionnaires as coordinates in an abstract 
geometric space. In the case of the avatar experiment we have 84 NSS variables, we 
reduced their number by choosing 15 with the lowest p-value (<0.3) of the Mann-
Whitney-Wilcoxon U test when comparing the value of the variable for the two 
groups. The 15 selected NNS variables are: gait – left arm swinging, gait – both arms 
swinging, gait – right arm swinging, fist edge-palm – left hand, apraxia, tandem walk 
(heel-to-toe), shoulder shaking, right hand (lateral preference), fist edge-palm – sum, 
shoulder shaking – left shoulder, salivation, arm dropping – left arm, arm dropping – 
right arm, arm dropping – sum, elbow rigidity – sum. In the case of the iCub 
experiment we have only 10 variables, which allows us to test all of their possible 
combinations (see results in Supplementary materials – Table S4). After selecting the 
variables we continue with Steps 5, 6 and 7. 

 
Supplementary Materials 

Table S1 – Results of classification of based on the features extracted from the solo 
data from the avatar experiment 

Table S2 – Results of classification based on individual features extracted from the 
leader-follower data from the avatar experiment 

Table S3 – Results of classification based on the leader-follower data from the iCub 
experiment 

Table S4 - Results of classification based on LSAS anxiety total, autism-spectrum 
quotient and conscientiousness from big five inventory from the clinical evaluation 
questionnaires collected in the iCub experiment. 
Note - Stochastic model of motion 
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Supplementary Materials 
 
Table S1 Results of classification of based on the features extracted from the solo data from the 
avatar experiment, 30 patients and 29 controls. Features: (c4, c3), (c4, c2), (c3, c2) – 2D 
histograms of pairs coefficients of the generative process; 		Δp0  – histograms of signed lengths of 
movement segments; GWS – global wavelet spectrum; Maj – majority over (c4, c3), (c4, c2), (c3, 
c2), 		Δp0 , GWS. 
 

Feature Ctrls/Pts TN FP TP FN Accuracy Sensitivity Specificity Precision 

(c4, c3) 29/30 23 6 21 9 0.7458 0.7000 0.7931 0.7778 
(c4, c2) 29/30 25 4 21 9 0.7797 0.7000 0.8621 0.8400 

(c3, c2) 29/30 21 8 26 4 0.7966 0.8667 0.7241 0.7647 
ΔP0 29/30 21 8 24 6 0.7627 0.8000 0.7251 0.7500 

GWS 29/30 23 6 21 9 0.7458 0.7000 0.7931 0.7777 
Maj 29/30 28 1 27 3 0.9322 0.9000 0.9655 0.9642 

 
  



Table S2 Results of classification based on individual features extracted from the leader-follower 
data from the avatar experiment, 30 patients and 29 controls. Features: 	φr  – profile of relative 

phase during interaction; 
	
φr f( )  – distribution of absolute phase lag over frequencies; Maj – 

majority over 	φr  and 
	
φr f( ) . 

 

Feature Ctrls/Pts TN FP TP FN Accuracy Sensitivity Specificity Precision 

ϕr(t) 29/30 26 3 21 9 0.7966 0.7000 0.8966 0.8750 

|ϕr(f)| 29/30 23 6 27 3 0.7797 0.7667 0.7931 0.7931 
Maj 29/30 28 1 17 13 0.7627 0.5667 0.9655 0.9444 

 
  



Table S3 Results of classification based on the leader-follower data from the iCub experiment, 
21 patients and 21 controls. Features: 	φr  – profile of relative phase during interaction (majority 

over 2 sets of coordinates from multidimensional scaling); 
	
φr f( )  – distribution of absolute 

phase lag over frequencies (majority over 14 sets of coordinates from multidimensional scaling); 
Maj – majority over 	φr  and 

	
φr f( )  

(majority over 16 sets of coordinates: 2 sets of coordinates 

for	φr  and 14 sets of coordinates for 
	
φr f( ) ). 

 

Feature Ctrls/Pts TN FP TP FN Accuracy Sensitivity Specificity Precision 

ϕr(t) 22/22 22 0 12 10 0.7727 0.5455 1 1 

|ϕr(f)| 22/22 21 1 17 5 0.8636 0.7727 0.9545 0.9444 
Maj 22/22 21 1 17 5 0.8636 0.7727 0.9545 0.9444 

 



Table S4 Results of classification based on LSAS anxiety total1, autism-spectrum quotient2 and 
conscientiousness from big five inventory3 from the clinical evaluation questionnaires collected 
in the iCub experiment. 

 

Data Ctrls/Pts TN FP TP FN Accuracy Sensitivity Specificity Precision 

Questionnaires a 22/22 20 2 15 7 0. 7955 0.6818 0.9090 0.8824 

 

a) Clinical indices were rated by experienced clinically trained psychiatrists, blind to the 
patients’ mirror game performance. The best classification was achieved for the following set of 
measures (3 out of 10): LSAS anxiety total1, autism-spectrum quotient2 and conscientiousness 
from big five inventory3 (linear discriminant classifier with leave-one-out validation). Note that, 
classification based on the neuromotor biomarkers, presented in Table S3 has higher accuracy 
and precision than classification based on data collected in clinical interviews. 
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Note – Stochastic model of a hand motion 

The importance of the shape of movement segments for interpersonal coordination was raised in 
the recent literature1,2. In order to model hand motion in the solo condition of the mirror game 
(see section Classification – solo condition) we used the integrated human movement 
framework3, which consist of three steps: 

1.) Abstract representation of intended movement (coded as a set of boundary conditions), 
2.) Generation of virtual minimum-jerk trajectory, 

3.) Generation of the actual movement according to mass-spring logic. 
The model presented in this paper describes steps 1.) and 2.) of the above scheme. The third step 
is realized by an interactive cognitive architecture described in4-6. 
The human movement present in the mirror game is complex, non-periodic and specific for each 
individual person (see Fig. S1). Thus, its generation is a significant challenge. Considering 
different aspects of this modelling task, we found that using a stochastic process was the best 
way of capturing its key features. 
More specifically, to generate the position trajectory we first produce a sequence of turning-
points 		p0i  of position trajectory (that is points where direction of movement changes). To this 
end we use a Markov process7 with coefficients estimated from a pre-recorded trajectory. These 
turning-points constitute the set of boundary conditions from step 1, which is necessary to 
generate virtual equilibrium trajectory3,8,9 in step 2. The trajectory between the turning points is 
computed using a 5th order polynomial in accordance with theory of minimum-jerk3,10-12. In 
order to assure that the generated virtual minimum-jerk trajectory is dynamically similar to the 
source trajectory, we compute the earth’s mover distance between histograms of their 
velocities13. 

The algorithm used for generation of the motion has the following structure: 
1.) Normalise the source position time-series and estimate corresponding velocity and 

acceleration time-series, 

2.) Extract coordinates of the turning-points, 		p0 t( ) = x(t): v(t)=0{ } , by finding times of 

zero velocity 	ti , 

3.) Compute lengths of the motion between consecutive turning-points 

 		Δp0 ti( ) = p0 ti( )− p0 ti−1( ) , 

4.) Compute durations of the motion corresponding to the different lengths 

		Δt ti( ) = ti −ti−1 , 



5.) Find corresponding values of acceleration at the end of the movements	
ai = ai ti( ) ; keep the 

lengths, 		Δp0i = Δp0 ti( ) , durations 	
Δti = Δt ti( ) , and accelerations 	ai , as triplets 

		 Δp0i ,Δti ,ai{ } , 

6.) Divide the interval [-0.5,0.5] into 	N  bins, where	N  is one third of the number of turning-
points, 		N =#Δp0/3 , 

7.) Generate Markov process matrix 	L  with elements, 
	
Ljk = P nj nk( ) , given by conditional 

probabilities of being in bin 	
nj  at time 	ti conditioned on being in bin 	nk  at time 		ti−1 , for 

	
nj >nk , i.e. for movements from left to right, 

8.) Generate a separate Markov process matrix 	R  for transition in opposite direction, i.e. for 

	
nj <nk , 

A new trajectory is then generated in the following way: 

9.) Pick randomly coordinate of the first point 		xi=1 , 

10.) Take matrix 	R  (or 	L ) and find the next bin. Pick at random from all the coordinates 
available in the new bin a coordinate of the next turning-point 		xi+1 , 

11.) Compute the length of the movement		Δp0i = xi+1 − xi , and find the corresponding duration 

	Δti  and acceleration at the end of the movement 		ai+1 ; for the first point assume 		a1 =0 , 

12.) Use the boundary values:  

		

p 0( ) = xi , p Δti( ) = xi+1 ,
v 0( ) =0, p Δti( ) =0,
a 0( ) = ai , a Δti( ) = ai+1 ,  

to find coefficients of the 5th degree polynomial describing single movement segment 
(using its derivatives):  

		

p t( ) = b5t5 +b4t 4 +b3t3 +b2t2 +b1t +b0 ,
dp t( )
dt

= v t( ) =5b5t 4 +4b4t3 +3b3t2 +2b2t +b1 ,

dv t( )
dt

= a t( ) =20b5t3 +12b4t2 +6b3t +2b2.

 

13.) Use the polynomial 	
p t( )  to compute positions between 		xi , xi+1 , 

14.) Increase time by 	Δti , 



15.) Repeat steps 10 to 14, interchanging matrices 	R  and 	L  between repetitions; continue until 
new trajectory has requested duration. 

A check is then carried out to verify if the generated trajectory satisfies similarity 
condition: 

16.) Compute earth’s mover distance between velocity profiles of the source and generated 
trajectories and check if it is smaller than a requested threshold, 

17.) If the condition is not satisfied repeat steps 9 to 16; otherwise return the generated 
trajectory. 

 
Figure S1 illustrates the process of extracting information, from the pre-recorded solo trajectory, 
necessary to generate a new position trajectory with the same dynamical properties as the 
original one. Fig. S1(A) shows a source position trajectory (black), with the turning points 		p0  
indicated with blue dots and lengths of the movement segments 		Δp0  indicated by the blue bars. 
Fig. S1(B) shows the corresponding velocity time-series with the durations of the velocity 
segments 	Δt  indicated with green bars. Panel (C) shows acceleration trace with the accelerations 
at the end of the velocity profiles indicated with red dots. Finally, Fig. S1(D) shows an example 
of a trajectory generated by means of the generative process described above. 
 

To our knowledge we present here the first model for generation of virtual minimum-jerk 
trajectories in the mirror game. The model can generate human-like motion while preserving 
motion signature13 (style of motion) of individual people. The model can be extended beyond 
one dimension by means of the latest developments to the minimum-jerk theory14. 



 
Fig. S1 Visualisation of the input parameters for the generative process. (A) Position trace with indicated positions 
at change of direction 		p0  (blue dots) and lengths of movement segment 		Δp0  (blue bars). (B) Corresponding 

velocity trace with durations of velocity segments 	Δti  indicated by the green bars. (C) Acceleration trace with 

accelerations at the end of a velocity segments 	ai  indicated by red dots. (D) Position trace generated by means of 

the described generative process fed with parameters from panels (A)-(C). 

 
In order to classify our data we are using two features of our generative process:  

- distributions of the lengths of the movement segments 		Δp0 , 
- distributions of the coefficients of the polynomials used to generate all the individual 

velocity segments of the new generated trajectories: 
 

		v t( ) = c5t 4 + c4t3 + c3t2 + c2t + c1 , 

 

However, for classification we are using only coefficients 		c2  to 		c5  because the coefficient 		c1 =0  

due to the boundary conditions 		v 0( ) =0, v Δt( ) =0 . 
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Figure S2 illustrates the bivariate distributions of all the pairs of coefficients from the set 

		 c2 ,c3 ,c4 ,c5{ } . Interestingly, the classification produces best results when it is based on all the 

pairs of coefficients from the set 		 c2 ,c3 ,c4{ } , what indicates that the bivariate distributions of the 
coefficients of the lower powers capture some subtle differences between the shapes of velocity 
segments (a part of the velocity time-series between two consecutive times of zero velocity15) of 
patients and controls. 

 

 
Fig. S2 Bivariate distributions of the coefficients of the generative process used to generate trajectory in Fig. 
S1(D). 
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