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Abstract

We propose a novel approach for building finite memory predictive models simi-
lar in spirit to variable memory length Markov models (VLMMs). The models are
constructed by first transforming the n-block structure of the training sequence in-
to a geometric structure of points in a unit hypercube, such that the longer is the
common suffix shared by any two n-blocks, the closer lie their point representations.
Such a transformation embodies a Markov assumption — n-blocks with long common
suffixes are likely to produce similar continuations. Prediction contexts are found by
detecting clusters in the geometric n-block representation of the training sequence via
vector quantization. We compare our model with both the classical (fixed order) and
variable memory length Markov models on five data sets with different memory and
stochastic components. Fixed order Markov models (MMs) fail on three large data

sets on which the advantage of allowing variable memory length can be exploited. On
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these data sets, our predictive models have a superior, or comparable performance
to that of VLMMSs, yet, their construction is fully automatic, which, is shown to be
problematic in the case of VLMMs. On one data set, VLMMs are outperformed by the
classical MMs. On this set, our models perform significantly better than MMs. On the

remaining data set, classical MMs outperform the variable context length strategies.

Keywords: variable memory length Markov models, iterative function systems, frac-

tal geometry, chaotic sequences, DNA sequences, volatility prediction
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1 Introduction

Statistical modeling of complex sequences is a fundamental goal of machine learning due
to its wide variety of applications (Ron, Singer, & Tishby, 1996): in genetics (Prum,
Rodolphe, & deTurkheim, 1995), speech recognition (Nadas, 1984), finance (Biithlmann,
1998), or seismology (Brillinger, 1994).

One of the models for sequences generated by stationary sources, assuming no particu-
lar underlying mechanistic system, are Markov models (MMs) of finite order (Biithlmann,
& Wyner, 1999). The only implicit assumption made is about the finite memory of the
process. These statistical models define rich families of sequence distributions and give
efficient procedures for both generating sequences and computing their probabilities. How-
ever, MMs can become very hard to estimate due to the familiar explosive increase in the
number of free parameters (yielding highly variable estimates) when increasing the model
order. Consequently, only low order MMs can be considered in practical applications.

Approaches proposed in the literature (Ron, Singer, & Tishby, 1996; Laird, & Saul,
1994; Nadas, 1984; Rissanen, 1983; Weinberger, Rissanen, & Feder, 1995; Willems,
Shtarkov, & Tjalkens, 1995; Biihlmann, & Wyner, 1999) to overcome the curse of di-
mensionality in MMs share the same basic idea: instead of fixed order MMs consider
variable memory length Markov models (VLMMs) with a “deep” memory just where it is
really needed (Ron, Singer, & Tishby, 1994).

Prediction contexts of variable length in VLMMs are often represented as prediction
suffix trees (PSTs) (Rissanen, 1983). The relevant prediction context is defined as the
deepest node in the PST that can be reached from the root when reading the input
stream in reversed order.

Prediction suffix trees can be constructed in a top-down (Ron, Singer, & Tishby, 1994;
Ron, Singer, & Tishby, 1996; Weinberger, Rissanen, & Feder, 1995), or bottom-up (Guyon,
& Pereira, 1995; Bithlmann, & Wyner, 1999) fashion. Both schemes strongly depend on
the construction parameters regulating candidate context selection and growing/pruning

decisions (Biihlmann, & Wyner, 1999; Guyon, & Pereira, 1995). The appropriate values



for those parameters are derived only under asymptotic considerations. In practical ap-
plications, the parameters must be set by the modeler, which can be, as we will see, quite
inconvenient and problematic (see also (Bithlmann, 2000)). Bithlmann and Wyner (1999)
suggest to optimize the construction parameters’ values through minimization of model
complexity measured, for example, by the Akaike information criterion (Akaike, 1974). In
another study on VLMM model selection (Biihlmann, 2000), Biithlmann proposes a resam-
pling strategy to estimate the asymptotic behavior of different risk functions. However, in
practical applications, such a strategy may not be applicable, since fitting the individual
VLMDMs can be highly time-consuming.

We introduce finite-context predictive models similar in spirit to VLMMs. The key
idea behind our approach is a geometric representation of candidate prediction contexts,
where contexts with long common suffixes (i.e. contexts that are likely to produce sim-
ilar continuations) are mapped close to each other, while contexts with different suffixes
(and potentially different continuations) correspond to points lying far from each other.
Selection of the appropriate prediction contexts is left to a vector quantizer. Dense areas
in the spatial representation of potential prediction contexts correspond to contexts with
long common suffixes and are given more attention by the vector quantizer.

The paper has the following organization:

In sections 2 and 3, we use the framework of finite memory sources to introduce our
predictive models as well as the classical and variable memory length Markov models.

Section 4 contains a detailed comparison of the studied model classes on five data sets
of different origin, representing a wide range of grammatical and statistical structure.

A discussion summarizes the empirical results and outlines directions in our current

and future research.

2 Statistical modeling of complex sequences

We consider sequences S = $189... over a finite alphabet A = {1,2,..., A} (i.e. every

symbol s; is from A) generated by stationary information sources (Khinchin, 1957). The



sets of all sequences over A with a finite number of symbols and exactly n symbols are
denoted by A" and A", respectively. By Sg, i < j, we denote the string s;s;1...5j, with
S! = s;. The (empirical) probability of finding an n-block w € A" in S is denoted by
P,(w). A string w € A™ is said to be an allowed n-block in the sequence S, if P, (w) > 0.
The set of all allowed n-blocks in S is denoted by [S],,.

An information source (Khinchin, 1957; Weinberger, Rissanen, & Feder, 1995) over an
alphabet A = {1,2,..., A} is defined by a family of probability measures P, on n-blocks
over A, n = 0,1,2,.... Consistent measures satisfy the marginality condition: for all!
seA, we A", n=0,1,2..,

Z Pyi1(ws) = Py (w).

s€eA
In applications it is useful to consider probability functions P, that are both consistent

and easy to handle. This can be achieved, for example, by assuming a finite source memory

of length at most L, and formulating the conditional measures

PL+1 (ws)

P(s|lw) = Pr(a0)

. we A",

using a so-called context function ¢ : A" — C, from L-blocks over A to a (presumably

small) finite set C of prediction contexts,
P(sjw) = P(s]c(w)). (1)

The task of a learner is now to first find an appropriate context function ¢(w) and
to estimate the probability distribution P(s|w) from the data. On one hand such a fi-
nite memory model can be used for prediction. On the other hand, it can also be used
as a sequence generator by initiating it with the first L-block and letting it produce a
continuation according to the next-symbol distribution (1).

We now present two specific examples of finite memory learners and then introduce
our novel approach for constructing finite memory sources from geometric representations

of training sequences.

TA° = {A} and Po(A) = 1, where A denotes the empty string.



2.1 Fixed-order Markov models

In classical Markov models (MMs) of (fixed) order n < L, for all L-blocks w € A",
the relevant prediction context c¢(w) is chosen a priori as the length-n suffix of w, i.e.
c(uv) = v, v € A", u € A", In other words, for making a prediction about the next
symbol, only the last n symbols are relevant. Formally, the context function ¢ : A" — C
for Markov models (MMs) of order n < L can be interpreted as a natural homomorphism
c: Al — All¢ corresponding to an equivalence relation £ C A* x A on L-blocks over
A: (u,v) € €, if the L-blocks u, v share the same suffix of length n. The factor set A”"|¢,
i.e. the set of all equivalence classes on L-blocks A" under the equivalence &, consists of
all n-blocks over A,
Allg =C = A"

As already mentioned in the introduction, for large suffix lengths n, the estimation of
prediction probabilities P(s|c(w)) can become infeasible. By increasing the model order
n the number of probability distributions to be estimated rises by A" leaving the learner

with the problem to cope with a strong curse of dimensionality.

2.2 Variable length Markov models

The curse of dimensionality in classical Markov models has lead several authors to develop
so-called variable memory length Markov models (VLMMs). The task of a VLMM is the
estimation of an appropriate context function, giving rise to a potentially much smaller
number of contexts considered. This is achieved by permitting the suffixes c¢(w) of L-
blocks w € A" to be of different lengths, depending on the particular L-block w. We
briefly review strategies for selecting and representing the prediction contexts.

Suppose we are given a long training sequence S over A. Let w € [S], be a potential
prediction context of length n < L used to predict the next symbol s € A according to

the empirical estimates

Ps|w) = P’%%Sj’)s).



If for a symbol a € A, such that aw € [S],41, the prediction probability of the next symbol
S’
- Py yo(aws
P(s|law) = M,
Pt (aw)

with respect to the extended context aw differs “significantly” from P(s|w), then adding
the symbol a € A in the past helps in the next-symbol predictions. Several decision criteria
have been suggested in the literature. For example, one can extend the prediction context

w with a symbol a € A, if

e the Kullback-Leibler divergence between the next-symbol distributions for the can-
didate prediction contexts w and aw, weighted by the prior distribution of the ex-
tended context aw, exceeds a given threshold (Ron, Singer, & Tishby, 1994; Guyon,
& Pereira, 1995),

P(s|aw)

P(shw) = F @

Py (aw Z slaw) log 4
€A

e there exists a symbol s € A, such that (Ron, Singer, & Tishby, 1996)

1 P(s|aw)

P(s|aw) > Z(l +e1)er and P(slw > 14 3€;. (3)

The (small, positive) construction parameters e, €1 are supplied by the modeler. For
other variants of decision criteria see (Weinberger, Rissanen, & Feder, 1995; Biihlmann,
& Wyner, 1999).

A natural representation of the set C of prediction contexts, together with the associat-
ed next-symbol probabilities, has the form of a prediction suffix tree (PST) (Ron, Singer,
& Tishby, 1996; Rissanen, 1983). The edges of PST are labeled by symbols from A. From
every internal node there is at most one outgoing edge labeled by each symbol. The nodes
of PST are labeled by pairs (s, P(s|v)), s € A, v € AT, where v is a string associated with
the walk starting from that node and ending in the root of the tree. For each L-block
w = v1vy...v, € A, the corresponding prediction context c¢(w) is then the deepest node in
the PST reached by taking a walk labeled by the reversed string, wf = vy,...v9v;, starting

in the root.



The algorithm for building PSTs has the following form? (Ron, Singer, & Tishby, 1996;
Ron, Singer, & Tishby, 1994; Guyon, & Pereira, 1995):

e the initial PST is a single root node and the initial set of candidate contexts is

W = {s € Al Pi(s) > €grow}-
e while W # (), do:

1. pick any v = aw € W, a € A, and remove it from W

2. add the context v to the PST by growing all the necessary nodes, provided the
condition (2) (or (3)) holds?

3. provided |v| < L, then for every s € A, if P(sv) > €grow, add sv to W.

The depth of the resulting PST is at most L. The tree is grown from the root to the
leaves. If a string v does not meet the criterion (2) (or (3)), it is not definitely ruled out,
since its descendants are added to W in step 3. The idea is to keep a provision for the
future descendents of v which might meet the selection criterion. In general, as the values
of €grow and ek, (€1) decrease, the size of the constructed PST increases.

Prediction suffix trees are usually constructed using a one-parameter scheme intro-
duced in (Ron, Singer, & Tishby, 1994). This scheme varies only one parameter e=e€y =
€grow- In this case, however, it can happen that for small values of €, many low-probability
subsequences are included as potential contexts in step 3 of the PST construction. The
resulting PSTs are too specific and greatly overfit the training sequence. One can improve
on that by fixing the growth parameter €44, to a small positive value and varying only
the acceptance threshold parameter ex . This usually removes the overfitting effect in
larger PSTs. However, smaller PST's, corresponding to larger values of e, often perform
poorly, since the small fixed value of €44, results in considering unnecessarily specific con-
texts. We empirically found the procedure with ratio-related parameters €g,on = p €K1,

50 < p <100, to give the best results.

2 . .. .
€grow 1S @ small positive construction parameter

3I5(S|A) =P (s), A is the empty string.



Variable memory length Markov models (VLMMs) are usually compactly described as
stochastic machines (SMs). Briefly, SMs are like finite state machines except that the state
transitions take place with probabilities prescribed by a distribution 7; ; ;. The generating
process is started in an initial state and then, at any given time step, the machine is in
some state ¢, and at the next time step moves to another state j outputting some symbol
s, with the transition probability T} ; .

The set C of prediction contexts encoded in a PST is the state set of the corresponding
SM that contains the leaves of the PST plus contexts added so that the symbol driven state
transition probabilities T; ; ; are properly defined (see (Ron, Singer, & Tishby, 1996; Ron,
Singer, & Tishby, 1994; Guyon, & Pereira, 1995)). SMs representing VLMMs have suffix-
free state sets () and are known as probabilistic suffix automata (PSA) (Ron, Singer, &
Tishby, 1996; Weinberger, Rissanen, & Feder, 1995). Although VLMMs can be emulated
with the corresponding PSTs, PSA representations of VLMMs give higher processing
speed. In PSA, the longest suffices are precomputed into states, whereas in PSTs the

longest suffices must be dynamically determined (Guyon, & Pereira, 1995).

3 Fractal prediction machines

We propose a novel approach for learning the statistical structure of symbolic sequences,
which we call fractal prediction machines (FPMs). FPMs are similar in spirit to VLMMs,
but derive a context function ¢(w) in a more efficient way.

The main idea behind a FPM is to first transform the L-blocks appearing in the training
sequence into points in a D-dimensional vector metric space (R”,d), so that the suffix
structure of L-blocks is coded into a cluster structure in (R”,d). The equivalence relation
& defining the context function is then constructed by vector-quantizing the geometric
representations of allowed L-blocks. This way, we have a direct control over the number of
predictive contexts and, at the same time, avoid using auxiliary construction parameters

employed in the PST construction (see the last section).



3.1 Chaos game representations

The basis for the transformation of symbolic strings into points in R” is the so-called
chaos game representation (CGR), originally introduced by Jeffrey (1990) to study DNA
sequences (see also (Oliver, Galvdn, Garcia, & Roldan, 1993; Roldan, Galvan, & Oliver,
1994; Li, 1997)). CGRs of symbolic sequences have been formally studied in (Tino, 1999)
revealing the desired properties for our purposes.

The basis of the chaos game representation of sequences over an alphabet A = {1,2, ..., A}
is an iterative function system (IFS) (Barnsley, 1988) consisting of A affine contractive

maps? 1,2,..., A, acting on the D-dimensional unit hypercube® X = [0,1]”, D = [log, A]:
i(x) = ko + (1 — k)i, t; € {0,1}°, t; #t; for i # 5. (4)

The contraction coefficient of the maps 1,..., A, is k € (0, %]
The chaos game representation CGRy(S) of a sequence S = s1s3... over A is obtained

as follows (Tino, 1999):
1. Start in the center z, = {%}D of the hypercube X, zg = z,.
2. Plot the point z,, = j(zy—1), n > 1, provided the n-th symbol s, is j.

As an example, consider a sequence S = 142... over the four-symbol alphabet A =
{1,2,3,4}. Let the four affine maps on the unit square [0, 1]2, corresponding to the symbols
in A, be defined as (k = 3)

1(z) = %x—i— %(0,0), 2(zx) = %x + %(1,0),
3(z) = %x—i— %(0, 1), 4(z)= %x + %(1,1).

Here, symbols 1, 2, 3 and 4, are associated with the unit square corners t; = (0,0),

ts = (1,0), t3 = (0,1) and t4 = (1,1), respectively. Each map i(z), i = 1,2,3,4, first

“To keep the notation simple, we slightly abuse mathematical notation and, depending on the context,
regard the symbols 1,2, ..., A, as integers, or as referring to maps on X.

for 2 € R, [x] is the smallest integer y, such that y > =

10
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Figure 1: Illustration of the iterative function system behind the chaos sequence repre-
sentations of symbolic streams. Each symbol 1, 2, 3 and 4 is associated with a unique
corner of the black unit square at the top left. Upon seeing symbol 1, the unit square
is contracted and shifted towards to corner associated with symbol 1. This process is
iteratively repeated as more new symbols arrive. Increasingly longer sequences are coded
in the shrinking copies of the original black unit square. In each construction step, the

resulting unit square is labeled by the suffix coded by the black subsquare.

contracts the unit square [0,1]? into the subsquare [0, %]2, and then shifts the subsquare
towards the corresponding corner #; of the unit square.

This is illustrated in figure 1. Under the map 1(z), the black unit square at the top
left is contracted and then shifted, so that it fills the subsquare position associated with
symbol 1. The shift vectors ¢; are schematically shown as the corresponding symbols ¢
appearing at the corners of the unit square.

The whole process can be iteratively repeated. Assume that the next symbol is 4.

Again, the unit square is contracted into [0, %]2, but this time the contracted subsquare is

11



shifted to the upper right corner of the unit square. Upon seeing yet another symbol, say,

2, the result of the previous step is contracted into [0, %]2 and shifted to the lower right
corner of the unit square, etc...

Note that by iteratively making contractions and shifts, we effectively code the history
of seen symbols into subsquares of [0, 1)2. Black subsquares inside unit squares in figure 1
correspond to seen strings schematically written on top of the squares. For example, the
black square at the top left of figure 1 codes the state of total ignorance - every string
over A could have been seen. The black subsquare inside the unit square labeled by *1
corresponds to all strings ending with symbol 1. The black “subsubsquare” in the unit
square labeled by *14 lies in the subsquare corresponding to strings ending with 4 (shaded
area) and codes all strings ending with 14. Likewise, the black region in the unit square
labeled by *142 corresponds to all strings ending with 142.

Two properties of the chaos game representation CGR(S) of symbolic sequences S
are of importance to us. First, if histories of the last symbols in two sequences Sy, Ss,
are the same, i.e. if the sequences S7, Sy share a common suffix, the last points in the
representations, CGR(S1), CGR(S3), lie close to each other. Second, the longer is the

common suffix shared by S; and S5, the smaller is the region containing the last points of

CGR(S1), CGR(Ss).

3.2 Deriving an appropriate context function

We slightly modify the concept of chaos game representations to compute a chaos L-
block representation CBRy, ;(S) of the sequence S. It is constructed by plotting only the
last points of the chaos game representations CGRy(w) of allowed L-blocks w € [S]r,.
The representation of a single block, resulting in a single point, is defined by the map

o: A¥ —[0,1]P, from L-blocks vjvs...v;, over A to the unit hypercube,

o(vive...vr) = v, (vr,_1(...(v2(v1(2")))...)) = (v, 0wy, 1 0...0vg 0 vy)(z"), (5)

where z* = {%}D is the center of the hypercube. The maps vy, ..., vy, corresponding to

symbols appearing in L-blocks are defined in (4).

12



We thus obtain the (multi)set of points CBRy, x(S) in R” containing the geometric
representations of allowed L-blocks in S. The set CBRy, 1,(S) codes the suffix structure in
allowed L-blocks in the following sense (Tio, 1999): if v € A" is a suffix of length |v| of
a string u = rv, r,u € A", then u(X) C v(X), where v(X) is a D-dimensional hypercube
of side length k/*|. Hence, the longer is the common suffix shared by two L-blocks, the
closer the L-blocks are mapped in the chaos L-block representation CBRL,,C(S)‘S. On the
other hand, the Euclidean distance between points representing two L-blocks u, v, that
have the same prefix of length L. — 1 and differ in the last symbol, is at least 1 — k.

Given this property, finding an appropriate context function can easily be done by
performing vector quantization (VQ) on the chaos L-block representation CBRy, ;(S) of
the training sequence S. VQ in the metric space (R”,d), where d is the metric, positions
in R” M codebook vectors (CVs), by, ..., by, each CV representing a subset of points from
CBRy, ;(S) that are closer to it (w.r.t. metric d) than to any other CV, so that the overall
error of substituting CVs for points they represent is minimal. In other words, CVs tend
to represent points in CBRy, ;(S) lying close to each other (in metric d).

As the distance function d, we consider the L; distance

D
di(z,y) =S | — wil, (6)
i=1

or the Ly (Euclidean) distance

where £ = (z1,29,....2p), ¥ = (y1,y2,....yp) € RP. Compared to the L; metric, the

L9 metric is less sensitive to smaller distances, while emphasizing the larger ones. Vector

1
2

SFor k close to %, geometric representations of completely different L-blocks may lie close to each other.
This happens, for example, for blocks 444...41 and 333...32 over the alphabet {1,2,3,4}, geometrically
represented through the iterative function system (4) acting on [0,1]?, with t; = (0,0), t» = (1,0),
t3 = (0,1) and t4 = (1,1). As a remedy, one may lower the contraction ratio k. The issue of optimal
contraction ratio with respect to a given training sequence and vector quantizer is also being currently

investigated.
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quantization in Ly and Ly metrics positions CVs in the median and the mean, respectively,
of the set of points they represent.

Now, as with classical Markov models, we define the prediction context function c :
A" — C via an equivalence £ on L-blocks over A. This time, the equivalence £ reads: two
L-blocks u, v are in the same class if their images under the map o (eq. (5)) are represented
by the same codebook vector. In this case, the set of prediction contexts C can be identified
with the set of codebook vectors {by, by, ...,bas }. We refer to predictive models with such
a context function as fractal prediction machines (FPMs)?. The prediction probabilities

(1) are determined by

N (i, s)
>acaN(i,a) ’
where N (i,a) is the number of (L 4 1)-blocks ua, u € AL, a € A, in the training sequence,

P(s|b) = s€ A, (8)

such that the point o(u) (eq. (5)) is allocated to the codebook vector b;.

3.3 FPM construction

To summarize what was described above, fractal prediction machines are constructed as

follows:

1. calculate the chaos L-block representation CBRy, 1(S) of the training sequence S =
5152...8;, containing point representations o(w) € R (eq. (5)) of all allowed L-

blocks w € [S]z in S

2. partition the hypercube [0, 1]” into M regions Vi, ..., Vis, by running a vector quan-

tizer on the set CBRy ;(S). The regions Vi, i = 1,..., M, in the metric space

"We note that FPMs depend on cluster density in the geometric L-block representations, that is con-
trolled by the contraction parameter k (see eq. (4)). Smaller k’s yield more dense clusters. Furthermore,
quantization of the geometric representations is controlled by the magnification factor (Ritter, & Schulten,
1986; Bauer, Der, & Herrmann, 1996) of the used vector quantization scheme. The magnification factor
relates, under asymptotic considerations, the frequency of codebook vectors in the quantized region with
the frequency of L-block representations in that region. One can find a formal relationship among the
contraction factor k, magnification factor of the vector quantizer and the dynamics of the FPM context

transitions. This and other related issues are currently under investigation.
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(RP,d), are the Voronoi compartments (Aurenhammer, 1991) of the codebook vec-
tors b] yeeey bM,

Vi = {z €10,1)?| d(z,b;) = n;ind(m,bj)}.
All points in V; are allocated® to the codebook vector b;.
3. set the counters N(i,a),i=1,...M, a=1,..., A, to zero
4. for1<t<m-L

e code the L-block S;H—L*l by a point o (S£+L71)

o ifo (SF'L*l) € V;, increment the counter N(i, ;1) by one

5. with each prediction context (codebook vector) by, ..., bys, associate the next symbol
probabilities
N(i,s
P(slb;) = (—’),, s e A
ZaE.A N(Za a)

4 Experiments

We compared the fractal prediction machines (FPMs) with both the classical and variable
memory length Markov models referred to as MM and VLMM (or PST, for prediction
suffix tree), respectively. The experiments were performed on five data sets of various
origin and different levels of subsequence distribution structure. These five data sets

comprise the following;:

e two classical symbolic sequences studied previously, namely DNA sequences and text

sequences from the bible,

e two sequences obtained by quantizing chaotic time series, which have been well-
studied and have a known deep and complex structure: quantized Laser data and

the Feigenbaum sequence,

8Ties as events of measure zero (points land on the border between the compartments) are broken

according to index order
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e one sequence derived from quantizing a time series from a real world stochastic

process, namely the historical Dow Jones industrial average.

By choosing these data sets we aim to demonstrate where and when FPMs can out-
perform the classical fixed-order and the more flexible variable-order Markov models. At
the same time, we demonstrate the feasibility of transforming continuous time series into
symbolic streams and subsequently using MMs, VLMMs and FPMs to learn about their
structure.

Quantizing real-valued time series into symbolic streams has been a well-understood
and useful information reduction technique in symbolic dynamics. Under certain condi-
tions, stochastic symbolic models of quantized chaotic time series represent, in a natural
and compact way, the basic topological, metric and memory structure of the underlying
real-valued trajectories (see e.g. Crutchfield & Young, 1990; Katok, & Hausselblatt, 1995).

Analogous ideas in the context of stochastic real-valued time series were recently put
forward by Bithlmann (1999). He introduces a new class of hybrid real-valued/symbolic
models, the so-called quantized variable length Markov chains (QVLMCs), that describes a
class of real-valued stochastic processes. QVLMCs are roughly VLMMs constructed on the
quantized sequences with the next step distribution in R defined as a mixture of local (say,
Gaussian) densities corresponding to the individual partition elements (symbols). The
mixture weights correspond to the next-symbol probabilities given by the symbolic model
(VLMM). Biihlmann (1999) proves two key results. First, the class of QVLMCs constitutes
a good representational basis for stationary real-valued processes. In particular, the class
of QVLMCs is weakly dense in the set of stationary R-valued processes. Second, given an
appropriate partition function into symbols, finding the optimal QVLMC in the maximum
likelihood setting can be achieved exclusively by finding the optimal underlying VLMM
on the symbolic level. Hence, modeling quantized time series is of great importance. We
found the quantization approach very effective in our recent study on financial time series
modeling (Tino et al., 2000a). See also (Biithlmann, 1998; Giles, Lawrence, & Tsoi, 1997;

Papageorgiou, 1998).
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4.1 Experimental setup

In all experiments we constructed FPMs using a contraction coefficient k = 1 (see eq. (4))
and K-means clustering (MacQueen, 1967; Buhmann, 1995), in both L; and Ly norms,
as a vector quantization tool. PSTs representing VLMMs were constructed using the

Kullback-Leibler criterion (eq. (2)).

4.2 DNA - coding vs. non-coding regions
4.2.1 Data and methods

The DNA alphabet consists of four symbols A, C, T and G that, for our purposes, corre-
spond to symbols 1, 2, 3 and 4, respectively. In the first experiment, we classified DNA
sequences into coding and non-coding classes. In contrast to non-coding sequences, coding
DNA strands contain protein coding genes. Locating the coding genes is a necessary step
before any further DNA analysis. For each model class, the classification module consists
of two models — a coding expert built on the coding sequences and a non-coding expert
built on the non-coding ones. Upon presentation of an unseen DNA sequence, the classi-
fication module makes its decision based on the probabilities assigned to the sequence by
the two experts.

In DNA sequences, almost all short subsequences are allowed, with a rather uniform
subsequence distribution. Among the models studied in this paper, fixed order Markov
models should perform well in this experiment.

We collected a large data set of vertebrate DNA sequences” used to test gene structure
prediction programs (Burset & Guigd, 1996). From the data set, we extracted a portion
of 880 coding sequences as the coding training set and a different portion of 880 coding
sequences as the coding test set. The same applies to the non-coding sequences. So both
the training and test sets consisted of 880 coding and 880 non-coding sequences. The
length of sequences ranged from 100 to 20 000.

Maximal memory depth was set to L = 7-3 = 21 (to account for the triplet structure of

“http://wwwl.imim.es/GeneIdentification/Evaluation/Index.html

17



the coding genes). For each model class and model size, we built two different models, one
for the coding regions (constructed on the coding training set), and one for the intergenic
regions (constructed on the non-coding training set). We tested the model performance
by calculating the normalized negative log-likelihood (NNL) of the two models on each of
the test sequences. The model pair classifies a test sequence as coding if the NNL achieved
by the coding expert is lower than that of the non-coding expert. Otherwise, the sequence
is classified as non-coding.

The likelihood can be calculated as follows. Denote the empirical n-block frequency
counts in S by P,. Let M be a finite memory source built on S. The probability that the

model M, initiated with the first L-block S}, assigns to the continuation STy is

P (S7alst) = 11 P (sie(s01)) )
i=L+1

and the likelihood of the sequence S with respect to the model M is determined as
Pr(8) = Pr, (SF) Pa (ST11ST) (10)

The normalized negative log-likelihood!? is calculated by

NNLu(S) = %MS). (11)

Normalized negative log-likelihood measures the amount of “statistical surprise” induced

by the model (Ron, Singer, & Tishby, 1996).

4.2.2 Results

The classification results are summarized in the contingency table containing four items:
true positives (T'P)  the number of coding sequences correctly classified as coding, true
negatives (I'N)  the number of non-coding sequences correctly classified as non-coding,
false positives (F'P) — the number of non-coding sequences incorrectly classified as coding,
and false negatives (FN) the number of coding sequences incorrectly classified as non-

coding.

"%hase of the logarithm is the number of symbols A in the alphabet A
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From the contingency table, four performance measures were calculated:

hit rate (H R) — proportion of correctly classified sequences

TP+TN

HR: I
TP+TN+ FP+ FN

sensitivity (Sen) — proportion of coding sequences correctly classified as coding

TP

Sen = ——+
T TPYFN

specificity (Sp) — proportion of non-coding sequences correctly classified as non-coding

TN

Sp= '
P= TN Y FP

and correlation coefficient (CC) — Pearson product-moment correlation coefficient in the

particular case of two binary variables (Burset & Guigd, 1996)

TP -TN —-FN . -FP

CC= JTPTEN) IN T FP) (1P FP) (IN T FN)

CC' is an alternative measure of overall prediction accuracy: CC = 1 corresponds to
perfect prediction, CC = 0 is expected for a random prediction.

Classification results are summarized in tables 1 and 2. In this experiment, FPMs
perform worse than VLMMSs, but VLMMSs never achieve the performance of classical
MMs. We used McNemar’s test (Everitt, 1977) (on 5% level) to test for significance
in the model performance differences. PSTs built with the fixed growth strategy (egrow =
0.001) perform always significantly better than FPMs of comparable size. Since the size of
PSTs is controlled only indirectly through the construction parameters, the PST experts
in coding/non-coding pairs have only approximately the same size. MMs significantly
outperform both the L; norm and Lo norm based FPMs, and PSTs built using the one-
parameter and ratio €.,y = 50 €k, schemes.

Classical MMs are difficult to beat in this experiment, because the suffix structure
in the DNA strands is rather uniform. In figure 2 we show geometric representations of
L-blocks of both the coding and non-coding training sequences. Compared with geometric

representations of L-blocks in the laser or Feigenbaum sequences (figures 6, 8), there is
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Table 1: Classification results of FPMs in the DNA experiment. Models were used to

classify unseen strings of DNA into coding (positive class) and non-coding (negative class)

sequences. Hit rate, sensitivity and specificity are given in percentages. Column Signif

collects significance results of McNemar’s test (on 5% level) applied to pairs of classi-

fiers with comparable number of free parameters: * and 4+ mean that the classifier is

significantly worse than the corresponding Markov model and fixed-growth-PST based

classifier, respectively;

corresponding size does not exist.

marks no significance; dots appear where the model pair of the

model # contexts | Hit rate | Sensitivity | Specificity | Corr. coef. | Signif
FPM L, 1 63.7 66.9 60.4 0.274
4 67.7 59.5 75.8 0.358 * -
16 76.5 80.6 72.5 0.532 * -
64 82.1 82.3 81.9 0.642 * +
256 84.9 80.3 89.5 0.701 * -
500 85.5 79.9 91.9 0.715
750 85.1 76.9 93.4 0.713
1024 83.8 74.2 93.4 0.689 * +
FPM Lo 4 72.5 74.1 70.9 0.450
16 76.5 81.8 71.1 0.533 * -
64 81.8 80.7 82.3 0.636 * -+
256 85.2 80.7 89.6 0.706 *
500 85.0 78.4 91.5 0.705
750 84.7 76.9 92.6 0.704
1024 84.5 74.5 94.5 0.705 * +
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Table 2: Classification results of MMs and PSTs in the DNA experiment. PSTs con-

structed using the one-parameter, fixed growth parameter €., = 0.001, and ratio

€grow = 90 €x 7, schemes are identified by PST, PST-fg, and PST(50), respectively. Sizes of

PST based classifiers are shown as (S7,S2), where S; and Sy are the sizes of the coding

and non-coding PST experts, respectively. For other details, see caption to the previous

table.
model # contexts | Hit rate | Sensitivity | Specificity | Corr. coef. | Signif
PST (54,31) 85.3 83.9 86.8 0.707 * —+
(910,760) 83.2 72.8 94.6 0.712 * +
PST-g (56,30) 86.3 84.9 87.9 0.728 -
(520,410) 87.4 79.9 95.0 0.758
(860,840) 88.1 80.4 95.7 0.770
PST(50) (52,32) 86.4 85.2 87.6 0.729
(920,533) 84.9 74.2 95.7 0.716 * +
MM 4 73.2 75.8 70.6 0.464
16 84.4 86.0 82.8 0.689
64 87.1 85.3 88.9 0.742 -
256 90.0 86.1 94.0 0.803
1024 86.9 76.9 96.8 0.752
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CBR - noncoding DNA

Figure 2: Geometric chaos block representations (CBR) of L-blocks in the DNA coding

(left) and non-coding (right) training sequences.

almost no structure in the DNA L-blocks and both the L and Lo norm vector quantizers
place the codebook on an approximately uniform grid similar to that formed by MMs.
FPMs constructed on a perfectly uniform square grid mimic the corresponding MM. Poorer
performance of FPMs is caused by deviations of the codebooks from regular grids.

The distribution of allowed blocks in the DNA sequences is more flat than that found
in the chaotic laser sequence (section 4.4), but more subtle than the special self-similar
Feigenbaum subsequence metric structure (section 4.5). Therefore, for small construction
parameter values, the one-parameter and ratio PST construction schemes are prone to
overfitting and the best PST results are achieved by the fixed growth parameter €g.q, =

0.001 construction.
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4.3 The Bible
4.3.1 Data and methods

In the second experiment, we tested our model on the experiments of Ron, Singer and
Tishby with language data from the Bible (Ron, Singer, & Tishby, 1996). The alphabet
was English letters and the blank character (27 symbols). They trained classical MMs
and a VLMM on the books of the Bible except for the book of Genesis. Then the models
were evaluated on the basis of normalized negative log-likelihood (eq. (11)) on an unseen
portion of 236 characters from the book of Genesis. When constructing PST, Ron, Singer
and Tishby set the maximal memory depth to L = 30. They built a PST with about 3000
nodes.

We compared likelihood results of our model with those obtained by Ron, Singer and
Tishby for MMs and VLMMs. The training and test sets were the same as in (Ron,
Singer, & Tishby, 1996). As with the VLMM, we set the maximal memory length to
L = 30. FPMs were constructed by vector quantizing (in both L; and Lo norms) a

111

5-dimensional’* geometric representation of 30-blocks appearing in the training set.

4.3.2 Results

NNL results on the test set are shown in figure 3.

Both the PST and FPMs clearly outperform the MMs. FPMs appear to perform
slightly better than the PST. Unfortunately, we were not able to further expand this
experiment by giving results for various PST sizes and construction schemes. The training
sequence contains approximately 3.4 106 symbols from an alphabet of 27 characters. On a
2x-Ultrasparc workstation, all the FPM experiments were finished within a few days. We
could not reproduce the PST reported in Ron, Singer and Tishby (1996) and (1994). The
PST construction procedures worked extremely slow (recall that the maximal memory
depth was set to L = 30, and the alphabet has 27 symbols), or resulted in small PSTs.

Even after 3 months of computation we were not able to find suitable parameters that

"alphabet has 27 symbols
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NNL of MMs, FPMs and PST on a test text from Genesis
0.9 T T T

—— PST
0.4 | | | |
10 10 107 10 10

# contexts

Figure 3: Normalized negative log likelihoods (NNL) achieved by finite context sources
on an unseen text from the book of Genesis. The test sequence is the same as that used
by Ron, Singer and Tishby (1996). The MM and PST results are reproduced from (Ron,
Singer, & Tishby, 1996).
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would yield a series of PSTs of size 500 3000. In this respect, the speed and self-organizing

character of FPM construction proved to be of great advantage.

4.4 Laser in a chaotic regime
4.4.1 Data and methods

In the third experiment, we trained the models on a sequence of quantized activity changes
of a laser in a chaotic regime. Deterministic chaotic dynamical systems usually organize
their behavior around chaotic attractors containing regions of different levels of instabil-
ity (sensitivity to small perturbations in initial conditions), measured e.g by the local
Lyapunov exponents. Periods of relatively predictable behavior are followed by periods of
unpredictable development (due to finite precision of our measuring devices and computing
machines). By quantizing a chaotic trajectory into a symbolic stream (each symbol corre-
sponds to a region of the state space where the system evolves), a technique well-known
in symbolic dynamics, we obtain a rough picture about the basic topological, metric and
memory structure of the trajectories (see e.g. Katok, & Hausselblatt, 1995). Relatively
predictable subsequences having various levels of memory structure are followed by highly
unpredictable events usually requiring a deep memory. For example, in this experiment,
the chaotic laser produces periods of oscillations with increasing amplitude, followed by
sudden, difficult to predict, activity collapses (see figure 4). To model such sequences with
the simple class of stochastic models studied in this paper finite context sources we
need to vary the memory depth with respect to the context. This is exactly the thing
variable memory length models should be good at.

The data set was a long sequence'? {D;} of 10 000 differences between the successive
activations of a real laser in a chaotic regime. The sequence {D;} was quantized into a sym-
bolic stream S = {s;} over four symbols corresponding to low and high positive/negative

laser activity change:

2taken from http://www.cs.colorado.edu/~andreas/Time-Series/SantaFe.html
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1 (normal up), if0< Dy <6y

(1
2 (extreme up), if 8 < Dy
5 = ( p) 2 t (12)
normal down), if 6 < D; <0
L

3 (

4 (extreme down), if Dy < 64,

where the parameters #; and 6 correspond to Q percent and (100 — Q) percent sample
quantiles, respectively. The number of positive differences is approximately the same as
that of the negative differences. So, the upper (lower) 2Q% of all laser activation increases
(decreases) in the sample are considered extremal, and the lower (upper) (100 — 29)% of
laser activation increases (decreases) are viewed as normal. The quantile Q was set to 10%.
Figure 4 shows a portion of the first 1000 laser activations, together with a histogram of the
differences between the successive activations. Dotted vertical lines show the cut values
f1 and 0y corresponding to the 10% and 90% quantiles, respectively.

The first 8000 symbols and the remaining 2000 symbols from the laser symbolic se-
quence S formed the training and test sequences, respectively. After constructing the
finite-context sources MMs, VLMMs and FPMs on the training sequence (maximal mem-
ory depth was set to L = 20), we evaluated the normalized negative log-likelihood (NNL)

(see eq.(11)) of the test sequence with respect to the fitted models.

4.4.2 Results

The results are shown in figure 5.
Classical MMs of order up to 5 are outperformed by FPMs with comparable number
of contexts. There is almost no difference between the performances of FPMs constructed

using the Li-norm and Ly-norm based procedures'.

13In this experiment, we also tried other vector quantization techniques like the classical Kohonen self-
organizing feature maps (SOFM) (Kohonen, 1990), SOFM with the star topology of neuron field (Tito,
& Sajda, 1995), dynamic cell structures (Bruske, & Sommer, 1995) or deterministic annealing based
hierarchical clustering (Rose, Gurewitz, & Fox, 1990). We got model performances comparable to those
of the models obtained via the K-means clustering. Clustering via deterministic annealing took enormous

time without any apparent improvement in the resulting predictive models.
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Figure 4: Left the first 1000 activations of a laser in a chaotic regime. Right histogram
of the differences between the successive activations. Dotted vertical lines show the cut
values 6, and 65 corresponding to the Q% and (100— Q)% quantiles, respectively (Q = 10).

Symbols corresponding to quantization regions appear on top of the figure.
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NNL of FPMs and MMs on Laser data

T T T

~o PST
—8- PST-fg

0.3 - PST(10)
—— PST(50)
0.2 _ psT(100)

*

10 10 10 10
# contexts
Figure 5: Normalized negative log-likelihoods (NNL) of the laser test sequence with respect
to finite-context sources built on the laser training sequence. Markov models are indicated
by MM. FPMs corresponding to the L1-norm and Le-norm based constructions are indicated
by FPM-L1 and FPM-L2, respectively. PSTs constructed using the one-parameter scheme,
PSTs build with fixed growth parameter €g.4,, and PSTs constructed with ratio-related
growth and threshold parameters €y, = perr, p = 10,50,100, are indicated by PST,

PST-fg, and PST(p), respectively.
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As discussed in section 2.2, small values of e=€x = €40,y in the one-parameter PST
construction scheme lead to including low-probability subsequences as potential prediction
PST contexts. This results in PSTs greatly overfitting the training sequence (line indicated
by PST in figure 5). The line indicated by PST-fg traces the NNLs achieved by the fixed
growth parameter €y, = 0.001 PST construction scheme. Only the acceptance threshold
parameter eg is varied. While the overfitting effect in larger PSTs has disappeared,
smaller PSTs (corresponding to larger values of €5 ) perform poorly, since the fixed small
value of €44, resulted in considering unnecessarily specific contexts. Finally, we show the
results for the procedure constructing PSTs with ratio-related parameters eg,op = p €x1,
p = 10,50, 100 (lines indicated by PST(p)). For small ek, the ratio value of 10 is still too
low to prevent the overfitting effect. PSTs constructed with ratios p = 50 and p = 100
achieve performances comparable to those of FPMs.

This experiment demonstrates that VLMM construction can be highly dependent on
construction parameters and that using the one-parameter scheme of Ron, Singer, & Tish-
by, (1994) may result in too specific models strongly overfitting the training sequence.
FPMs, on the other hand, are constructed by simply enlarging the codebook in the vector
quantization phase and show no deterioration in performance when increasing the number
of prediction contexts'.

To illustrate the difference between the fixed-order and variable-context-length Markov
models, we plot in figure 6 the geometric representations o (S,f”‘” ), t=1,2,...,m—L+1,
of L-blocks appearing in the training sequence S = s159...8n, (see eq. (5)), together with
geometric representations o(w) of prediction contexts w € C found in the MM, PST and
FPMs of comparable size (approximately 256 contexts). Geometric representations of the
training sequence L-blocks are shown as dots in the upper left part of figure 6.

Geometric representations of prediction contexts of the 4th-order MM, shown as circles
in the lower right, blindly cover the unit square [0,1]%, regardless of the actual L-block
distribution in the training sequence.

Prediction contexts of the VLMM (PST constructed with ratio related parameters

1at least up to 300 contexts
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CBR of Laser data
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Figure 6: Chaos block representations (CBR) of L-blocks in the laser training sequence

(upper left), prediction contexts of FPMs (upper right), PST (lower left), and MM (lower

right). Chaos block representations of prediction contexts are shown as circles, except for

contexts of the Lo-norm constructed FPM (shown as crosses).
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€grow = 90 ex 1) are suffixes of the allowed L-blocks, and so geometric representations of
the prediction contexts concentrate on the areas inhabited by representations of the allowed
L-blocks (see section 3.1). The context selection criteria favor prediction contexts whose
probability exceeds the “acceptance” threshold €44,y and whose next-symbol probabilities
do not significantly differ from those of the extended contexts. The result (lower left of
figure 6) is a sort of “conditional” vector quantization of geometric representations of the
training sequence L-blocks, whose aim is to cover the set of “accepted” allowed blocks with
a set of prediction contexts, taking into account the associated next-symbol probabilities.

FPM contexts, shown in the upper right of figure 6, correspond to codebooks con-

structed by vector quantization in the Ly (circles) and Ly (crosses) norms.

4.5 Feigenbaum sequence
4.5.1 Data and methods

In the fourth experiment, we applied the models to the Feigenbaum binary sequence with
a very strict topological and metric organization of allowed subsequences (see e.g. (Katok,
& Hausselblatt, 1995)). The sequence was obtained by quantizing the time series resulting
from the well-known logistic equation in the chaotic regime with respect to the sign of the
iterands (1-negative, 2-non-negative). Highly specialized, very deep prediction contexts
are needed to model this sequence. Classical Markov models cannot succeed and the full
power of admitting a limited number of variable length contexts can be exploited.

The sequence is well-studied in symbolic dynamics and has a number of interesting
properties. First, the topological structure of the sequence (i.e. the structure of allowed
n-blocks, not regarding their probabilities) can only be described using a context sensitive
tool — a restricted indexed context-free grammar (Crutchfield, & Young, 1990). Second, for
each block length n = 1,2, ..., the distribution of n-blocks is either uniform, or has just two
probability levels. Third, the n-block distributions are organized in a self-similar fashion
(Freund, Ebeling, & Rateitschak, 1996). The transition between the ranked distributions

for block lengths 29 — 29+1 3.29°1 5 3.29 ¢ > 1, is achieved by rescaling the horizontal
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Figure 7: Plots of self-similar rank-ordered block distributions of the Feigenbaum sequence
for different block lengths (indicated by the numbers above the plots). The self similarity
relates block distributions for block lengths 29 — 291 3.29"1 — 3.29 ¢ > 1 (connected

by arrows).

and vertical axis by a factor 2 and %, respectively. Plots of the Feigenbaum sequence n-

block distributions, n = 1,2, ..., 8, can be seen in figure 7. Numbers above the plots indicate
the corresponding block lengths. The arrows connect distributions with the (2, %)—scaling

self-similarity relationship.

The sequence can be specified by the composition rule
ap=2, a1 =21, apy1 = anap_1an_1. (13)

We chose to work with the Feigenbaum sequence, because increasingly accurate mod-
eling of the sequence with finite memory models requires a selective mechanism for deep
prediction contexts.

We created a large portion of the Feigenbaum sequence and trained a series of classical
MMs, variable memory length MMs (VLMMs), and fractal prediction machines (FPMs)
on the first 260 000 symbols. The following 200 000 symbols formed a test set. Maximum

memory length L for VLMMs and FPMs was set to 30.

4.5.2 Results

Due to the special metric structure of the Feigenbaum sequence, where for each block

length n, the n-block distribution is either uniform, or has just two probability levels,
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the issues concerning the growth parameter €y, in the PST construction, prominent
in the previous experiment, are not relevant. Therefore we report just VLMM results
corresponding to the one-parameter PST construction scheme.

Nevertheless, constructing a series of increasingly complex VLMMs by varying the con-
struction parameter appeared to be a troublesome task. Unlike in the previous experiment,
the PST construction procedure did not work “smoothly” with varying the construction
parameter. We experienced a highly non-regular behavior with intervals of parameter
values yielding unchanged PSTs, and tiny regions in parameter space corresponding to a
large spectrum of PST sizes. Therefore, it was impossible to simply iteratively change the
parameters by a small amount and save the resulting PSTs (as done in the previous exper-
iment). Instead, one had to spent a fair amount of time to find the “critical” parameter
values.

In contrast, a fully automatic construction of FPMs involved sliding a window of
length I = 30 through the training set; for each window position, mapping the L-block w
appearing in the window to the point o(w) (eq. (5)), vector-quantizing (in both L; and
Ly norms) the resulting set of points (up to 30 codebook vectors). After the quantization
step, we computed predictive probabilities according to eq. (8).

Figure 8 is analogous to figure 6 from the previous experiment. One dimensional'® ge-
ometric representations of the training sequence L-blocks form very dense, well-separated
clusters. In this case, vector quantization in L; and Ly norms gives almost identical code-
books and so both the L; and Ly norm based FPM constructions yielded the same results.
Variable-context-length models quickly grasp the structure in allowed L-blocks. The rigid
fixed-order MMs, instead of specializing on deeper contexts, spare their resources to cover
the missing subsequences.

Normalized negative log-likelihoods (NNL) (eq.(11)) of the test set computed using
the fitted models exhibited a step-like increasing tendency shown in Table 3. We also
investigated the ability of the models to reproduce the n-block distribution found in the

training and test sets. This was done by letting the models generate sequences of length

!5 Alphabet A = {1, 2} has two symbols
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CBR - Feigenbaum sequence and Prediction contexts
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Figure 8: One-dimensional chaos block representations of L-blocks in the binary Feigen-
baum training sequence (bottom). Shown are also geometric representations of the pre-
diction contexts of FPMs, PST, and MM with approximately 16 prediction contexts.
Representations of prediction contexts are shown as circles, except for contexts of the

Ly-norm constructed FPM (shown as crosses).
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Table 3: Normalized negative log-likelihoods (NNL) on the Feigenbaum test set.

model | # contexts | NNL | captured block distribution
FPM 2-4 0.6666 1-3
5-7 0.3333 1-6
8 22 0.1666 112
23— 0.0833 1-24
PST 2-4 0.6666 1-3
5 0.3333 1-6
11 0.1666 112
23 0.0833 1-24
MM 2,4,8,16,32 | 0.6666 1-3

equal to the length of the training sequence and for each block length n = 1,2,...,30,
computing the L; distance between the n-block distribution of the training and model-
generated sequences. The n-block distributions on the test and training sets were virtually
the same for n = 1,2,...30. In Table 3 we show block lengths for which the L; distance
does not exceed a small threshold A. We set A = 0.005, since in this experiment, either
the L; distance was less 0.005, or exceeded 0.005 by a large amount.

The classical MM totally fails in this experiment, since the context length 5 is far too
small to enable the MM to mimic the complicated subsequence structure in the Feigenbaum
sequence. FPMs and VLMMs quickly learn to explore a limited number of deep prediction
contexts and perform comparatively well.

An explanation of the step-like behavior in the log-likelihood and n-block modeling be-
havior of VLMMs and FPMs is out of the scope of this paper. For a detailed analysis, see
(Tino, Dorffner, & Schittenkopf, 2000). We briefly mention, however, that by combining
the knowledge about the topological and metric structures of the Feigenbaum sequence
(e.g. (Freund, Ebeling, & Rateitschak, 1996)) with a careful analysis of the models, one

can show why and when an inclusion of a prediction context leads to an abrupt improve-
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ment in the modeling performance. In fact, we show that VLMMs and FPMs constitute
increasingly better approximations to the infinite self-similar Feigenbaum machine known

in symbolic dynamics (Crutchfield, & Young, 1990).

4.6 Financial data
4.6.1 Data and methods

The final data set consisted of quantized daily volatility changes of the Dow Jones Indus-
trial Average (DJIA) from Feb. 1 1918 until April 1 1997, transformed into a time series
of returns r; = logz;11 — log z;. Predictive models were used to predict the direction of
volatility move for the next day. In (Tino et al., 2000a) we show that the quantization,
symbol based approach to volatility prediction can outperform the more traditional econo-
metric models of the ARCH and GARCH families (Bollerslev, 1986). Financial time series
are known to be highly stochastic with a relatively shallow memory structure (Jaditz, &
Sayers, 1993). In addition, to account for stationarity, financial time series of daily values
are usually kept short. In this case, it is difficult to beat the low-order classical MMs. One
can perform better than MMs only by developing a few deeper specialized contexts, but
that, on the other hand, can easily lead to overfitting.

We considered the squared return r? a volatility estimate for day ¢. Volatility change
forecasts (volatility is going to increase or decrease) based on historical returns can be
interpreted as a buying or selling signal (in an option market) for a straddle (see e.g.
(Noh, Engle, & Kane, 1994)). If the volatility decreases, we go short (straddle is sold), if
it increases, we take a long position (straddle is bought). In this respect, the quality of
a volatility model can be measured by the percentage of correctly predicted directions of
daily volatility differences.

The series of returns {r;} was transformed into a series { D, } of differences between the
successive squared returns D; = rt2+] — r?. We then partitioned the series {D;} of daily
volatility moves into 13 non-overlapping intervals, each containing 1700 values (spanning

approximately 6% years). Each interval was further partitioned into the training set (the
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Figure 9: Series of returns (in percent) of the DJIA from February 1918 till April 1997.
The solid vertical lines indicate division into intervals, the dotted vertical line within each
interval indicates the split between the training and validation sets. The first 600 values

from the training set of an interval forms a test set for the previous interval.

first 1100 values) and the validation set (the remaining 600 values). The series of returns
of the DJIA can be seen in figure 9. The solid vertical lines indicate division into the
intervals, the dotted vertical line within each interval indicates the split between the
training and validation sets. For each interval I = 1,2,...,12, predictive models were
trained on the training set, candidate models were selected on the validation set, and the
selected candidate models were tested on the test set formed by the first 600 values from
the training set of the next interval. This way, we got 12 partially overlapping epochs of
the series {D,;}, each containing 11004+600+600=2300 values (spanning approximately 9
years). Training sets of the 12 epochs do not overlap. The same applies to the test and
validation sets.

In each epoch, we transformed the training series { D, } of daily volatility differences into
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a sequence over four symbols via the quantile technique used in the laser data experiment
(see eq. (12)). Given a quantile Q, the validation and test sets were quantized using the
cut values determined for Q on the training set.

Maximum memory length L for VLMMs and FPMs was set to 10 (two weeks). We
trained classical MMs, PSTs and FPMs with various numbers of prediction contexts (up
to 256) and extremal event quantiles Q € {10, 20, ...,40}. For each model class, the model
size and the quantile Q to be used on the test set were selected according to the validation
set performance. Performance of the models was quantified as the percentage of correct
guesses of the volatility change direction for the next day. If the next symbol was 1 or 2
(3 or 4) and the sum of conditional next symbol probabilities for 1 and 2 (3 and 4) given

by a model was greater than 0.5, the model guess was considered correct.

4.6.2 Results

For all 12 epochs, test set performances of the models selected on the validation sets are
shown in figure 10.

We subjected the differences in model performances across the 12 epochs to the para-
metric t- and non-parametric Wilcoxon paired significance tests. The results of significance
tests are summarized in table 4. Both tests reveal that the FPMs significantly outperform
VLMMs. The Lo norm based FPMs perform significantly better than MMs. Both test-
s also suggest that MMs significantly outperform PSTs constructed with one-parameter
scheme. Restricting to t-test, MMs appear to be significantly better than any PST scheme.

This experiment illustrates the practical problems in fitting VLMMs. Training se-
quences in this experiment are relatively short (1100 symbols approximately 4% years).
Considering stationarity issues, they can hardly be made substantially larger. In addition,
financial time series are known to be highly stochastic with a relatively shallow memory
structure (Jaditz, & Sayers, 1993). All PST construction schemes develop too specialized
prediction contexts, even for small PSTs. In this case, the use of validation set strategy

does not completely prevent PSTs from overestimating the memory structure in the data.
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Figure 10: Prediction performance (hit rates) of MMs, PSTs and FPMs on 12 epochs of
the quantized daily volatility moves of the DJIA. FPMs constructed through the Ly and Lo
norm procedures are indicated by FPM-L1 and FPM-L2, respectively. The performances of
PSTs constructed via the one-parameter (solid line), fixed growth parameter €44, = 0.001

(dashed line), and ratio €gr0n = 50 €x 1, (dotted line) schemes are almost identical.
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Table 4: Tests for significance in model performances across 12 epochs in the DJIA exper-
iment. Item (4, 7) reports results of the test whether the model corresponding to the row 4
significantly outperforms the model associated with the column j. Significance suggested
by the (parametric) t- and (non-parametric) Wilcoxon paired tests is marked with * and
+, respectively. A double star (plus) means a significance on 1% level, a single star (plus)
corresponds to a significance on 5% level, means no significance. PSTs constructed us-
ing the one-parameter, fixed growth parameter €4, = 0.001, and ratio €gro, = 50 €fr,

schemes are denoted by PST, PST—fg, and PST(50), respectively.

model FPM L, | FPM L, | PST | PST fg | PST(50) | MM
FPM L, e B e e

FPM L, e B e i B
PST

PST-fg - - - - - _
PST(50)

MM *+ * *
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5 Discussion

In four of the five experiments, fractal prediction machines (FPMs) performed at least
as well as variable memory length Markov models (VLMMs). The only exception is the
DNA sequence, where due to the uniform distribution of contexts, classical Markov models
(MMs) are favored. In this case, FPMs performed worse than VLMMs.

In the remaining four cases FPMs outperformed classical MMs, and showed a decisive

advantage over VLMMs with respect to model performance and/or ease of construction:

e in the case of the bible text, inhibitive computational demands of the VLMM were
revealed. In contrast, FPMs could efficiently be estimated on the same data set with

a variety of numbers of contexts,

e in the case of quantized Laser data, the experiments pointed to a severe parameter-
dependency of the estimation algorithm for VLMMs, whereas FPMs proved to be

robust and effective,

e in the case of the Feigenbaum sequence, FPMs achieved the same level of performance
(measured by negative log likelihood) as the VLMM, but the construction of FPMs

was much less troublesome.

e in the case of quantized financial data, FPMs significantly outperformed VLMMs,
mainly due to the availability of only short training sequences rendering the estima-

tion of a VLMM difficult.

In summary, the experiments demonstrate that fractal prediction machines are an
efficient and viable candidate for learning the statistical structure of symbolic sequences,
whenever the classical Markov models are not appropriate due to the existence of deep
structure involving only a few relevant contexts.

One of the main advantages of our approach is the self-organizing character of con-
structing a series of fractal-based predictive models, fractal prediction machines (FPMs),

of increasing size. Vector quantization covers the geometric L-block representations of
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the training sequence with increasingly large codebooks in a natural and self-organized
manner. Predictive models constructed on such codebooks can be compared through a
model selection criterion, e.g. validation set performance.

Constructing a series of increasingly large models to enter the model selection phase is
an important issue that has attained little attention in the VLMM literature. In practical
applications with larger alphabets and very long sequences, constructing a set of potential
candidate VLMMSs can take a prohibitively long time. Indeed, results in the VLMM liter-
ature are usually presented only for a few fitted models, stressing the memory requirement
advantage of VLMMs over the classical MMs. Little is said about whether a particular
model was selected from a set of potential candidates, or how difficult it was to arrive
at the presented solution (see, for example (Ron, Singer, & Tishby, 1996; Ron, Singer, &
Tishby, 1994)).

Guyon and Pereira (1995) study two ways of constructing increasingly complex VLMM-
s: by increasing the source memory L with other construction parameters kept fixed, or by
fixing a (long enough) source memory L and gradually changing a single parameter, while
keeping all the other construction parameters fixed. The latter scheme was experimentally
shown to yield a superior performance (Guyon, & Pereira, 1995). It should be noted, that
while Guyon and Pereira (1995) do construct a series of increasingly complex VLMMs on
a very large set (AP news corpus, containing about 10® characters), they do so by setting
the maximal memory depth to L = 5. Such a shallow memory construction'® enabled
the authors to construct a series of VLMMs in a realistic time. Larger memory lengths L
would lead to an exponential increase in PST construction time.

In addition, as mentioned in section 4.5, the construction parameters’ selection is a
non-intuitive task that may require a lot of interactive steps. In this respect, the FPM
construction is more intuitive (the number of codebook vectors directly corresponds to
the number of predictive contexts), easier to automate (growth of predictive models is
directed by the codebook growth in the self-organizing quantization algorithms) and often

faster.

YScompare with memory depth of L = 30 in the Ron, Singer and Tishby (1996) Bible experiment
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Moreover, we illustrated in the laser data experiment, that considering different VL M-
M parameter selection strategies can lead to completely different learning scenarios. In
contrast, the simple FPM construction is free of such defects. Interestingly enough, it
gives similar results for both the L; and Ly norm FPM algorithms'”.

Variable memory length strategies work better than the classical fixed order Markov
models when there is a significant suffix structure in long allowed blocks of the training
sequence, not explainable by considering some pre-defined, (relatively) small suffix length.
Natural language, as demonstrated in the Bible experiment, is an example of such a
situation. Another example is provided by the Feigenbaum sequence.

DNA sequences stand at the opposite end, with a rather uniform suffix structure. In
this case, it is difficult to outperform the classical MMs. Better performance might be
achieved with specialized models, incorporating some a-priori knowledge, e.g. gene struc-
ture expressed in a hidden Markov model topology (Krogh, 1997), or similarity searches
with respect to known amino acid sequences (Burset & Guigd, 1996).

However, allowing for a variable memory length is a double-edged sword. Especially
on shorter sequences (relative to the alphabet size), the variable memory length model
construction often specializes on overly deep prediction contexts, even for small model
sizes. As shown in the Dow Jones Industrial Average experiment, in this case, model
selection strategies cannot eliminate the overlearning effects.

Is is only fair to note that even though the FPMs emerge from our experiments as
potentially interesting and favorable alternatives to VLMMs, so far, they lack a sound
theoretical background comparable to that supporting the use of VLMMs (Ron, Singer,
& Tishby, 1996; Weinberger, Rissanen, & Feder, 1995; Bithlmann, & Wyner, 1999). Pro-
ceeding in this direction, we have theoretically analyzed the multifractal properties of
the basis for our predictive models’ construction the geometric L-block representation
(Tino, 1999), and found a relationship among the chaos block representation contraction

factor, magnification factor of the vector quantizer and the dynamics of the FPM context

'"We thank one of the anonymous reviewers for suggesting to use also the L;-norm FPM construction

scheme
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transitions.
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