
1

Probabilistic Classification Vector Machines

Huanhuan Chen, Student Member, IEEE, Peter Tiňo, and Xin Yao, Fellow, IEEE

The authors are with The Centre of Excellence for Research in Computational Intelligence and Applications (CERCIA),

School of Computer Science, University of Birmingham, Birmingham B15 2TT, United Kingdom, email: {H.Chen, P.Tino,

X.Yao}@cs.bham.ac.uk.

2

Abstract

In this paper, a sparse learning algorithm, probabilistic classification vector machines (PCVMs), is

proposed. We analyze relevance vector machines (RVMs) for classification problems and observe that

adopting the same prior for different classes may lead to unstable solutions. In order to tackle this

problem, a signed and truncated Gaussian prior is adopted over every weight in PCVMs, where the

sign of prior is determined by the class label, i.e. +1 or −1. The truncated Gaussian prior not only

restricts the sign of weights but also leads to a sparse estimation of weight vectors, and thus controls

the complexity of the model. In PCVMs, the kernel parameters can be optimized simultaneously within

the training algorithm. The performance of PCVMs is extensively evaluated on four synthetic data sets

and 13 benchmark data sets using three performance metrics, error rate (ERR), area under the curve

of receiver operating characteristic (AUC) and root mean squared error (RMSE). We compare PCVMs

with soft-margin support vector machines (SVMSoft), hard-margin support vector machines (SVMHard),

SVM with the kernel parameters optimized by PCVMs (SVMPCVM), relevance vector machines (RVMs)

and some other baseline classifiers. Through five replications of twofold cross-validation F test, i.e. 5 ×
2 cross validation F test, over single data sets and Friedman test with the corresponding post-hoc test to

compare these algorithms over multiple data sets, we notice that PCVMs outperform other algorithms,

including SVMSoft, SVMHard, RVM and SVMPCVM, on most of the data sets under the three metrics,

especially under AUC. Our results also reveal that the performance of SVMPCVM is slightly better than

SVMSoft, implying that the parameter optimization algorithm in PCVMs is better than cross validation

in terms of performance and computational complexity. In this paper, we also discuss the superiority of

PCVMs’ formulation using maximum-a-posterior (MAP) analysis and margin analysis, which explain

the empirical success of PCVMs.

I. INTRODUCTION

In binary classification we are given a set of input vectors {xi}N
i=1 together with the corre-

sponding class labels {yi}N
i=1, where yi ∈ {1,−1} . The goal is to infer a function f(x;w) based

on this training set. This can be done by choosing a learning model f(·) which is controlled by

some unknown parameters w, and “learning” these parameters from the given training set. The

obtained classifier is evaluated by its generalization ability, i.e. how accurately it performs on

new data assumed to follow the same distribution as the training data.

Recently the model, in which the prediction f(x;w) is expressed as a linear combination of

3

basis functions φθ(x), has attracted much research interest [3], [26]:

f(x;w) =
N∑

i=1

wiφi,θ(x) + b = Φθ(x)w+b, (1)

where the weight vector w = (w1, · · · , wN)T is parameter of the model, b is the bias, and

Φθ(x) = (φ1,θ(x), · · · , φN,θ(x)) is the basis function vector, wherein θ is the parameter vector

of the basis function. The learning algorithm is to adjust the parameters w = (w1, · · · , wN)T , b

and θ to achieve a good generalization ability.

Among the range of model (1), support vector machines (SVMs) [27] are one of the most

popular methods. SVMs make predictions based on the function:

f(x;w) =
N∑

i=1

wiKθ(x,xi) + b = Kθ(x)w + b, (2)

where Kθ(x) = (Kθ(x,x1), · · · , Kθ(x,xN)) is the kernel function and the weight vector w is

parameter of the model. Note that the SVM predictor is not defined explicitly in this form, rather

(2) emerges implicitly as a consequence of the use of the kernel function to define a dot-product

in some notional feature space.

The success of SVMs is attributed to the margin maximization theory [27]. The formulation

of SVMs maximizes the margin between different classes, leading to a sparse model depending

on the training points that either lie on the margin or on the wrong side of it.

Although SVMs perform well for a broad range of practical applications, and is widely

regarded as the state-of-the-art approach, it suffers from the following disadvantages:

• Non-probabilistic but hard binary decisions do not provide the uncertainty for predictions.

The probabilistic predictions are particularly crucial in classification problems when poste-

rior probabilities of class membership are adapted to varying class priors and asymmetric

misclassification costs. The probabilistic predictions are also important for decision making.

Some post-processing techniques have been employed to transform the binary outputs to

probabilistic outputs for SVMs. For example, Platt et al. [21] trained the parameters of an

additional sigmoid function to map the SVMs outputs into probabilities. However, Tipping

argued that these estimates are unreliable [26].

• The number of support vectors grows linearly with the size of the training set, which

increases the computational complexity when the problem becomes large. Some post-

4

−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RVM, σ =0.5, vectors =7, error=9.9%

−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PCVM, σ =0.5, vectors =5, error=9.4%

−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SVM, σ =0.5, C =10, vectors =94, error=9.4%

−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

RVM, σ =0.3, vectors =243, error=12.6%

−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

PCVM, σ =0.3, vectors =4, error=8.5%

−1.5 −1 −0.5 0 0.5 1

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

SVM, σ =0.3, C =10, vectors =98, error=9.7%

Fig. 1. Illustration of decision boundaries of RVM, PCVM and SVM with same kernel parameters for synth data set. The

vectors whose weights have opposite signs are shown circled.

processing techniques are often required to reduce the computational complexity [4] of

SVMs.

• Several parameters need to be tuned by cross validation. The parameters, including the

error/margin trade-off parameter C (a large C corresponding to assigning a higher penalty

to errors) and the parameters of kernel function, are crucial for the performance of SVMs.

Optimization of these parameters usually involves grid search by cross validation, whose

computation is extremely expensive. Once the inappropriate range of search grid is adopted,

the obtained parameters do not work and we have to re-specify the search range and repeat

the process.

In order to address these problems of SVMs, Relevance Vector Machines (RVMs) have been

proposed [26] to produce probabilistic predictions based on Bayesian techniques. RVMs introduce

a zero-mean Gaussian prior over every weight wi and make use of Bayesian Automatic Relevance

Determination (ARD) framework [17], [18] to obtain a sparse solution. As a result of sparseness-

inducing prior, posteriors of many weights are sharply distributed around zero, hence these

weights are pruned and the model becomes sparse.

5

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

RVM, σ =0.5, vectors =16, error=11.6327%

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

PCVM, σ =0.5, vectors =15, error=11.551%

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

SVM, σ =0.5, C =10, vectors =104, error=11.4286%

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

RVM, σ =0.7, vectors =355, error=12.4694%

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

PCVM, σ =0.7, vectors =13, error=11.6327%

−3 −2 −1 0 1 2 3

−2

−1

0

1

2

3

SVM, σ =0.7, C =10, vectors =101, error=11.0408%

Fig. 2. Illustration of decision boundaries of RVM, PCVM and SVM with same kernel parameters for Banana data set. The

vectors whose weights have opposite signs are shown circled.

However, RVMs [26] adopt the zero-mean Gaussian prior over weights for both positive and

negative classes in classification problems, hence some training points that belong to positive

class (yi = +1) may have negative weights and vice versa. This formulation might result in the

situation that the decision of RVMs is based on some untrustful vectors, and thus is sensitive to

the kernel parameter. Figures 1 and 2 illustrate this phenomena in RVMs.

The source code of RVM is directly downloaded from Tipping’s website1. We utilize Ripley’s

synth dataset2 and Rätsch’s banana data set3 in these two figures. The synth data were generated

from mixtures of two Gaussians by Ripley [24], with the classes overlapping to the extent that

the Bayesian error is around 8%. Banana is generated by Rätsch [23] with more complicated

decision boundaries. In Rätsch’s implementation, there are 100 folds in the banana data set and

Figure 2 is based on the first fold. In both figures, the Gaussian RBF kernel function has been

1http://www.miketipping.com/

2http://www.stats.ox.ac.uk/pub/PRNN/

3http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

6

used for SVMs and RVMs.

According to these figures, RVMs often utilize the vectors with opposite signs even with

well-selected kernel parameters. Assumed that ‘×’ stands for positive class and ‘•’ stands for

negative class. In the first sub-figure of Figure 1, RVMs assign a negative weight to a positive

vector that is in the heart of positive area. Intuitively, it is unstable to trust this negative weight

on the positive vector. When the kernel parameter is changed a little, in Figure 1 from 0.5 to

0.3, RVMs utilize much more redundant vectors (243 out of 250, where almost half are with

opposite weights) than SVMs and thus overfit the noise. The results are similar in Figure 2.

Compared with RVMs, PCVMs and SVMs are more robust with respect to kernel parameters.

PCVMs and SVMs always assign postive/negative vectors with positive/negative weights. This

principle is implemented in SVMs by enforcing the Lagrange multipliers to be non-negative.

In the Equation (2), the weight vector is defined as w = (υ1y1, · · · , υNyN)T , where υi’s are

non-negative Lagrange multipliers and yi ∈ {1,−1} are the class labels. It means that wi = υiyi

must have the same sign (some are zero) as the corresponding yi.

However, as a probabilistic classification model, RVMs do not follow this principle and adopt

a zero mean Gaussian for both classes, which facilitates the integral computation but results in

sub-optimal results.

In order to address this problem of RVMs and propose an appropriate probabilistic model for

classification problems, this paper proposes a probabilistic algorithm, probabilistic classification

vector machines (PCVMs), which introduce different priors over weights for training points

belonging to different classes, i.e. the non-negative, left-truncated Gaussian for the positive class

(yi = +1) and the non-positive, right-truncated Gaussian for the negative class (yi = −1).

PCVMs also implement a parameter optimization procedure for kernel parameters in the training

algorithm, which is proven to be effective in practice. As the integral is intractable in probabilistic

inference with the truncated Gaussian prior, a closed form Expectation-Maximization (EM) is

used to get a maximum-a-posterior (MAP) estimation of parameters.

Our approach not only addresses the issues concerned with SVMs, but also provides the follow-

ing advantages: (1) Being a probabilistic model, the approach produces the probabilistic outputs

for new test points. (2) The procedure for optimizing kernel parameters in the EM algorithm is

effective and avoids the computationally expensive grid search by cross validation. (3) Because

of the sparseness-inducing prior, the model generates adequate sparseness in the estimation of

7

weight vector. The sparseness controls the complexity and reduces the computational complexity

in the test stage.

The rest of this paper is organized as follows. Section II proposes the probabilistic classification

vector machine algorithm, followed by experimental results and analysis in Section III. Section

IV discusses the formulation of PCVMs by maximum-a-posterior (MAP) analysis and margin

analysis. Finally, Section V concludes the paper and presents some future work.

II. PROBABILISTIC CLASSIFICATION VECTOR MACHINE

In this section, we will present the model specification for classification problems in Section

II-A, then the prior over weight vectors will be discussed in Section II-B. Section II-C presents

the detailed Expectation-Maximization (EM) procedures for probabilistic classification vector

machines.

A. Model Specification

Consider two-class classification and a data set of input-target training pairs {xi, yi}N
i=1, where

yi ∈ {−1, +1}. In order to map linear outputs to binary outputs, a link function should be

chosen to allow a steep and smooth transition between two classes. This paper uses the probit

link function.

Ψ(x) =

∫ x

−∞
N(t|0, 1)dt, (3)

where Ψ(x) is the Gaussian cumulative distribution function. We use the probit link function

because the probit link can be obtained from a simple latent variable model by the EM algorithm

[19]. After incorporating the probit link function with the kernel method, the model becomes:

l(x;w,b) = Ψ(
N∑

i=1

wiφi,θ(x) + b) = Ψ(Φθ(x)w+b). (4)

B. Prior over Weights

As discussed in Sections I, a truncated Gaussian prior is introduced for each weight wi and

a zero-mean Gaussian prior is adopted for the bias b.

p(w|α) =
N∏

i=1

p(wi|αi) =
N∏

i=1

Nt(wi|0, α−1
i), (5)

p(b|β) = N(b|0, β−1), (6)

8

−6 −4 −2 0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

w
i

p(
w

i|α
 i)

y
i
=−1

0 2 4 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

w
i

p(
w

i|α
 i)

y

i
=+1

Fig. 3. The truncated Gaussian prior over weight vector w. Left: when yi = −1, p(wi|αi) is a non-positive, right-truncated

Gaussian prior. Right: when yi = +1, p(wi|αi) is a non-negative, left-truncated Gaussian prior.

where b is the inverse variance of normal distribution, Nt(wi|0, α−1
i) is a truncated Gaussian

function, and αi is the inverse variance. When yi = +1, the truncated prior is a non-negative,

left-truncated Gaussian and when yi = −1, the prior is a non-positive, right-truncated Gaussian.

This can be formalized in the Equation (7) and illustrated in Figure 3.

p(wi|αi) =





2N(wi|0, α−1
i) if yiwi ≥ 0

0 if yiwi < 0
. (7)

In Appendix A, we also discuss the model with hierarchical hyperpriors over α and β and

present the probability p(wi) by incorporating the hyperpriors over α and β.

C. EM Algorithm

This subsection details the derivation of the EM algorithm. An expectation-maximization (EM)

[7] algorithm is a general algorithm for MAP estimation where the data are incomplete or the

likelihood/prior function involve latent variables. EM iteratively alternates between performing

an expectation (E) step and a maximization (M) step. In practice, derivation of equations in E

and M steps need to be performed for different problems. In the following, we detail the model

specification and the EM steps.

We follow the standard probabilistic formulation and assume that Φθ(x)w+b is corrupted

by an additive random noise ε, where ε ∼ N(0, 1). According to the probit link model, if

hθ(x) = Φθ(x)w+b + ε ≥ 0, l = 1 and if hθ(x) = Φθ(x)w+b + ε < 0, l = 0. We can obtain

9

the probit mode as follows,

p(l = 1|x,w,b) = p(Φθ(x)w+b + ε ≥ 0) = Ψ(Φθ(x)w+b). (8)

hθ(x) is a latent variable because ε is an unobservable variable. If the value of hθ(x) were

known, the likelihood of w can be given by the standard probabilistic formulation: p(hθ(x)|w, b) =

N(hθ(x)|Φθ(x)w+b, 1). Consider the matrix Φθ = (Φθ(x1)
T , · · · ,Φθ(xN)T)T , where Φθ(xi) =

(φθ(x1,xi), · · · , φθ(xN ,xi)) and vector Hθ(x) = (hθ(x1), · · · , hθ(xN))T , we obtain

p(Hθ|w, b) = (2π)−N/2 exp

{
−1

2
‖Hθ − (Φθw+bI)‖2

}
, (9)

where I = (1, · · · , 1)T is the N -dimension all-1 vector.

In order to obtain the complete log-posterior of w and b, α and β are also regarded as latent

variables. Therefore, the latent variables in our formulation are: Hθ(x) = (hθ(x1), · · · , hθ(xN))T ,

α =(α1, · · · , αN)T and the scalar β.

The log-posterior is given as follows:

log p(w, b|y,Hθ, α, β) ∝ log p(Hθ|w, b) + log p(w|α) + log p(b|β)

∝ wTΦT
θ (2Hθ −Φθw)+2bITHθ − 2bITΦθw − b2N −wTAw − βb2, (10)

where A is a diagonal matrix: A = diag(α1, · · · , αN).

Expectation-step: After obtaining the log-posterior, the expectation step, noted as a Q func-

tion, can be obtained by the following formula. Please refer to Appendix B for detail.

Q(w, b|wold, bold) = EH
θ
,α,β[log p(w, b|y,Hθ, α, β)|y,wold, bold] (11)

= 2wTΦT
θ H̄θ −wTΦT

θ Φθw+2bIT H̄θ − 2bITΦθw − b2N + wT Āw − β̄b2,

where H̄θ = E[Hθ|y,wold, bold], Ā = diag(E[αi|yi,w
old, bold]) and β̄ = E[β|yi,w

old, bold].

Maximization-step: In the maximization step, the partial derivatives with respect to w, b and

each θk can be given by analyzing the derivative of Equation (11).

∂Q

∂w
= −2ΦT

θ Φθw + 2ΦT
θ H̄θ − 2bΦT

θ I − 2Āw, (12)

∂Q

∂b
= 2IT H̄θ − 2bN − 2ITΦθw − 2bβ̄, (13)

∂Q

∂θk

= 2
N∑

i=1

N∑
j=1

{
(Φθw − H̄θ)w

T ¯
(

∂Φθ

∂θk

)}

(i,j)

, (14)

10

Algorithm 1 Probabilistic Classification Vector Machines
1: Input: D = {X,Y} = {(xn, yn)}

N

n=1
is the training set;ker is the kernel type;θ is the kernel

parameter;niter is the maximal iteration;initVector is the initialization vector;threshold

is the threshold value to determine whether the algorithm converges.
2: Output: The weight vectorw, biasb and the updated kernel parameterθ.
3: [w, b] = initialize(initVector);
4: nonZero = determine nonZero V ector(w);
5: for i = 1 to niter do
6: Φ = Kernel Matrix Calculation(X,Y, ker, θ);
7: w

new = weight update(Φ,w,Y,nonZero);
8: bnew = bias update(Φ, b,Y,nonZero);
9: θnew = parameter update(Φ,X,Y, ker, θ,wnew, bnew,nonZero);

10: nonZero
new = determine nonZero V ector(wnew);

11: if max(abs(wnew −w)) < threshold then
12: break;
13: else
14: continue;
15: end if
16: end for

where ¯ represents element-wise Hadamard matrix multiplication.

In general, the joint maximization of Q with respect to w, b and θk cannot be performed

analytically. However, we can analytically obtain the optimal w and b by solving ∂Q
∂w

= 0 and
∂Q
∂b

= 0, and then plug wnew and bnew into Q. Maximization with respect to θ can be handled

by any standard methods. This paper uses a simple conjugate gradient algorithm to obtain the

optimal values of θ.

By setting ∂Q
∂w

= 0 and ∂Q
∂b

= 0, the update rules of w and b can be analytically obtained:

wnew = (ΦT
θ Φθ + Ā)−1(ΦT

θ H̄θ − bΦT
θ I), (15)

bnew =
IT H̄θ − ITΦθw

β̄ + N
. (16)

The pseudo-code of PCVM can be summarized by Algorithm 1, which includes the following

major steps:

1) Initialize the weight vector w with an initialization vector and generate an indicator vector

nonZero to indicate which elements are non-zero in w. (Lines 3-4)

2) Compute the kernel matrix Φ. (Line 6)

3) Update the weight vector w according to equation (15). (Line 7)

4) Update the bias b according to equation (16). (Line 8)

11

5) Update the kernel parameter θ according to equation (14). (Line 9)

6) Update the indicator vector nonZero. (Line 10)

7) Compare the new and old weight vectors wnew and w, to see whether the algorithm

converges. If so, terminate the algorithm. Otherwise, jump to step (b) and continue the

loop. (Lines 11-15)

In the above algorithm, to avoid numerical singularity we use an indicator vector to indicate

which elements of the weight vector w are to be set to zero4 and prune the corresponding

columns of Φ. As explained by Tipping [26] (Appendix B.1 Page 235), even though in theory

the matrix (ΦT
θ Φθ + Ā) is positive definite, it may become numerically singular when some

of the diagonal elements in matrix Ā tend towards large values. In this case, we thus prune

the corresponding basis function from the model at that point (i.e. by deleting the appropriate

column from Φ) to avoid ill-conditioning. Such a procedure of pruning basis functions has also

been adopted e.g. in [12]. More details can be found in Appendix C.

Appendix C presents some minor modifications to wnew and bnew for a stable numerical

computation in practice.

III. EXPERIMENTAL STUDIES

Firstly, we present experimental results of PCVMs, SVMs and RVMs on four synthetic data

sets in order to understand the behaviors of these algorithms. Secondly, we carry out extensive

experiments on 13 benchmark data sets using three performance metrics: the error rate (ERR),

the area under the curve of receiver operating characteristic (AUC) and root mean squared error

(RMSE). Finally, we present detailed statistical tests including five replications of twofold cross-

validation F test, i.e. 5 × 2 cv F test [1], over the single data set and Friedman test [14] with

the corresponding post-hoc tests over multiple data sets for multiple classifiers.

A. Synthetic Data Sets

In the first experiment, we compare PCVMs, soft-margin SVMs [3] and RVMs [26] on four

synthetic data sets. In order to facilitate further reference, each data set will be named according

to its characteristics. Spiral can only be separated by highly non-linear decision boundaries.

4The elements wi of w whose corresponding values of αi become large.

12

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(a) Spiral

−3 −2 −1 0 1 2

−1.5

−1

−0.5

0

0.5

1

1.5

2

(b) Overlap

−2 −1 0 1 2

−3

−2

−1

0

1

2

3

(c) Bumpy

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

(d) Relevance

Fig. 4. Comparison of classification of synthetic data sets using a RBF kernel. Two classes are shown as pluses and circles.

The separating lines are obtained by projecting test data over a grid. Red (dark), Green (dashed) and black (dot-dashed) are

obtained by PCVMs, RVMs and SVMs, respectively. Kernel and regularization parameters for SVMs and RVMs are obtained

by 10-fold cross validation, whereas the parameters of PCVMs are obtained by an EM algorithm.

Overlap comes from two Gaussian distributions with equal covariance, and is expected to be

separated by a linear plane. Bumpy comes from two equal Gaussians but being rotated by 90

degrees, and quadratic boundaries are required. Relevance represents a case where only one

dimension of the data is relevant to separating the data.

This experiment employs a Gaussian RBF kernel as the basis function:

φθ(x,xi) = exp

{
−‖x− xi‖2

θ2

}
, (17)

where θ is the width of Gaussian kernel.

13

The parameters of SVMs including the regularization parameter C and the kernel parameter

θ are selected by grid search with 10-fold cross validation5. The kernel parameter θ of RVMs

is selected by 10-fold cross validation.

Although PCVMs could optimize the kernel parameter by maximizing the expectation, the

EM algorithm is sensitive to the initialization point and might get stuck in local maxima. In

order to avoid the local maxima, we choose different initialization points to run multiple times

and choose the best one using cross validation. This model selection procedure is carried out

by training each data set with five different initial values of θ. From the resulting solutions (five

per data set), we select the initialization point that produces the minimal test errors.

In Figure 4 we present the decision boundaries of three algorithms. We can observe a similar

performance of PCVMs and SVMs in the case of Spiral. RVMs cannot obtain the correct decision

boundary due to the highly non-linear data set. The failure indicates that the prior of RVMs

produces excessive sparseness in the outer part of data, leading the boundary biasing towards

outer circle and hence producing errors. PCVMs perform well because they generate adequate

sparseness in both inner and outer circles from the truncated prior.

It is encouraging to observe that PCVMs give more accurate results in the rest of the cases.

PCVMs produce almost linear decision boundary in Overlap and RVMs give analogously curving

decision boundary, whereas SVMs overfit6. In Bumpy, PCVMs and RVMs give similar quadratic

solutions, with PCVMs having the smoothest boundary and SVMs having the localized boundary.

Finally, all the algorithms provide accurate results for Relevance, with PCVMs giving the

smoothest solution.

The results of PCVMs are promising on these four synthetic data sets. PCVMs not only

handle the data sets with a predominating linear or quadratic decision boundary, e.g. Overlap

and Bumpy, but also be applied to the highly non-linear data sets, e.g. Spiral and the data sets

with redundant features, e.g. Relevance.

5The ranges of cross validation search for SVM are C ∈ {1, 2, · · · , 100} and θ ∈ {0.1, 0.3, · · · , 10} (The data has been

normalized to unit standard deviation.) in both synthetic data sets and benchmark data sets. The same search range θ ∈
{0.1, 0.3, · · · , 10} has been used for RVM in both synthetic data sets and benchmark data sets.

6With a large radius parameter, SVM can generate a linear boundary. However, due to the small data size, 10-fold cross-

validation selects a smaller radius with smaller CV error.

14

TABLE I

SUMMARY OF 13 BENCHMARK DATA SETS.

Data Sets Training Points Test Points Positive % Negative % Input Dimensions

Banana 400 4900 44.83% 55.17% 2

Cancer 200 77 29.28% 70.72% 9

Diabetics 468 300 34.90% 65.10% 8

Solar 666 400 65.28% 34.72% 9

German 700 300 30% 70% 20

Heart 170 100 44.44% 55.56% 13

Image 1300 1010 56.95% 43.05% 18

Ringnorm 400 7000 49.51% 50.49% 20

Splice 1000 2175 44.93% 55.07% 60

Thyroid 140 75 30.23% 69.77% 5

Titanic 150 2051 58.33% 41.67% 3

Twonorm 400 7000 50.04% 49.96% 20

Waveform 400 4600 32.94% 67.06% 21

B. Benchmark Data Sets

In order to evaluate the performance of PCVMs further, we compare different algorithms on

13 well known benchmark problems. These algorithms are: soft-margin SVMs (SVMsoft) [3],

hard-margin SVMs (SVMhard) [3], SVMs whose kernel parameters are optimized by PCVMs

(SVMPCVM), relevance vector machines (RVMs) [26] and PCVMs. We report the algorithm

SVMPCVM since it provides the opportunity to test whether the kernel parameter, optimized by

PCVMs, works for SVMs as well. This methodology to optimize the parameters of these models

will be presented below.

In order to compare with some baseline methods, we also examine the performance of

linear/quadratic discriminant analysis (LDA/QDA), One Nearest Neighbor (1NN) and k Nearest

Neighbor (kNN), where the number of nearest neighbors k is selected by the parameter selection

methodology (where k is selected from {1, 2, · · · , 20}).

This paper uses the data sets, which have been preprocessed and organized by Rätsch et al.7

to do binary classification tests. These data sets include one synthetic set (banana) along with

7http://ida.first.fraunhofer.de/projects/bench/benchmarks.htm

15

TABLE II

COMPARISON OF 1NN, kNN, LDA, QDA, SVMSOFT , SVMHARD , SVMPCVM , RVM AND PCVM ON 13 BENCHMARK DATA

SETS, BY % ERROR AND (STANDARD DEVIATION). THESE RESULTS ARE THE AVERAGE OF 100 RUNS ON THE DATA SETS.

Error Banana Cancer Diabetics Solar German Heart

1NN 13.64(0.76) 32.70(4.84) 30.12(2.05) 39.22(5.05) 29.46(2.47) 23.16(3.74)

kNN 11.26(0.54) 30.58(4.19) 25.83(1.90) 35.74(2.20) 25.44(2.52) 16.46(3.61)

LDA 46.69(4.81) 31.81(4.35) 24.66(2.03) 34.41(1.75) 28.52(2.56) 16.40(2.87)

QDA 39.58(3.38) 31.36(4.91) 26.88(1.96) 44.74(1.82) 30.01(2.79) 19.64(3.24)

SVMsoft 11.56(0.68) 26.38(4.76) 24.34(1.73) 32.54(1.75) 24.14(2.18) 17.82(3.27)

SVMhard 11.98(0.71) 28.97(4.87) 30.68(2.28) 35.98(3.08) 26.63(2.35) 22.29(3.50)

SVMPCVM 10.47(0.49) 25.60(4.45) 23.82(1.73) 32.65(1.69) 24.73(2.29) 17.49(3.26)

RVM 10.78(0.52) 26.60(4.70) 23.81(1.84) 35.29(1.87) 24.52(2.32) 17.30(3.56)

PCVM 10.30(0.76) 26.23(4.62) 23.15(1.95) 32.89(1.79) 23.62(2.24) 16.62(3.45)

Error Image Ringnorm Splice Thyroid Titanic Twonorm Waveform

1NN 2.82(0.59) 35.03(1.36) 27.64(1.47) 4.36(2.21) 33.00(11.92) 6.68(0.72) 15.83(0.65)

kNN 2.82(0.59) 35.03(1.36) 24.00(2.35) 4.36(2.21) 23.84(4.94) 2.81(0.20) 10.98(0.67)

LDA 16.89(0.88) 24.62(0.66) 16.26(0.53) 12.85(3.30) 23.57(4.61) 2.61(0.17) 17.66(0.60)

QDA 17.43(1.97) 2.58(0.32) 14.77(0.94) 6.85(2.37) 24.30(6.43) 3.45(0.29) 16.65(0.83)

SVMsoft 2.78(0.56) 1.66(0.12) 10.70(0.63) 4.79(2.04) 22.69(0.86) 2.69(0.15) 10.25(0.43)

SVMhard 2.95(0.58) 1.66(0.12) 10.70(0.63) 5.04(2.14) 22.30(1.05) 2.93(0.27) 10.95(0.57)

SVMPCVM 2.75(0.57) 1.64(0.12) 10.51(0.62) 4.79(2.24) 22.54(0.95) 2.84(0.17) 10.80(0.52)

RVM 3.15(0.66) 2.15(0.64) 12.94(0.71) 5.12(2.62) 23.30(1.50) 3.32(0.43) 10.80(0.64)

PCVM 2.49(0.52) 1.53(0.12) 10.60(0.65) 4.55(2.49) 22.58(1.37) 2.46(0.26) 10.40(0.58)

12 other real-world data sets from UCI [20] and DELVE8. The characteristics of the data set

are summarized in Table I.

The main difference between the original and Rätsch’s data is that Rätsch converted every

problem into binary classes and randomly partitioned every data set into 100 training and testing

instances (Splice and Image have only 20 splits in the Rätsch’s implementation and we generate

additional 80 splits by random sampling to make our experiments consistent.) In addition, every

instance was input-normalized dimension-wise to have zero mean and unit standard deviation.

The error rate (ERR), the area under the curve of receiver operating characteristic (AUC)

and root mean squared error (RMSE), represent three most often used metrics, which represent

8http://www.cs.toronto.edu/˜delve/data/datasets.html

16

threshold metric, probability metric and rank metric, respectively [5]. In our paper, we will use

the three performance metrics for binary classification problems.

The procedure of parameter optimization follows Rätsch’s methodology [23], which trains the

algorithm with each candidate parameter on the first five training partitions of a given data set

and selects the model parameters to be the median over those five estimates.

In the case of SVMsoft, we train soft-margin SVMs with a parametrical grid with different

combinations of the kernel parameter θ and the regularization parameter C, on the first five

realizations of the training data and then select the median of the resulting parameters.

The same methodology is applied to SVMhard, SVMPCVM, RVMs and kNN. The only difference

among them is that they need to optimize different parameters. For SVMhard and RVMs, we need

to optimize the kernel width parameter θ. SVMPCVM adopts the optimized kernel parameter by

PCVMs and so it only needs to optimize C. For kNN, the number of nearest neighbors is

selected by this methodology as well.

The PCVM has only one parameter θ, which can be automatically optimized in the training

process. However, as we know, the EM algorithm is prone to converging to local maxima. The

usual approach to avoid the local maxima is to run the EM algorithm multiple times from

different initialization points and choose the best one based on cross validation error rate.

To select the best initialization point of PCVMs, we try to follow the same procedure. We

train a PCVMs model with different initializations (8 initializations9 in this paper) over the first

five training folds of each data set. Hence we obtain an array of parameters of dimensions 8× 5

where the rows are the initializations and the columns are the folds. For each column, we select

the results that give the smallest test error, so that the array reduces from 40 to only 5 elements.

Then we select the median over those parameters.

Tables II, III, and IV report the performance of these algorithms on the 13 benchmark data

sets with ERR, AUC and 1- RMSE, respectively.

According to these tables, the PCVM performs very well in terms of three different metrics.

For example, under the ERR metric it is observed that the PCVM outperforms all other methods

in six out of thirteen data sets, comes second in three cases and third in the remaining four. The

9The RVM and SVM solutions are supplied as two initialization, in which the zero weights and reverse signed weights in

RVM are replaced with small random values to avoid being pruned in the first learning step. The other six initializations are

performed randomly.

17

TABLE III

COMPARISON OF 1NN, kNN, LDA, QDA, SVMSOFT , SVMHARD , SVMPCVM , RVM AND PCVM ON 13 BENCHMARK DATA

SETS, BY % AUC AND (STANDARD DEVIATION). THESE RESULTS ARE THE AVERAGE OF 100 RUNS ON THE DATA SETS.

AUC Banana Cancer Diabetics Solar German Heart

1NN 86.24(0.77) 60.37(5.58) 66.08(2.24) 60.26(5.90) 63.71(2.92) 76.67(3.79)

kNN 88.37(0.53) 59.82(4.71) 68.00(2.16) 64.30(2.63) 62.88(2.83) 83.03(3.67)

LDA 53.42(4.88) 66.19(4.90) 74.00(2.18) 66.53(1.58) 71.37(2.57) 83.26(2.94)

QDA 60.88(3.31) 63.69(5.52) 71.14(2.30) 50.00(0.00) 69.38(2.58) 80.14(3.33)

SVMsoft 95.09(0.57) 68.95(5.69) 82.42(1.75) 71.87(2.34) 77.72(2.57) 89.25(2.97)

SVMhard 94.44(0.69) 66.15(6.56) 73.08(1.98) 66.94(3.08) 73.62(2.72) 85.85(2.92)

SVMPCVM 96.14(0.30) 69.93(5.77) 83.04(1.68) 71.95(2.54) 77.37(2.57) 89.50(2.87)

RVM 95.97(0.38) 71.01(5.68) 82.69(1.59) 72.75(1.73) 78.41(2.73) 89.52(2.87)

PCVM 96.30(0.32) 72.98(6.44) 85.01(2.10) 72.46(1.83) 79.93(2.80) 91.08(2.84)

AUC Image Ringnorm Splice Thyroid Titanic Twonorm Waveform

1NN 96.97(0.62) 64.63(1.30) 73.19(1.40) 94.14(3.44) 63.18(6.47) 93.32(0.72) 82.29(1.05)

kNN 96.97(0.62) 64.63(1.30) 77.31(2.08) 94.14(3.44) 67.89(3.51) 97.19(0.20) 88.63(1.08)

LDA 81.80(0.88) 75.30(0.65) 84.00(0.51) 79.37(4.99) 70.08(2.36) 97.39(0.17) 86.20(0.58)

QDA 82.70(1.76) 97.43(0.31) 84.59(0.94) 89.97(3.56) 69.62(4.13) 96.55(0.29) 81.72(1.52)

SVMsoft 99.30(0.25) 99.84(0.01) 95.93(0.31) 99.01(0.74) 70.78(2.87) 99.51(0.04) 96.22(0.25)

SVMhard 98.92(0.33) 99.84(0.01) 95.93(0.31) 98.81(0.89) 70.34(3.03) 99.45(0.07) 95.62(0.35)

SVMPCVM 99.27(0.26) 99.85(0.01) 96.12(0.31) 99.41(0.54) 71.20(2.43) 99.47(0.05) 95.74(0.31)

RVM 97.78(0.41) 99.31(0.02 94.04(0.48) 98.49(1.71) 72.98(2.49) 93.14(1.31) 96.04(0.43)

PCVM 99.63(0.31) 99.86(0.01) 96.04(0.32) 99.21(0.89) 75.42(1.28) 99.78(0.03) 96.42(0.31)

PCVM performs extremely well under the AUC metric, with the first place in ten cases and the

second in the remaining three. Even when the PCVM fails under other metrics on one of the

data sets, e.g., Cancer or Titanic, it can still win under the AUC metric. Although the RVM uses

the Bayesian ARD framework, it seems that adopting the same prior for different classes leads

to sub-optimal results.

The experimental results for the three variants of SVMs are also enlightening.

The soft-margin SVM is consistently better than the hard-margin SVM under the ERR and

AUC metrics. Under the RMSE metric, the hard-margin SVM is slightly better than (or almost

as good as) the soft-margin SVM on two data sets: Image and Thyroid.

In most cases, the SVMPCVM is worse than or comparable to the corresponding PCVM;

18

TABLE IV

COMPARISON OF 1NN, kNN, LDA, QDA, SVMSOFT , SVMHARD , SVMPCVM , RVM AND PCVM ON 13 BENCHMARK DATA

SETS, BY % (1-RMSE) AND (STANDARD DEVIATION). THESE RESULTS ARE THE AVERAGE OF 100 RUNS ON THE DATA

SETS.

1-RMSE Banana Cancer Diabetics Solar German Heart

1NN 63.08(1.03) 42.97(4.19) 45.15(1.85) 37.50(3.95) 45.77(2.29) 52.04(3.95)

kNN 66.46(0.80) 44.83(3.82) 49.21(1.89) 40.24(1.82) 49.62(2.52) 59.67(4.46)

LDA 31.75(3.47) 43.74(3.87) 50.38(2.05) 41.36(1.49) 46.65(2.38) 59.66(3.59)

QDA 37.15(2.71) 44.17(4.43) 48.19(1.89) 33.13(1.36) 45.28(2.54) 55.84(3.73)

SVMsoft 70.50(0.85) 56.52(3.23) 59.54(1.09) 51.14(1.48) 59.25(1.27) 63.49(2.21)

SVMhard 69.64(0.90) 52.46(3.90) 55.35(0.88) 48.46(1.23) 57.20(1.34) 60.91(2.08)

SVMPCVM 72.33(0.49) 57.31(3.09) 59.88(1.11) 51.14(1.43) 58.99(1.22) 63.93(2.31)

RVM 71.24(0.88) 55.95(3.66) 58.54(1.37) 53.70(1.08) 57.73(1.94) 62.65(3.76)

PCVM 72.13(0.71) 53.30(4.93) 59.41(1.84) 51.64(1.16) 59.89(1.83) 64.73(3.82)

RMSE Image Ringnorm Splice Thyroid Titanic Twonorm Waveform

1NN 83.30(1.73) 40.83(1.15) 47.44(1.40) 79.84(5.45) 43.41(9.92) 74.18(1.36) 60.22(0.82)

kNN 83.30(1.73) 40.83(1.15) 51.07(2.39) 79.84(5.45) 51.36(4.35) 83.26(0.59) 66.88(1.00)

LDA 58.91(1.08) 50.38(0.66) 59.68(0.66) 64.47(4.83) 51.59(3.67) 83.85(0.53) 57.99(0.71)

QDA 58.32(2.37) 83.97(0.98) 61.59(1.22) 74.25(4.76) 50.96(5.03) 81.45(0.79) 59.21(1.01)

SVMsoft 80.42(0.72) 80.88(0.38) 69.93(0.46) 78.49(2.49) 58.16(0.73) 75.51(0.31) 70.44(0.31)

SVMhard 80.43(0.79) 80.88(0.38) 69.93(0.46) 78.51(2.57) 57.99(0.84) 75.31(0.51) 70.02(0.46)

SVMPCVM 80.80(0.76) 79.77(0.31) 67.84(0.41) 81.42(2.79) 58.00(0.60) 75.42(0.36) 70.15(0.42)

RVM 79.69(1.29) 79.88(1.87) 66.98(0.97) 80.10(5.74) 57.61(1.42) 83.14(1.31) 70.06(1.18)

PCVM 81.80(0.77) 80.36(0.62) 68.97(0.56) 81.85(4.29) 56.42(1.58) 85.02(0.72) 71.78(0.82)

it achieves similar or better performance than the soft-margin SVM. This indicates that the

optimized kernel parameter by the PCVM works well for the SVM. Our results indicate that the

PCVM procedure performs better than cross validation, even when it comes to fitting the SVM

kernel parameters.

The baseline algorithms, 1NN, kNN and LDA/QDA, only perform well on one or two data

sets. In all other cases, they fail to compete with the PCVM and SVMs, especially under the

AUC metric.

Another interesting point is that the PCVM achieves better performance by employing only

a few of the data points, which can be illustrated by Table V.

19

TABLE V

COMPARISON OF SVMSOFT , SVMHARD , SVMPCVM , RVM AND PCVM ON 13 BENCHMARK DATA SETS, BY HOW MANY

VECTORS AND STANDARD DEVIATION. THESE RESULTS ARE THE AVERAGE OF 100 RUNS ON THE DATA SETS.

Vectors Training Points SVMsoft SVMhard SVMPCVM RVM PCVM

Banana 400 89.8±10.4 88.3±11.1 111.1±8.9 12.7±1.5 19.8±4.3

Cancer 200 119.9±6.4 105.7±6.4 125.2±6.25 9.4±2.0 9.4±2.6

Diabetics 468 270.6±7.9 376.0±7.0 265.0±7.0 8.4±2.0 19.8±3.1

Solar 666 595.3±15.6 613.2±13.7 593.3±15.5 21.5±2.4 41.8±8.4

German 700 520.9±10.9 514.1±12.4 547.7±9.9 27.4±4.3 40.9±7.6

Heart 170 111.7±4.8 104.8±6.1 103.7±5.3 9.3±1.8 5.9±2.2

Image 1300 422.4±11.3 397.1±11.0 396.9±11.4 123.8±9.6 170.3±11.7

Ringnorm 400 151.2±9.0 151.2±8.9 198.6±10.8 6.5±1.7 17.6±3.8

Splice 1000 594.7±16.5 594.8±16.0 778.8±13.6 89.0±6.0 123.2±8.3

Thyroid 140 53.1±3.2 51.5±3.7 24.8±3.7 4.1±0.8 8.6±2.3

Titanic 150 147.5±4.7 143.5±6.3 142.0±9.6 6.8±1.4 16.6±2.4

Twonorm 400 237.4±7.1 236.9±8.4 235.9±7.7 7.7±1.1 13.8±3.4

Waveform 400 229.6±8.8 225.3±9.2 224.9±9.1 20.7±3.1 26.3±3.7

According to Table V, the number of support vectors for SVM grows almost linearly with

the number of training points, while the RVM consistently uses much fewer data points. The

PCVM employs more vectors than the RVM but much fewer than SVM. This observation goes

in accordance with the formulation. In the RVM, the weights could reach zero from both sides

because of the symmetrical zero-mean Gaussian, whereas the weights in PCVMs could only

converge to zero from one side because of the truncated Gaussian prior. It is worth noting that

the PCVM has better performance than the RVM according to Tables II-IV.

C. Statistical Comparisons on Single Data Sets

In order to compare the PCVM with other algorithms in a sound statistical context, we perform

the statistical test for paired classifiers, e.g. PCVM vs. SVMsoft and PCVM vs. RVM, on each

single data set. We will carry out statistical tests on these three metrics and provide the win-

loss-tie summary for these metrics. The threshold of the statistical tests is set to be 0.05.

Although t-test has been used in most of the literatures to conduct statistical tests, it has been

criticized for its type I/II error and low power for a long time [9]. Dietterich [9] analyzes five

20

TABLE VI

5 × 2 CROSS VALIDATION F TEST FOR 13 DATA SETS. FOR EACH METRIC, THE FIRST LINE IS THE WIN-LOSS-TIE SUMMARY

OF THE ALGORITHM AGAINST THE PCVM BASED ON THE MEAN VALUE. THE SECOND ROW GIVES THE STATISTICAL

SIGNIFICANCE WIN-LOSS-TIE SUMMARY BASED ON 13 BENCHMARK DATA SETS.

Data Sets 1NN kNN LDA QDA SVMsoft SVMhard SVMPCVM RVM

ERR Mean 1-12-0 2-11-0 1-12-0 0-13-0 2-11-0 0-13-0 3-10-0 0-13-0

Significant 1-12-0 2-9-2 1-10-2 0-13-0 1-8-4 0-10-3 2-7-4 0-10-3

AUC Mean 0-13-0 0-13-0 0-13-0 0-13-0 0-13-0 0-13-0 1-12-0 1-12-0

Significant 0-13-0 0-13-0 0-13-0 0-13-0 0-9-4 0-10-3 0-7-6 1-8-4

RMSE Mean 1-12-0 1-12-0 0-13-0 1-12-0 5-8-0 3-10-0 4-9-0 3-10-0

Significant 1-11-1 1-10-2 0-13-0 1-12-0 3-5-5 2-9-2 3-4-6 3-7-3

statistical tests and proposes a new test, five replications of twofold cross-validation t test, i.e.

5× 2 cv t test which has a low type I error and a reasonable power [9].

However, 5 × 2 cv t test takes the statistics from only one fold as the numerator and may

vary depending on factors that should not affect the test. Alpaydin [1] improved 5 × 2 cross

validation t test by combining multiple statistics to get a more robust test, 5 × 2 cross validation

F test, which has a lower type I error and a higher power. In this paper, we compare algorithms

using 5 × 2 cv F test [1].

In the 5 × 2 cv F test, five replications of twofold cross-validation have been conducted. In

each replication, the data set is divided into two equal-sized sets. p
(j)
i is the difference between

the error rates of the two classifiers on fold j = 1, 2 of replication i = 1, . . . , 5. The average on

replication i is p̄i = (p
(1)
i + p

(2)
i)/2, and the estimated variance is s2

i = (p
(1)
i − p̄i)

2 +(p
(2)
i − p̄i)

2.

The 5 × 2 cv F test combines the results of the 10 statistics p
(j)
i as the numerator, which

makes the test more robust. Alpaydin [1] pointed out that the following statistics

f =

∑5
i=1

∑2
j=1(p

(j)
i)2

2
∑5

i=1 s2
i

, (18)

is approximately F distributed with 10 and 5 degrees of freedom, F (10, 5), and used this statistics

to conduct the 5 × 2 cv F test.

Table VI gives the win-loss-tie summary of the 5 × 2 cross validation F test based on 13

benchmark data sets. The significance tests show that SVMPCVM is close to the PCVM under

21

TABLE VII

THE MEAN RANK OF THESE ALGORITHMS UNDER THE THREE METRICS: ERR, AUC AND RMSE.

Rank 1NN kNN LDA QDA SVMsoft SVMhard SVMPCVM RVM PCVM

ERR 7.5 5.3 6.3 7.7 3.4 5.5 2.9 4.7 1.9

AUC 8.0 7.4 6.7 7.5 3.3 4.7 2.6 3.6 1.2

RMSE 7.6 5.9 6.9 7.3 3.3 4.7 3.0 3.9 2.4

the RMSE metric; SVMPCVM wins three times and loses four times. This situation occurs for

SVMsoft as well. SVMsoft wins three times and loses five times under RMSE.

However, under the other two metrics, the differences between SVMsoft/SVMPCVM and the

PCVM are greater: a) SVMPCVM wins two times and loses seven times under ERR and never

wins under AUC. b) SVMsoft wins once and loses 8 times under ERR and never wins under

AUC. The RVM does not seem to perform well under the ERR metric since it never wins. Under

other metrics, RVM seems to be comparable to the SVMsoft.

The performance of SVMhard is not competitive against the PCVM. It only wins twice under the

RMSE metric. The experimental results also reveal that these baseline algorithms under-perform

significantly against other algorithms.

This section has presented the statistical tests over single data sets, the next section will

present the statistical comparisons over multiple data sets and analyze the reasons why the

PCVM performs better than other algorithms.

D. Statistical Comparisons over Multiple Data Sets

In the previous subsection, we have conducted the statistical tests on single data sets. It is

difficult to statistically compare these algorithms based on multiple data sets, since the differences

among these classifiers are significant for some data sets but not for other data sets.

In general, counting the number of times an algorithm performs better, worse or equal to

the others is a common approach. Some authors prefer to count only significant wins and

losses, where the significance is determined using a statistical test on each data set, for example

Dietterich’s 5×2 cv t-test [9]. However, this statement is not reliable since it puts an arbitrary

threshold of 0.05 or 0.10 on what counts and what does not for each data set. This can be shown

by a simple scenario [8]:

22

Suppose that we compare two algorithms on one thousand different data sets. In each and

every case, algorithm A is better than algorithm B, but the difference is never significant. It is

true that for each single case the difference between the two algorithms can be attributed to

a random chance, but how likely is it that one algorithm is just lucky in all 1000 out of 1000

independent experiments?

Statistical tests on multiple data sets for multiple algorithms are preferred for comparing

different algorithms over multiple data sets. In order to conduct statistical tests over multiple

data sets, we perform the Friedman test [13] [14] with the corresponding post-hoc tests. The

Friedman test is a non-parametric equivalence of the repeated-measures analysis of variance

(ANOVA) under the null hypothesis that all the algorithms are equivalent and so their ranks

should be equal. This paper uses an improved Friedman test proposed by Iman and Davenport

[15].

The Friedman test is carried out to test whether all the algorithms are equivalent. If the test

result rejects the null hypothesis, i.e. these algorithms are equivalent, we can proceed to a post-

hoc test. The power of the post-hoc test is much greater when all classifiers are compared with

a control classifier and not among themselves. We do not need to make pairwise comparisons

when we in fact only test whether a newly proposed method is better than the existing ones.

Based on this point, we would like to choose the PCVM as the control classifier to be

compared with. Since the baseline classification algorithms are not comparable to SVMs, RVMs

and PCVMs, this section will analyze only four algorithms: SVMsoft, SVMhard, SVMPCVM, and

RVMs against the control classifier PCVM.

The Bonferroni-Dunn test [10] is used as post-hoc tests when all classifiers are compared

to the control classifier. The performance of pairwise classifiers is significantly different if the

corresponding average ranks10 differ by at least the critical difference

CD = qα

√
j(j + 1)

6T
, (19)

where j is the number of algorithms, T is the number of data sets and critical values qα can be

found in [8]. For example, when j = 5, q0.10 = 2.241, where the subscript 0.10 is the threshold

10We rank these algorithms based on the metric on each data set and record the ranking of each algorithm as 1, 2 and so on.

Average ranks are assigned in case of ties. The average rank of one algorithm is obtained by averaging over all of data sets.

Please refer to Table VII for the mean rank of these algorithms under different metrics.

23

TABLE VIII

FRIEDMAN TESTS WITH THE CORRESPONDING POST-HOC TESTS, BONFERRONI-DUNN, TO COMPARE CLASSIFIERS FOR

MULTIPLE DATA SETS. THE THRESHOLD IS 0.10, AND q0.10 = 2.241.

Metrics Friedman test CD0.10 SVMsoft SVMhard SVMPCVM RVM

ERR 0.00 1.38 1.35 2.69 0.85 2.42

AUC 0.00 1.38 2.08 3.31 1.38 2.08

1-RMSE 0.01 1.38 0.50 1.92 0.42 1.38

value.

Table VII lists the mean rank of these algorithms under the three metrics: ERR, AUC and

1-RMSE. Table VIII gives the Friedman test results. Since we employ the same threshold 0.10

for all three metrics, the critical difference CD = 1.38, where j = 5 and T = 13, is the same

for these metrics. Several observations can be made from our results.

Firstly, under the ERR metric, the differences between PCVM vs. SVMhard, and PCVM vs.

RVM are greater than the critical difference, so the differences are significant, which means

the PCVM is significantly better than SVMhard and RVM in this case. The difference between

PCVM and SVMsoft is just below the critical difference, which seems to suggest that SVMsoft

is likely to be different from PCVM. We could not detect any significant difference between

SVMPCVM and PCVM. The correct statistical statement would be that the experimental data are

not sufficient to reach any conclusion regarding the difference between PCVM and SVMPCVM.

Secondly, the PCVM significantly outperforms all other algorithms under the AUC metric.

Since AUC metric requires relative accurate scores to discriminate positive and negative instances

[11], PCVMs succeed by generating the probabilistic outputs. Another reason is that AUC is

insensitive to the class skew/distribtion [11] and some data sets used in this paper are imbalanced.

In this way, PCVMs perform well on these skewed data sets by considering different priors for

different classes and thus have better scores under the AUC metric.

Thirdly, under the RMSE metric, only the differences between PCVM and SVMhard/RVM

are significant. Since the differences between PCVM and SVMsoft/SVMPCVM are smaller than

the critical difference, we cannot draw any conclusion about the difference between PCVM vs.

SVMsoft and between PCVM vs. SVMPCVM under the RMSE metric in our experimental settings.

24

There are three major reasons why the PCVM performs better than others.

1) PCVM generates adequate robustness and sparseness because of the truncated Gaussian

priors. These priors control the model complexity by including appropriate sparseness, and

thus improve the model generalization.

2) As AUC prefers probabilistic outputs than hard decisions and it is insensitive to class

skewness, the PCVM provides probabilistic outputs to assess the uncertainty for the pre-

dictions and performs well on these skewed data sets, which explains why the PCVM is

so good under the AUC metric. Although the RVM also provides probabilistic outputs, it

adopts an improper prior over weights and thus leads to inferior results.

3) The PCVM incorporates an efficient parameter optimization procedure based on proba-

bilistic inference and the EM algorithm. This procedure not only saves the effort to do

cross validation grid search but also improves the performance.

E. Algorithm Complexity

Both classical SVMs algorithms and PCVMs have a time complexity of O(N3), where N is

the number of training points, but the computational complexity of SVMs can be reduced to

approximately O(N2.1) for sequential minimal optimization (SMO) like algorithms [16], which

breaks the large quadratic programming (QP) problem into a series of smallest possible QP

problems.

In PCVMs, the update rules of w and b involve inversion of a matrix. The Cholesky decom-

position is used in the practical implementation of the inversion to avoid numerical instability,

which has the computational complexity O(M3) and memory storage O(M2), where M is the

number of non-zero basis functions and M ≤ N .

This computational complexity leads to longer training times and larger memory usage.

However, because of the sparseness-inducing prior and quick convergence of the EM algorithm,

PCVMs prune the basis functions rapidly from M = N at initialization to a small size for

most problems. Also, this disadvantage of PCVMs is off-set by the lack of need to perform

cross-validation over parameters, such as C and kernel parameter θ in SVMs.

Table IX shows the average running time of PCVMs, SVMsoft
11, RVMs, LDA, QDA, 1NN,

11Since the running time of SVMhard and SVMPCVM is similar to that of SVMsoft, we only record the running time of SVMsoft.

25

TABLE IX

RUNNING TIME OF THE PCVM, SVMSOFT , RVM, LDA, QDA, 1NN, kNN ON 13 DATA SETS IN SECONDS. RESULTS ARE

AVERAGED OVER 100 RUNS.

Time(s) Banana Cancer Diabetics Solar German Heart

PCVM 6.71 1.14 10.30 8.93 14.2 1.05

SVMsoft 5.41 0.51 3.17 2.86 3.81 0.14

RVM 7.76 2.39 14.32 12.39 28.96 1.74

LDA 0.04 0.02 0.03 0.03 0.03 0.02

QDA 0.03 0.02 0.02 0.03 0.02 0.02

1NN 0.70 0.04 0.10 0.21 0.21 0.04

kNN 26.23 0.68 2.91 6.26 6.21 0.71

Error Image Ringnorm Splice Thyroid Titanic Twonorm Waveform

PCVM 92.52 9.37 70.41 0.30 1.25 13.21 11.47

SVMsoft 12.09 6.98 15.85 0.09 0.29 7.58 4.01

RVM 209.84 9.34 95.42 0.68 2.19 14.29 18.18

LDA 0.04 0.09 0.10 0.09 0.02 0.07 0.06

QDA 0.04 0.07 0.09 0.09 0.02 0.07 0.06

1NN 1.35 4.45 9.59 0.02 0.10 3.10 2.04

kNN 40.63 96.90 213.36 0.37 4.52 89.58 66.89

kNN on 13 data sets in seconds. Results are averaged over 100 runs. Note that in Table IX,

we do not record the cross validation time for SVMsoft and RMVs, but the running time of

kNN includes the time to perform 10-fold cross validation (k ∈ {1, · · · , 20}). We rank these

algorithms based on the computational time on each data set and record the ranking of each

algorithm as 1, 2 and so on. Note that average ranks are assigned in case of ties. The average

rank of one algorithm is obtained by averaging over all of data sets. Please refer to Table X for

the mean rank of these algorithms. The computational environment is Windows XP with Intel

Core 2 Duo 1.66G CPU and 2G RAM. A MATLAB support vector machine toolbox [6] has

been used to implement SVM, in which sequential minimal optimization algorithm (SMO) is

implemented by C++ MEX files. This is the reason why SVM always runs faster than RVM and

PCVM. The source code of RVM is obtained from Tipping’s website12. PCVM is implemented

in MATLAB.

12http://www.miketipping.com/

26

TABLE X

THE MEAN RANK OF COMPUTATIONAL TIME.

Rank PCVM SVMsoft RVM LDA QDA 1NN kNN

Time 5.5 4 6.5 1.8 1.4 2.8 5.9

IV. SOME THEORETICAL DISCUSSIONS ON PCVMS

According to the experimental results, PCVMs outperform RVMs and SVMs on most of the

data sets. Section I presented some intuitive explanations for using truncated Gaussian prior in

PCVMs. This section will discuss the reasons why PCVMs are better in our experiments using

maximum-a-posterior (MAP) analysis and margin analysis.

A. Maximum-A-Posterior (MAP) Analysis

In Bayesian inference, the posterior of w and b is obtained by maximizing the product of

likelihood p(y|w, b) and prior p(w|α)p(b|β), where α is the parameter of the prior w and β is

the parameter of the prior b. Since two kinds of likelihoods, Bernoulli likelihood and Gaussian

likelihood, are often used in classification settings, we analyze these two cases, respectively.

• Bernoulli Likelihood

Bernoulli likelihood is defined as follows.

p(y|w, b) =
N∏

i=1

Ψ(f(xi;w))ti [1−Ψ(f(xi;w))]1−ti , (20)

where f(xi;w) = Φθ(xi)w+b, ti is the target probability, ti ∈ {0, 1}, and ti is obtained by

ti = (yi + 1)/2.

We make the common choice of a zero-mean Gaussian prior distribution over w and b.

p(w|α)p(b|β) =
∏

N
i=1

(αi

2π

)1/2

exp

(
−1

2
wTAw

)(
β

2π

)1/2

exp

(
−1

2
βb2

)
, (21)

where A is a diagonal matrix and A = diag(α1, · · · , αN), and αi, β are inverse variance

of the Gaussian distribution.

As the posterior w and b are proportional to the product of likelihood p(y|w, b) and prior

p(w|α)p(b|β), the MAP solution is equivalent to maximizing the following function,

max
w,b

Υ1 =
N∏

i=1

Ψ(f(xi))
ti [1−Ψ(f(xi))]

1−ti exp

(
−1

2
wTAw

)
exp

(
−1

2
βb2

)
. (22)

27

Taking the negative logarithm of Equation (22), the maximum posterior is obtained as the

solution to the following minimization problem:

min
w,b

Υ2(w, b) =
1

2
wTAw+

1

2
βb2 −

N∑
i=1

{ti ln Ψ(f(xi)) + (1− ti) ln[1−Ψ(f(xi))]} , (23)

The optimal solution of w can be obtained as follows.

∂Υ2

∂w
= 0 −→ w =

N∑
i=1

Ψ′(f(xi))(ti −Ψ(f(xi))

Ψ(f(xi)(1−Ψ(f(xi))
A−1ΦT

θ (xi). (24)

• Gaussian Likelihood

The Gaussian likelihood is obtained as

p(y|w, b) =

(
δ

2π

)N/2

exp

(
−1

2
δ

N∑
i=1

(Ψ(f(xi;w))− ti)
2

)
, (25)

where δ is the inverse variance of ti−Ψ(f(xi)), i = 1, · · · , N . We take the same Gaussian

prior, Equation (21), as the previous case.

The maximization of posterior is equivalent to minimizing the following optimization prob-

lem.

min
w,b

Υ3 =
N∑

i=1

(Ψ(f(xi))− ti)
2 + wTCw+Tb2, (26)

where C = A/δ, T = β/δ and the optimization problem only depends on these ratios

C = A/δ and T = β/δ. The optimal w can be obtained as follows.

∂Υ3

∂w
= 0 −→ w =

N∑
i=1

(ti −Ψ(f(xi)))Ψ
′(f(xi))C

−1ΦT
θ (xi). (27)

All of the link functions, including sigmoid link or probit link, are monotonically increasing

functions, and thus the slope is positive meaning the function Ψ′(f(xi)) > 0. According to

Equations (24) and (27), ci = αi/δ, αi, Ψ′(f(xi)) are all non-negative.

If we have a sparse model and a localized basis function Φ (such as Gaussian used in this

paper), then the expression for wi will be dominated by the term φi,θ(xi) and the sign of wi will

follow that of (ti−Ψ(f(xi)). Since the bound of the link function 0 ≤ Ψ(f(xi)) ≤ 1 and the ti

is mapped from yi by the equation ti = (yi + 1)/2, wi will have the same sign (or zero) as yi.

28

B. Margin Analysis

The superiority of PCVMs’ formulation can be analyzed by the concept of margin. Margin is

firstly used by support vector machines to enlarge the distance between the positive and negative

classes. Then Breiman [2] defined the margin for single points and used margin to analyze

boosting algorithms. Other work on margin includes an explanation of Adaboost as boosting the

margin [25] and construction of the soft-margin Adaboost [23].

In this paper, we follow the most common definition of margin [25], [23] for an input-output

pair (xi, yi) by

mi = yif(xi), (28)

where yi = {−1, +1} and f(xi) ∈ [−1, 1], i = 1, · · · , N and N denotes the number of training

patterns. The margin at xi is positive if the correct class label of the pattern is predicted. As

the positivity of the margin value increases, the decision stability becomes larger. Moreover,

as f(xi) ∈ [−1, 1], mi ∈ [−1, 1]. In the following, we analyze the Bernoulli likelihood and

Gaussian likelihood, respectively.

1) Bernoulli Likelihood:

• Gaussian Prior formulation

The optimal solution of wgauss is obtained by Equation (24).

• PCVM formulation

PCVMs incorporate a truncated Gaussian prior. Therefore, the maximum posterior is ob-

tained as the solution to the following minimization problem:

min
w,b

Υ4(w, b) =
1

2
wTAw+

1

2
βb2 −

N∑
i=1

{ti ln Ψ(f(xi)) + (1− ti) ln[1−Ψ(f(xi))]} ,

subject to wiyi ≥ 0, i = 1, · · · , N. (29)

Therefore we construct the Lagrange

min
w,b

L1(w, b) =
1

2
wTAw+

1

2
βb2−

N∑
i=1

{ti ln Ψ(f(xi)) + (1− ti) ln[1−Ψ(f(xi))]}−
N∑

i=1

ξiwiyi,

(30)

by introducing Lagrange multipliers ξi ≥ 0 (i = 1, · · ·N). The optimal weight w is obtained

by solving the Lagrange problem.

∂L1

∂w
= 0 −→ wpcvm =

N∑
i=1

Ψ′(f(xi))(ti −Ψ(f(xi))

Ψ(f(xi)(1−Ψ(f(xi))
A−1ΦT

θ (xi)+A−1ξY . (31)

29

where ξ = diag(ξ1, · · · , ξN) and Y = (y1, · · · , yN)T .

Based on the definition of margin, the margins of for any point i with Gaussian priors and

truncated priors are presented as follows

mgauss
i = yi(2Ψ(Φθ(xi)w

gauss+b)− 1), (32)

mpcvm
i = yi(2Ψ(Φθ(xi)w

pcvm+b)− 1), (33)

where the transformation 2Ψ(Φθ(xi)w+b) − 1 is to map the output Ψ(Φθ(xi)w+b) ∈ [0, 1] to

the desired range [−1, 1].

mpcvm
i −mgauss

i = 2yi{Ψ(Φθ(xi)w
pcvm+b)−Ψ(Φθ(xi)w

gauss+b)}, (34)

According to Equations (24) and (31), as all the link functions are monotonically increasing

function and the matrix A−1ξ ≥ 0, the difference between the margins is decided by the term

Y in the right hand side of Equation (31). mpcvm
i −mgauss

i ≥ 0 will be satisfied with a localized

basis function Φ (such as Gaussian function) in a sparse model.

2) Gaussian Likelihood:

• The maximum of the posterior is obtained as the solution to the following minimization

problem in PCVMs:

min
w,b

Υ5(w, b) =
N∑

i=1

(Ψ(f(xi))− ti)
2 + wTCw+Tb2,

subject to wiyi ≥ 0. (35)

Therefore one constructs the Lagrange

min
w,b

L2(w, b) =
N∑

i=1

(Ψ(f(xi))− ti)
2 + wTCw+Tb2 −

N∑
i=1

ξiwiyi, (36)

by introducing Lagrange multipliers ξi ≥ 0 (i = 1, · · ·N). The optimal weight vector w is

obtained by solving the Lagrange problem.

∂L2

∂w
= 0 −→ wpcvm =

N∑
i=1

(ti −Ψ(f(xi)))Ψ
′(f(xi))C

−1ΦT
θ (xi) + C−1ξY . (37)

Follow the same analysis adopted in the previous subsection, PCVMs are better than RVMs

in terms of margin with a localized basis function Φ (such as Gaussian function used in this

paper) in a sparse model.

30

C. Summary

This section analyzes the formulation of PCVMs using maximum-a-posterior (MAP) analysis

and margin analysis. Both analysis indicate that different truncated priors for different classes

used in PCVMs are better than Gaussian priors in a sparse model with a localized basis function.

This theoretical observation explains well the empirical success of PCVMs in this paper and

strengthens the significance of this algorithm.

V. CONCLUSION

In this paper, a probabilistic algorithm, probabilistic classification vector machines (PCVMs),

has been proposed for classification problems. The paper analyzes RVMs for classification

problems and observe that adopting the same prior for different classes may lead to unstable

solutions.

In order to tackle this problem, a signed and truncated Gaussian prior is adopted over every

weight, where the sign of the prior is determined by the class label. Our algorithm benefits from

the prior because it not only introduces the sparsity but also restricts the sign of every weight,

which is suitable for classification problems. An efficient procedure for parameter optimization

has been incorporated in the EM algorithm for PCVMs.

We have conducted a comprehensive study of PCVMs on four synthetic data sets and 13

benchmark problems under three performance metrics to explore the characteristics of PCVMs,

SVMs, RVMs and other algorithms. In order to compare these classifiers, several kinds of

statistical tests have been done. The 5 × 2 cross validation F test [1] is used to compare paired

classifiers on single data sets. To compare classifiers on multiple data sets, the Friedman test

with the corresponding post-hoc test has been used to statistically compare these classifiers over

multiple data sets.

Our results confirm that the PCVM performs very well on these data sets under all three

metrics, especially under AUC. For the RVM, it appears that adopting the same prior from

regression for classification problems leads to suboptimal results under ERR, AUC and RMSE.

The difference between the PCVM and the RVM shows that adopting truncated priors for

different classes is beneficial.

This paper also discusses PCVMs using maximum-a-posterior (MAP) analysis and margin

analysis. Both analyses indicate that truncated priors in PCVMs are better than common Gaussian

31

priors in a sparse model with a localized basis function. This theoretical finding explains well

the empirical success of PCVMs and also strengthens the significance of this algorithm.

In general, we could conclude that the PCVM is a sparse learning algorithm that addresses the

substantial drawbacks of SVMs without degrading the generalization performance. The PCVM

provides probabilistic outputs to assess the uncertainty for the predictions and performs well on

the skewed data sets, which are the reasons why the PCVM is so good under the AUC metric.

The PCVM also incorporates an efficient parameter optimization procedure, not only saving the

effort to do cross validation grid search but also improving the performance. The interesting point

here is that the PCVM-optimized parameter works for SVMs as well, providing an alternative to

the usual parameter selection method for SVMs. The number of basis functions in PCVMs does

not grow linearly with the number of training points, leading to simpler and easier-to-understand

models.

The computational complexity of PCVMs is O(M3), where M is the number of non-zero

basis functions and M ≤ N . Because of the sparseness-inducing priors and fast converging EM

algorithm, PCVMs prune the basis functions rapidly for most problems. The computation time

of PCVMs is further reduced by their efficient parameter optimization procedure.

Future work for this study includes a more in-depth study of methods to tackle the local

maxima problem in EM algorithm and reduction of computational complexity on large data

sets.

APPENDIX

A. Further Details of Hierarchical Hyperpriors

To follow the Bayesian framework and encourage the model sparsity, hierarchical hyperpriors

over α and β will be defined. In order to facilitate the comparison with the RVM, we use

Gamma distribution as the hyperprior. However, the hyperpriors are not restricted to Gamma

distribution. For example the exponential distribution can also be employed as hyperpriors to

introduce a Laplacian prior [12].

p(α) =
N∏

i=1

Gamma(αi|c, d), (38)

p(β) = Gamma(β|e, f), (39)

32

where c, d, e, f are parameters of the Gamma hyperprior and

Gamma(αi|c, d) = Γ(c)−1dcαc−1
i e−dαi , (40)

where Γ(c) =
∫∞

0
tc−1e−tdt is the gamma function.

With these assumptions in place, the complete prior can be obtained by marginalizing with

respect to each αi and b.

p(wi|c, d) =

∫ ∞

0

p(wi|αi)p(αi|c, d)dαi =





2dcΓ(c+ 1
2
)√

2πΓ(c)
(

w2
i

2
+ d)−(c+ 1

2
) if yiwi ≥ 0

0 if yiwi < 0
, (41)

p(b|e, f) =

∫ ∞

0

p(b|β)p(β|e, f)dβ =
f eΓ(e + 1

2
)√

2πΓ(e)
(
b2

2
+ f)−(e+ 1

2
). (42)

According to equations (41) and (42), the hierarchical prior is equivalent to a truncated student-

t prior over w and a student-t prior over b. This prior is sharply peaked at zero and more peaky

than a Gaussian prior.

In most cases, the parameters c, d, e, f will be set to zero. In this situation, a prior

p(wi) =





2Γ(1
2
)√

2πΓ(0)
(

w2
i

2
)−

1
2 if yiwi ≥ 0

0 if yiwi < 0
, (43)

is obtained. The prior looks like the Laplacian prior and leads to a sparse model.

B. Details of Expectation Step

In the expectation step, we need to calculate the expectations of log-posterior, Equation (10),

with respect to the latent variables. According to the definition, the expectation step can be

obtained by the following formula:

Q(w, b|wold, bold) = EHθ,α,β[log p(w, b|y,Hθ, α, β)|y,wold, bold] (44)

= 2wTΦT
θ E[Hθ|y,wold, bold]−wTΦT

θ Φθw+2bIT E[Hθ|y,wold, bold]

−2bITΦθw − b2N −wT E[A|y,wold, bold]w − E[β|y,wold, bold]b2.

The computation of Q(w, b|wold, bold) reduces to computing the expectations: E[Hθ|y,wold, bold],

E[A|y,wold, bold] and E[β|y,wold, bold].

h̄θ,i = E[hθ(xi)|yi,w
old, bold] =

∫
hθ(xi) · p(hθ(xi)|yi,w

old, bold)dhθ(xi)

=





ziΨ(zθ,i) + N(zθ,i|0, 1) if yi = +1

ziΨ(−zθ,i)−N(zθ,i|0, 1) if yi = −1
, (45)

33

where zθ,i = Φθ(xi)w+b.

Note that the function of yi in Equation (45) is to restrict the integral bound: when yi = +1,

p(hθ(xi)|yi,w
old, bold) is a left-truncated Gaussian from zero to infinity with mean Φθ(xi)w+b

and when yi = −1, p(hθ(xi)|yi,w
old, bold) is a right-truncated Gaussian from negative infinity

to zero with mean Φθ(xi)w+b.

Since A is a diagonal matrix, A = diag(α1, · · · , αN), the expectation E[A|y,wold, bold] can

be proceeded as a diagonal matrix Ā = diag(E[αi|yi,w
old, bold]).

ᾱi = E[αi|yi,w
old, bold] =

∫∞
0

αi · p(wi|αi)p(αi)dαi∫∞
0

p(wi|αi)p(αi)dαi

=
c + 1/2

w2
i + d

, (46)

and

β̄ = E[β|yi,w
old, bold] =

∫∞
0

β · p(b|β)p(β)dβ∫∞
0

p(b|β)p(β)dβ
=

e + 1/2

b2 + f
. (47)

Usually, we set c = d = e = f = 0.

Based on Equations (45), (46) and (47), the Q function is rewritten as follows:

Q(w, b|wold, bold) = 2wTΦT
θ H̄θ−wTΦT

θ Φθw+2bIT H̄θ−2bITΦθw−b2N+wT Āw−β̄b2, (48)

where H̄θ is a vector of h̄i: H̄θ = (h̄1, h̄2, · · · , h̄N)T .

C. Further Details of Maximization Step

In the maximization step, we present the update rule for w and b.

wnew = (ΦT
θ Φθ + Ā)−1(ΦT

θ H̄θ − bΦT
θ I), (49)

bnew =
IT H̄θ − ITΦθw

β̄ + N
. (50)

From Equations (46) and (47), the evaluation of ᾱi and β̄ need to specify the parameters c, d,

e, f that are associated with hyperpriors. The model benefits from such hyperpriors by setting

c = d = e = f = 0 since they are scale-invariant and such uniform hyperpriors have been shown

to encourage model sparsity in [26]. This setting also facilitates comparison between the PCVM

and the RVM since RVM uses the same hyperpriors and sets c = d = e = f = 0.

However, when setting these parameters to zero, the computation of ᾱi(= 1/(2w2
i)) and

β̄(= 1/(2b2)) is unstable when wi’s approach to zero. In our formulation, the diagonal matrix

Ā is updated in each M step. The elements of Ā are inversely proportional to the square of

the corresponding weights wi: Ā =diag[(
√

2w1)
−2, · · · , (

√
2wN)−2]. Since some of the weights

34

do eventually become small, it is not convenient to deal with Ā, because that would imply

handling arbitrarily large numbers. We adopt a simple trick suggested in [12] (section 3.7,

page 1154) involving an auxiliary matrix M =diag[
√

2w1, · · · ,
√

2wN] and (M−1)2 = Ā. This

transformation avoids the inversion of the elements of wi when updating the weight parameters.

The same modification is applied to equation (50) as well.

wnew = M(MΦT
θ ΦθM + I

(iden)
N)−1M(ΦT

θ H̄θ − bΦT
θ I), (51)

bnew = t(1 + tNt)−1t(IT H̄θ − ITΦθw), (52)

where I
(iden)
N is a N -dimensional identity matrix, the diagonal elements in the diagonal matrix

M are

mi = (ᾱi)
−1/2 =





√
2wi if yiwi ≥ 0

0 if yiwi < 0
, (53)

and the scalar t =
√

2|b|. These modifications allow for a stable numerical computation in

practice.

Moreover, as suggested by Tipping [26] (Appendix B.1 Page 235), even though in theory

the matrix (ΦT
θ Φθ + Ā) is positive definite, it may become numerically singular when some

diagonal elements in matrix Ā tends towards very large values (> ν = 1012 in our experiments),

i.e. some wi tends to zero. In this experiments, we delete the appropriate column from Φ to

avoid ill-conditioning. A similar procedure of pruning has been adopted by Figueiredo [12] as

well. In this context, ν−1 is the weight cut-off value for pruning kernels out of the model. Note

that only kernels with very small associated weights will be prune out of the model.

Since Cholesky decomposition is numerically stable [22], to enhance numerical stability, we

follow Tipping [26] and use Cholesky decomposition instead of direct matrix inversion in our

experiments.

REFERENCES

[1] E. Alpaydin. Combined 5 × 2 cv f test for comparing supervised classification learning algorithms. Neural Computation,

11(8):1885–1892, 1999.

[2] L. Breiman. Prediction games and arcing algorithms. Neural Computation, 11(7):1493–1517, 1999.

[3] C. J. C. Burges. A tutorial on support vector machines for pattern recognition. Knowledge Discovery and Data Mining,

2(2):121–167, 1998.

[4] C. J. C. Burges and B. Schölkopf. Improving the accuracy and speed of support vector learning machines. In Advances

in Neural Information Processing Systems 9 (NIPS), pages 375–381, Cambridge, MA, USA, 1997. MIT Press.

35

[5] R. Caruana and A. Niculescu-Mizil. Data mining in metric space: An empirical analysis of suppervised learning performance

criteria. In Proceedings of the Tenth International Conference on Knowledge Discovery and Data Mining (KDD’04), pages

69–78, 2004.

[6] G. C. Cawley. MATLAB support vector machine toolbox (v0.55β). University of East Anglia, School of Information

Systems, Norwich, U.K., 2000. http://theoval.sys.uea.ac.uk/svm/toolbox.

[7] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from incomplete data via the EM algorithm. Journal of the

Royal Statistical Society, Series B, 39(1):1–38, 1977.

[8] Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine learning research, 7:1–30,

2006.

[9] T. G. Dietterich. Approximate statistical test for comparing supervised classification learning algorithms. Neural

Computation, 10(7):1895–1923, 1998.

[10] O. J. Dunn. Multiple comparisons among means. Journal of the American Statistical Association, 56:52–64, 1961.

[11] T. Fawcett. An introduction to roc analysis. Pattern Recognition Letters, 27(8):861–874, 2006.

[12] M. A. T. Figueiredo. Adaptive sparseness for supervised learning. IEEE Transactions Pattern Analysis and Machine

Intellgence, 25(9):1150–1159, 2003.

[13] M. Friedman. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. Journal of the

American Statistical Association, 32:675–701, 1937.

[14] M. Friedman. Comparison of alternative tests of significance for the problem of m rankings. Annals of Mathematical

Statistics, 11:86–92, 1940.

[15] R. L. Iman and J. M. Davenport. Approximations of the critical region of the friedman statistic. Communications in

Statistics, pages 571–595, 1980.

[16] T. Joachims. Making large-scale SVM learning practical. In B. Schölkopf, C. Burges, and A. Smola, editors, Advances in

Kernel Methods - Support Vector Learning, pages 169–184, 1999.

[17] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415–447, 1992.

[18] D. J. C. MacKay. The evidence framework applied to classification networks. Neural Computation, 4(3):720–736, 1992.

[19] P. McCullagh. Generalized Linear Models. Chapman and Hall, 1989.

[20] D. J. Newman, S. Hettich, C. L. Blake, and C. J. Merz. UCI repository of machine learning databases, 1998.

[21] J. Platt. Probabilistic outputs for support vector machines and comparison to regularize likelihood methods. In A.J. Smola,

P. Bartlett, B. Schoelkopf, and D. Schuurmans, editors, Advances in Large Margin Classifiers, pages 61–74, 2000.

[22] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery. Numerical Recipes 3rd Edition: The Art of Scientific

Computing. Cambridge University Press, 2007.

[23] G. Rätsch, T. Onoda, and K. R. Müller. Soft margins for adaboost. Machine Learning, 42(3):287–320, 2001.

[24] B. D. Ripley. Pattern Recognition and Neural Networks. Cambridge University Press, 1996.

[25] R. E. Schapire, Y. Freund, P. Barlett, and W. S. Lee. Boosting the margin: A new explanation for the effectiveness of

voting methods. The Annals of Statistics, 26(5):1651–1686, 1998.

[26] M. E. Tipping. Sparse bayesian learning and the relevance vector machine. Journal of Machine Learning Research,

1:211–244, 2001.

[27] V. N. Vapnik. Statistical Learning Theory. Wiley-Interscience, 1998.

