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these data sets, our predi
tive models have a superior, or 
omparable performan
eto that of VLMMs, yet, their 
onstru
tion is fully automati
, whi
h, is shown to beproblemati
 in the 
ase of VLMMs. On one data set, VLMMs are outperformed by the
lassi
al MMs. On this set, our models perform signi�
antly better than MMs. On theremaining data set, 
lassi
al MMs outperform the variable 
ontext length strategies.Keywords: variable memory length Markov models, iterative fun
tion systems, fra
-tal geometry, 
haoti
 sequen
es, DNA sequen
es, volatility predi
tionRunning head: Predi
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1 Introdu
tionStatisti
al modeling of 
omplex sequen
es is a fundamental goal of ma
hine learning dueto its wide variety of appli
ations (Ron, Singer, & Tishby, 1996): in geneti
s (Prum,Rodolphe, & deTurkheim, 1995), spee
h re
ognition (Nadas, 1984), �nan
e (B�uhlmann,1998), or seismology (Brillinger, 1994).One of the models for sequen
es generated by stationary sour
es, assuming no parti
u-lar underlying me
hanisti
 system, are Markov models (MMs) of �nite order (B�uhlmann,& Wyner, 1999). The only impli
it assumption made is about the �nite memory of thepro
ess. These statisti
al models de�ne ri
h families of sequen
e distributions and giveeÆ
ient pro
edures for both generating sequen
es and 
omputing their probabilities. How-ever, MMs 
an be
ome very hard to estimate due to the familiar explosive in
rease in thenumber of free parameters (yielding highly variable estimates) when in
reasing the modelorder. Consequently, only low order MMs 
an be 
onsidered in pra
ti
al appli
ations.Approa
hes proposed in the literature (Ron, Singer, & Tishby, 1996; Laird, & Saul,1994; Nadas, 1984; Rissanen, 1983; Weinberger, Rissanen, & Feder, 1995; Willems,Shtarkov, & Tjalkens, 1995; B�uhlmann, & Wyner, 1999) to over
ome the 
urse of di-mensionality in MMs share the same basi
 idea: instead of �xed order MMs 
onsidervariable memory length Markov models (VLMMs) with a \deep" memory just where it isreally needed (Ron, Singer, & Tishby, 1994).Predi
tion 
ontexts of variable length in VLMMs are often represented as predi
tionsuÆx trees (PSTs) (Rissanen, 1983). The relevant predi
tion 
ontext is de�ned as thedeepest node in the PST that 
an be rea
hed from the root when reading the inputstream in reversed order.Predi
tion suÆx trees 
an be 
onstru
ted in a top-down (Ron, Singer, & Tishby, 1994;Ron, Singer, & Tishby, 1996; Weinberger, Rissanen, & Feder, 1995), or bottom-up (Guyon,& Pereira, 1995; B�uhlmann, & Wyner, 1999) fashion. Both s
hemes strongly depend onthe 
onstru
tion parameters regulating 
andidate 
ontext sele
tion and growing/pruningde
isions (B�uhlmann, & Wyner, 1999; Guyon, & Pereira, 1995). The appropriate values3



for those parameters are derived only under asymptoti
 
onsiderations. In pra
ti
al ap-pli
ations, the parameters must be set by the modeler, whi
h 
an be, as we will see, quitein
onvenient and problemati
 (see also (B�uhlmann, 2000)). B�uhlmann and Wyner (1999)suggest to optimize the 
onstru
tion parameters' values through minimization of model
omplexity measured, for example, by the Akaike information 
riterion (Akaike, 1974). Inanother study on VLMM model sele
tion (B�uhlmann, 2000), B�uhlmann proposes a resam-pling strategy to estimate the asymptoti
 behavior of di�erent risk fun
tions. However, inpra
ti
al appli
ations, su
h a strategy may not be appli
able, sin
e �tting the individualVLMMs 
an be highly time-
onsuming.We introdu
e �nite-
ontext predi
tive models similar in spirit to VLMMs. The keyidea behind our approa
h is a geometri
 representation of 
andidate predi
tion 
ontexts,where 
ontexts with long 
ommon suÆxes (i.e. 
ontexts that are likely to produ
e sim-ilar 
ontinuations) are mapped 
lose to ea
h other, while 
ontexts with di�erent suÆxes(and potentially di�erent 
ontinuations) 
orrespond to points lying far from ea
h other.Sele
tion of the appropriate predi
tion 
ontexts is left to a ve
tor quantizer. Dense areasin the spatial representation of potential predi
tion 
ontexts 
orrespond to 
ontexts withlong 
ommon suÆxes and are given more attention by the ve
tor quantizer.The paper has the following organization:In se
tions 2 and 3, we use the framework of �nite memory sour
es to introdu
e ourpredi
tive models as well as the 
lassi
al and variable memory length Markov models.Se
tion 4 
ontains a detailed 
omparison of the studied model 
lasses on �ve data setsof di�erent origin, representing a wide range of grammati
al and statisti
al stru
ture.A dis
ussion summarizes the empiri
al results and outlines dire
tions in our 
urrentand future resear
h.2 Statisti
al modeling of 
omplex sequen
esWe 
onsider sequen
es S = s1s2::: over a �nite alphabet A = f1; 2; :::; Ag (i.e. everysymbol si is from A) generated by stationary information sour
es (Khin
hin, 1957). The4



sets of all sequen
es over A with a �nite number of symbols and exa
tly n symbols aredenoted by A+ and An, respe
tively. By Sji , i � j, we denote the string sisi+1:::sj , withSii = si. The (empiri
al) probability of �nding an n-blo
k w 2 An in S is denoted byP̂n(w). A string w 2 An is said to be an allowed n-blo
k in the sequen
e S, if P̂n(w) > 0.The set of all allowed n-blo
ks in S is denoted by [S℄n.An information sour
e (Khin
hin, 1957; Weinberger, Rissanen, & Feder, 1995) over analphabet A = f1; 2; :::; Ag is de�ned by a family of probability measures Pn on n-blo
ksover A, n = 0; 1; 2; :::. Consistent measures satisfy the marginality 
ondition: for all1s 2 A, w 2 An, n = 0; 1; 2:::, Xs2APn+1(ws) = Pn(w):In appli
ations it is useful to 
onsider probability fun
tions Pn that are both 
onsistentand easy to handle. This 
an be a
hieved, for example, by assuming a �nite sour
e memoryof length at most L, and formulating the 
onditional measuresP (sjw) = PL+1(ws)PL(w) ; w 2 AL;using a so-
alled 
ontext fun
tion 
 : AL ! C, from L-blo
ks over A to a (presumablysmall) �nite set C of predi
tion 
ontexts,P (sjw) = P (sj
(w)): (1)The task of a learner is now to �rst �nd an appropriate 
ontext fun
tion 
(w) andto estimate the probability distribution P (sjw) from the data. On one hand su
h a �-nite memory model 
an be used for predi
tion. On the other hand, it 
an also be usedas a sequen
e generator by initiating it with the �rst L-blo
k and letting it produ
e a
ontinuation a

ording to the next-symbol distribution (1).We now present two spe
i�
 examples of �nite memory learners and then introdu
eour novel approa
h for 
onstru
ting �nite memory sour
es from geometri
 representationsof training sequen
es.1A0 = f�g and P0(�) = 1, where � denotes the empty string.5



2.1 Fixed-order Markov modelsIn 
lassi
al Markov models (MMs) of (�xed) order n � L, for all L-blo
ks w 2 AL,the relevant predi
tion 
ontext 
(w) is 
hosen a priori as the length-n suÆx of w, i.e.
(uv) = v, v 2 An, u 2 AL�n. In other words, for making a predi
tion about the nextsymbol, only the last n symbols are relevant. Formally, the 
ontext fun
tion 
 : AL ! Cfor Markov models (MMs) of order n < L 
an be interpreted as a natural homomorphism
 : AL ! ALjE 
orresponding to an equivalen
e relation E � AL � AL on L-blo
ks overA: (u; v) 2 E , if the L-blo
ks u; v share the same suÆx of length n. The fa
tor set ALjE ,i.e. the set of all equivalen
e 
lasses on L-blo
ks AL under the equivalen
e E , 
onsists ofall n-blo
ks over A, ALjE = C = An:As already mentioned in the introdu
tion, for large suÆx lengths n, the estimation ofpredi
tion probabilities P (sj
(w)) 
an be
ome infeasible. By in
reasing the model ordern the number of probability distributions to be estimated rises by An leaving the learnerwith the problem to 
ope with a strong 
urse of dimensionality.2.2 Variable length Markov modelsThe 
urse of dimensionality in 
lassi
al Markov models has lead several authors to developso-
alled variable memory length Markov models (VLMMs). The task of a VLMM is theestimation of an appropriate 
ontext fun
tion, giving rise to a potentially mu
h smallernumber of 
ontexts 
onsidered. This is a
hieved by permitting the suÆxes 
(w) of L-blo
ks w 2 AL to be of di�erent lengths, depending on the parti
ular L-blo
k w. Webrie
y review strategies for sele
ting and representing the predi
tion 
ontexts.Suppose we are given a long training sequen
e S over A. Let w 2 [S℄n be a potentialpredi
tion 
ontext of length n < L used to predi
t the next symbol s 2 A a

ording tothe empiri
al estimates P̂ (sjw) = P̂n+1(ws)P̂n(w) :
6



If for a symbol a 2 A, su
h that aw 2 [S℄n+1, the predi
tion probability of the next symbols, P̂ (sjaw) = P̂n+2(aws)P̂n+1(aw) ;with respe
t to the extended 
ontext aw di�ers \signi�
antly" from P (sjw), then addingthe symbol a 2 A in the past helps in the next-symbol predi
tions. Several de
ision 
riteriahave been suggested in the literature. For example, one 
an extend the predi
tion 
ontextw with a symbol a 2 A, if� the Kullba
k-Leibler divergen
e between the next-symbol distributions for the 
an-didate predi
tion 
ontexts w and aw, weighted by the prior distribution of the ex-tended 
ontext aw, ex
eeds a given threshold (Ron, Singer, & Tishby, 1994; Guyon,& Pereira, 1995), P̂n+1(aw)Xs2A P̂ (sjaw) logA P̂ (sjaw)P̂ (sjw) � �KL: (2)� there exists a symbol s 2 A, su
h that (Ron, Singer, & Tishby, 1996)P̂ (sjaw) � 1A(1 + �1)�1 and P̂ (sjaw)P̂ (sjw) > 1 + 3�1: (3)The (small, positive) 
onstru
tion parameters �KL, �1 are supplied by the modeler. Forother variants of de
ision 
riteria see (Weinberger, Rissanen, & Feder, 1995; B�uhlmann,& Wyner, 1999).A natural representation of the set C of predi
tion 
ontexts, together with the asso
iat-ed next-symbol probabilities, has the form of a predi
tion suÆx tree (PST) (Ron, Singer,& Tishby, 1996; Rissanen, 1983). The edges of PST are labeled by symbols from A. Fromevery internal node there is at most one outgoing edge labeled by ea
h symbol. The nodesof PST are labeled by pairs (s; P̂ (sjv)), s 2 A, v 2 A+, where v is a string asso
iated withthe walk starting from that node and ending in the root of the tree. For ea
h L-blo
kw = v1v2:::vL 2 AL, the 
orresponding predi
tion 
ontext 
(w) is then the deepest node inthe PST rea
hed by taking a walk labeled by the reversed string, wR = vL:::v2v1, startingin the root. 7



The algorithm for building PSTs has the following form2 (Ron, Singer, & Tishby, 1996;Ron, Singer, & Tishby, 1994; Guyon, & Pereira, 1995):� the initial PST is a single root node and the initial set of 
andidate 
ontexts isW = fs 2 Aj P̂1(s) > �growg.� while W 6= ;, do:1. pi
k any v = aw 2W , a 2 A, and remove it from W2. add the 
ontext v to the PST by growing all the ne
essary nodes, provided the
ondition (2) (or (3)) holds33. provided jvj < L, then for every s 2 A, if P̂ (sv) > �grow, add sv to W .The depth of the resulting PST is at most L. The tree is grown from the root to theleaves. If a string v does not meet the 
riterion (2) (or (3)), it is not de�nitely ruled out,sin
e its des
endants are added to W in step 3. The idea is to keep a provision for thefuture des
endents of v whi
h might meet the sele
tion 
riterion. In general, as the valuesof �grow and �KL (�1) de
rease, the size of the 
onstru
ted PST in
reases.Predi
tion suÆx trees are usually 
onstru
ted using a one-parameter s
heme intro-du
ed in (Ron, Singer, & Tishby, 1994). This s
heme varies only one parameter �=�KL=�grow. In this 
ase, however, it 
an happen that for small values of �, many low-probabilitysubsequen
es are in
luded as potential 
ontexts in step 3 of the PST 
onstru
tion. Theresulting PSTs are too spe
i�
 and greatly over�t the training sequen
e. One 
an improveon that by �xing the growth parameter �grow to a small positive value and varying onlythe a

eptan
e threshold parameter �KL. This usually removes the over�tting e�e
t inlarger PSTs. However, smaller PSTs, 
orresponding to larger values of �KL, often performpoorly, sin
e the small �xed value of �grow results in 
onsidering unne
essarily spe
i�
 
on-texts. We empiri
ally found the pro
edure with ratio-related parameters �grow = � �KL,50 � � � 100, to give the best results.2�grow is a small positive 
onstru
tion parameter3P̂ (sj�) = P̂1(s), � is the empty string. 8



Variable memory length Markov models (VLMMs) are usually 
ompa
tly des
ribed assto
hasti
 ma
hines (SMs). Brie
y, SMs are like �nite state ma
hines ex
ept that the statetransitions take pla
e with probabilities pres
ribed by a distribution Ti;j;s. The generatingpro
ess is started in an initial state and then, at any given time step, the ma
hine is insome state i, and at the next time step moves to another state j outputting some symbols, with the transition probability Ti;j;s.The set C of predi
tion 
ontexts en
oded in a PST is the state set of the 
orrespondingSM that 
ontains the leaves of the PST plus 
ontexts added so that the symbol driven statetransition probabilities Ti;j;s are properly de�ned (see (Ron, Singer, & Tishby, 1996; Ron,Singer, & Tishby, 1994; Guyon, & Pereira, 1995)). SMs representing VLMMs have suÆx-free state sets Q and are known as probabilisti
 suÆx automata (PSA) (Ron, Singer, &Tishby, 1996; Weinberger, Rissanen, & Feder, 1995). Although VLMMs 
an be emulatedwith the 
orresponding PSTs, PSA representations of VLMMs give higher pro
essingspeed. In PSA, the longest suÆ
es are pre
omputed into states, whereas in PSTs thelongest suÆ
es must be dynami
ally determined (Guyon, & Pereira, 1995).3 Fra
tal predi
tion ma
hinesWe propose a novel approa
h for learning the statisti
al stru
ture of symboli
 sequen
es,whi
h we 
all fra
tal predi
tion ma
hines (FPMs). FPMs are similar in spirit to VLMMs,but derive a 
ontext fun
tion 
(w) in a more eÆ
ient way.The main idea behind a FPM is to �rst transform the L-blo
ks appearing in the trainingsequen
e into points in a D-dimensional ve
tor metri
 spa
e (<D; d), so that the suÆxstru
ture of L-blo
ks is 
oded into a 
luster stru
ture in (<D; d). The equivalen
e relationE de�ning the 
ontext fun
tion is then 
onstru
ted by ve
tor-quantizing the geometri
representations of allowed L-blo
ks. This way, we have a dire
t 
ontrol over the number ofpredi
tive 
ontexts and, at the same time, avoid using auxiliary 
onstru
tion parametersemployed in the PST 
onstru
tion (see the last se
tion).
9



3.1 Chaos game representationsThe basis for the transformation of symboli
 strings into points in <D is the so-
alled
haos game representation (CGR), originally introdu
ed by Je�rey (1990) to study DNAsequen
es (see also (Oliver, Galv�an, Gar
ia, & Roldan, 1993; Roldan, Galv�an, & Oliver,1994; Li, 1997)). CGRs of symboli
 sequen
es have been formally studied in (Ti�no, 1999)revealing the desired properties for our purposes.The basis of the 
haos game representation of sequen
es over an alphabetA = f1; 2; :::; Agis an iterative fun
tion system (IFS) (Barnsley, 1988) 
onsisting of A aÆne 
ontra
tivemaps4 1; 2; :::; A, a
ting on the D-dimensional unit hyper
ube5 X = [0; 1℄D, D = dlog2Ae:i(x) = kx+ (1� k)ti; ti 2 f0; 1gD ; ti 6= tj for i 6= j: (4)The 
ontra
tion 
oeÆ
ient of the maps 1; :::; A, is k 2 (0; 12 ℄.The 
haos game representation CGRk(S) of a sequen
e S = s1s2::: over A is obtainedas follows (Ti�no, 1999):1. Start in the 
enter x� = f12gD of the hyper
ube X, x0 = x�.2. Plot the point xn = j(xn�1); n � 1, provided the n-th symbol sn is j.As an example, 
onsider a sequen
e S = 142::: over the four-symbol alphabet A =f1; 2; 3; 4g. Let the four aÆne maps on the unit square [0; 1℄2, 
orresponding to the symbolsin A, be de�ned as (k = 12 )1(x) = 12x+ 12(0; 0); 2(x) = 12x+ 12(1; 0);3(x) = 12x+ 12(0; 1); 4(x) = 12x+ 12(1; 1):Here, symbols 1, 2, 3 and 4, are asso
iated with the unit square 
orners t1 = (0; 0),t2 = (1; 0), t3 = (0; 1) and t4 = (1; 1), respe
tively. Ea
h map i(x), i = 1; 2; 3; 4, �rst4To keep the notation simple, we slightly abuse mathemati
al notation and, depending on the 
ontext,regard the symbols 1; 2; :::; A, as integers, or as referring to maps on X.5for x 2 <, dxe is the smallest integer y, su
h that y � x10
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Figure 1: Illustration of the iterative fun
tion system behind the 
haos sequen
e repre-sentations of symboli
 streams. Ea
h symbol 1, 2, 3 and 4 is asso
iated with a unique
orner of the bla
k unit square at the top left. Upon seeing symbol 1, the unit squareis 
ontra
ted and shifted towards to 
orner asso
iated with symbol 1. This pro
ess isiteratively repeated as more new symbols arrive. In
reasingly longer sequen
es are 
odedin the shrinking 
opies of the original bla
k unit square. In ea
h 
onstru
tion step, theresulting unit square is labeled by the suÆx 
oded by the bla
k subsquare.
ontra
ts the unit square [0; 1℄2 into the subsquare [0; 12 ℄2, and then shifts the subsquaretowards the 
orresponding 
orner ti of the unit square.This is illustrated in �gure 1. Under the map 1(x), the bla
k unit square at the topleft is 
ontra
ted and then shifted, so that it �lls the subsquare position asso
iated withsymbol 1. The shift ve
tors ti are s
hemati
ally shown as the 
orresponding symbols iappearing at the 
orners of the unit square.The whole pro
ess 
an be iteratively repeated. Assume that the next symbol is 4.Again, the unit square is 
ontra
ted into [0; 12 ℄2, but this time the 
ontra
ted subsquare is11



shifted to the upper right 
orner of the unit square. Upon seeing yet another symbol, say,2, the result of the previous step is 
ontra
ted into [0; 12 ℄2 and shifted to the lower right
orner of the unit square, et
...Note that by iteratively making 
ontra
tions and shifts, we e�e
tively 
ode the historyof seen symbols into subsquares of [0; 1℄2. Bla
k subsquares inside unit squares in �gure 1
orrespond to seen strings s
hemati
ally written on top of the squares. For example, thebla
k square at the top left of �gure 1 
odes the state of total ignoran
e - every stringover A 
ould have been seen. The bla
k subsquare inside the unit square labeled by *1
orresponds to all strings ending with symbol 1. The bla
k \subsubsquare" in the unitsquare labeled by *14 lies in the subsquare 
orresponding to strings ending with 4 (shadedarea) and 
odes all strings ending with 14. Likewise, the bla
k region in the unit squarelabeled by *142 
orresponds to all strings ending with 142.Two properties of the 
haos game representation CGR(S) of symboli
 sequen
es Sare of importan
e to us. First, if histories of the last symbols in two sequen
es S1, S2,are the same, i.e. if the sequen
es S1, S2 share a 
ommon suÆx, the last points in therepresentations, CGR(S1), CGR(S2), lie 
lose to ea
h other. Se
ond, the longer is the
ommon suÆx shared by S1 and S2, the smaller is the region 
ontaining the last points ofCGR(S1), CGR(S2).3.2 Deriving an appropriate 
ontext fun
tionWe slightly modify the 
on
ept of 
haos game representations to 
ompute a 
haos L-blo
k representation CBRL;k(S) of the sequen
e S. It is 
onstru
ted by plotting only thelast points of the 
haos game representations CGRk(w) of allowed L-blo
ks w 2 [S℄L.The representation of a single blo
k, resulting in a single point, is de�ned by the map� : AL ! [0; 1℄D , from L-blo
ks v1v2:::vL over A to the unit hyper
ube,�(v1v2:::vL) = vL(vL�1(:::(v2(v1(x�))):::)) = (vL Æ vL�1 Æ ::: Æ v2 Æ v1)(x�); (5)where x� = f12gD is the 
enter of the hyper
ube. The maps v1; :::; vL, 
orresponding tosymbols appearing in L-blo
ks are de�ned in (4).12



We thus obtain the (multi)set of points CBRL;k(S) in <D 
ontaining the geometri
representations of allowed L-blo
ks in S. The set CBRL;k(S) 
odes the suÆx stru
ture inallowed L-blo
ks in the following sense (Ti�no, 1999): if v 2 A+ is a suÆx of length jvj ofa string u = rv, r; u 2 A+, then u(X) � v(X), where v(X) is a D-dimensional hyper
ubeof side length kjvj. Hen
e, the longer is the 
ommon suÆx shared by two L-blo
ks, the
loser the L-blo
ks are mapped in the 
haos L-blo
k representation CBRL;k(S)6. On theother hand, the Eu
lidean distan
e between points representing two L-blo
ks u; v, thathave the same pre�x of length L� 1 and di�er in the last symbol, is at least 1� k.Given this property, �nding an appropriate 
ontext fun
tion 
an easily be done byperforming ve
tor quantization (VQ) on the 
haos L-blo
k representation CBRL;k(S) ofthe training sequen
e S. VQ in the metri
 spa
e (<D; d), where d is the metri
, positionsin <D M 
odebook ve
tors (CVs), b1; :::; bM , ea
h CV representing a subset of points fromCBRL;k(S) that are 
loser to it (w.r.t. metri
 d) than to any other CV, so that the overallerror of substituting CVs for points they represent is minimal. In other words, CVs tendto represent points in CBRL;k(S) lying 
lose to ea
h other (in metri
 d).As the distan
e fun
tion d, we 
onsider the L1 distan
ed1(x; y) = DXi=1 jxi � yij; (6)or the L2 (Eu
lidean) distan
e d2(x; y) =vuut DXi=1(xi � yi)2; (7)where x = (x1; x2; :::; xD); y = (y1; y2; :::; yD) 2 <D. Compared to the L1 metri
, theL2 metri
 is less sensitive to smaller distan
es, while emphasizing the larger ones. Ve
tor6For k 
lose to 12 , geometri
 representations of 
ompletely di�erent L-blo
ks may lie 
lose to ea
h other.This happens, for example, for blo
ks 444...41 and 333...32 over the alphabet f1; 2; 3; 4g, geometri
allyrepresented through the iterative fun
tion system (4) a
ting on [0; 1℄2, with t1 = (0; 0), t2 = (1; 0),t3 = (0; 1) and t4 = (1; 1). As a remedy, one may lower the 
ontra
tion ratio k. The issue of optimal
ontra
tion ratio with respe
t to a given training sequen
e and ve
tor quantizer is also being 
urrentlyinvestigated. 13



quantization in L1 and L2 metri
s positions CVs in the median and the mean, respe
tively,of the set of points they represent.Now, as with 
lassi
al Markov models, we de�ne the predi
tion 
ontext fun
tion 
 :AL ! C via an equivalen
e E on L-blo
ks over A. This time, the equivalen
e E reads: twoL-blo
ks u; v are in the same 
lass if their images under the map � (eq. (5)) are representedby the same 
odebook ve
tor. In this 
ase, the set of predi
tion 
ontexts C 
an be identi�edwith the set of 
odebook ve
tors fb1; b2; :::; bMg. We refer to predi
tive models with su
ha 
ontext fun
tion as fra
tal predi
tion ma
hines (FPMs)7. The predi
tion probabilities(1) are determined by P (sjbi) = N(i; s)Pa2AN(i; a) ; s 2 A; (8)where N(i; a) is the number of (L+1)-blo
ks ua, u 2 AL, a 2 A, in the training sequen
e,su
h that the point �(u) (eq. (5)) is allo
ated to the 
odebook ve
tor bi.3.3 FPM 
onstru
tionTo summarize what was des
ribed above, fra
tal predi
tion ma
hines are 
onstru
ted asfollows:1. 
al
ulate the 
haos L-blo
k representation CBRL;k(S) of the training sequen
e S =s1s2:::sm 
ontaining point representations �(w) 2 <D (eq. (5)) of all allowed L-blo
ks w 2 [S℄L in S2. partition the hyper
ube [0; 1℄D into M regions V1; :::; VM , by running a ve
tor quan-tizer on the set CBRL;k(S). The regions Vi, i = 1; :::;M , in the metri
 spa
e7We note that FPMs depend on 
luster density in the geometri
 L-blo
k representations, that is 
on-trolled by the 
ontra
tion parameter k (see eq. (4)). Smaller k's yield more dense 
lusters. Furthermore,quantization of the geometri
 representations is 
ontrolled by the magni�
ation fa
tor (Ritter, & S
hulten,1986; Bauer, Der, & Herrmann, 1996) of the used ve
tor quantization s
heme. The magni�
ation fa
torrelates, under asymptoti
 
onsiderations, the frequen
y of 
odebook ve
tors in the quantized region withthe frequen
y of L-blo
k representations in that region. One 
an �nd a formal relationship among the
ontra
tion fa
tor k, magni�
ation fa
tor of the ve
tor quantizer and the dynami
s of the FPM 
ontexttransitions. This and other related issues are 
urrently under investigation.14



(<D; d), are the Voronoi 
ompartments (Aurenhammer, 1991) of the 
odebook ve
-tors b1; :::; bM , Vi = fx 2 [0; 1℄D j d(x; bi) = minj d(x; bj)g:All points in Vi are allo
ated8 to the 
odebook ve
tor bi.3. set the 
ounters N(i; a), i = 1; :::;M , a = 1; :::; A, to zero4. for 1 � t � m� L� 
ode the L-blo
k St+L�1t by a point � �St+L�1t �� if � �St+L�1t � 2 Vi, in
rement the 
ounter N(i; st+L) by one5. with ea
h predi
tion 
ontext (
odebook ve
tor) b1; :::; bM , asso
iate the next symbolprobabilities P (sjbi) = N(i; s)Pa2AN(i; a) ; s 2 A:4 ExperimentsWe 
ompared the fra
tal predi
tion ma
hines (FPMs) with both the 
lassi
al and variablememory length Markov models referred to as MM and VLMM (or PST, for predi
tionsuÆx tree), respe
tively. The experiments were performed on �ve data sets of variousorigin and di�erent levels of subsequen
e distribution stru
ture. These �ve data sets
omprise the following:� two 
lassi
al symboli
 sequen
es studied previously, namely DNA sequen
es and textsequen
es from the bible,� two sequen
es obtained by quantizing 
haoti
 time series, whi
h have been well-studied and have a known deep and 
omplex stru
ture: quantized Laser data andthe Feigenbaum sequen
e,8Ties as events of measure zero (points land on the border between the 
ompartments) are brokena

ording to index order 15



� one sequen
e derived from quantizing a time series from a real world sto
hasti
pro
ess, namely the histori
al Dow Jones industrial average.By 
hoosing these data sets we aim to demonstrate where and when FPMs 
an out-perform the 
lassi
al �xed-order and the more 
exible variable-order Markov models. Atthe same time, we demonstrate the feasibility of transforming 
ontinuous time series intosymboli
 streams and subsequently using MMs, VLMMs and FPMs to learn about theirstru
ture.Quantizing real-valued time series into symboli
 streams has been a well-understoodand useful information redu
tion te
hnique in symboli
 dynami
s. Under 
ertain 
ondi-tions, sto
hasti
 symboli
 models of quantized 
haoti
 time series represent, in a naturaland 
ompa
t way, the basi
 topologi
al, metri
 and memory stru
ture of the underlyingreal-valued traje
tories (see e.g. Crut
h�eld & Young, 1990; Katok, & Hausselblatt, 1995).Analogous ideas in the 
ontext of sto
hasti
 real-valued time series were re
ently putforward by B�uhlmann (1999). He introdu
es a new 
lass of hybrid real-valued/symboli
models, the so-
alled quantized variable length Markov 
hains (QVLMCs), that des
ribes a
lass of real-valued sto
hasti
 pro
esses. QVLMCs are roughly VLMMs 
onstru
ted on thequantized sequen
es with the next step distribution in < de�ned as a mixture of lo
al (say,Gaussian) densities 
orresponding to the individual partition elements (symbols). Themixture weights 
orrespond to the next-symbol probabilities given by the symboli
 model(VLMM). B�uhlmann (1999) proves two key results. First, the 
lass of QVLMCs 
onstitutesa good representational basis for stationary real-valued pro
esses. In parti
ular, the 
lassof QVLMCs is weakly dense in the set of stationary <-valued pro
esses. Se
ond, given anappropriate partition fun
tion into symbols, �nding the optimal QVLMC in the maximumlikelihood setting 
an be a
hieved ex
lusively by �nding the optimal underlying VLMMon the symboli
 level. Hen
e, modeling quantized time series is of great importan
e. Wefound the quantization approa
h very e�e
tive in our re
ent study on �nan
ial time seriesmodeling (Ti�no et al., 2000a). See also (B�uhlmann, 1998; Giles, Lawren
e, & Tsoi, 1997;Papageorgiou, 1998). 16



4.1 Experimental setupIn all experiments we 
onstru
ted FPMs using a 
ontra
tion 
oeÆ
ient k = 12 (see eq. (4))and K-means 
lustering (Ma
Queen, 1967; Buhmann, 1995), in both L1 and L2 norms,as a ve
tor quantization tool. PSTs representing VLMMs were 
onstru
ted using theKullba
k-Leibler 
riterion (eq. (2)).4.2 DNA { 
oding vs. non-
oding regions4.2.1 Data and methodsThe DNA alphabet 
onsists of four symbols A, C, T and G that, for our purposes, 
orre-spond to symbols 1, 2, 3 and 4, respe
tively. In the �rst experiment, we 
lassi�ed DNAsequen
es into 
oding and non-
oding 
lasses. In 
ontrast to non-
oding sequen
es, 
odingDNA strands 
ontain protein 
oding genes. Lo
ating the 
oding genes is a ne
essary stepbefore any further DNA analysis. For ea
h model 
lass, the 
lassi�
ation module 
onsistsof two models { a 
oding expert built on the 
oding sequen
es and a non-
oding expertbuilt on the non-
oding ones. Upon presentation of an unseen DNA sequen
e, the 
lassi-�
ation module makes its de
ision based on the probabilities assigned to the sequen
e bythe two experts.In DNA sequen
es, almost all short subsequen
es are allowed, with a rather uniformsubsequen
e distribution. Among the models studied in this paper, �xed order Markovmodels should perform well in this experiment.We 
olle
ted a large data set of vertebrate DNA sequen
es9 used to test gene stru
turepredi
tion programs (Burset & Guig�o, 1996). From the data set, we extra
ted a portionof 880 
oding sequen
es as the 
oding training set and a di�erent portion of 880 
odingsequen
es as the 
oding test set. The same applies to the non-
oding sequen
es. So boththe training and test sets 
onsisted of 880 
oding and 880 non-
oding sequen
es. Thelength of sequen
es ranged from 100 to 20 000.Maximal memory depth was set to L = 7�3 = 21 (to a

ount for the triplet stru
ture of9http://www1.imim.es/GeneIdentifi
ation/Evaluation/Index.html17



the 
oding genes). For ea
h model 
lass and model size, we built two di�erent models, onefor the 
oding regions (
onstru
ted on the 
oding training set), and one for the intergeni
regions (
onstru
ted on the non-
oding training set). We tested the model performan
eby 
al
ulating the normalized negative log-likelihood (NNL) of the two models on ea
h ofthe test sequen
es. The model pair 
lassi�es a test sequen
e as 
oding if the NNL a
hievedby the 
oding expert is lower than that of the non-
oding expert. Otherwise, the sequen
eis 
lassi�ed as non-
oding.The likelihood 
an be 
al
ulated as follows. Denote the empiri
al n-blo
k frequen
y
ounts in S by P̂n. Let M be a �nite memory sour
e built on S. The probability that themodel M, initiated with the �rst L-blo
k SL1 , assigns to the 
ontinuation SmL+1 isPM �SmL+1jSL1 � = mYi=L+1P �sij
 �Si�1i�L�� (9)and the likelihood of the sequen
e S with respe
t to the model M is determined asPM(S) = P̂L �SL1 �PM �SmL+1jSL1 � : (10)The normalized negative log-likelihood10 is 
al
ulated byNNLM(S) = � logA PM(S)m : (11)Normalized negative log-likelihood measures the amount of \statisti
al surprise" indu
edby the model (Ron, Singer, & Tishby, 1996).4.2.2 ResultsThe 
lassi�
ation results are summarized in the 
ontingen
y table 
ontaining four items:true positives (TP ) { the number of 
oding sequen
es 
orre
tly 
lassi�ed as 
oding, truenegatives (TN) { the number of non-
oding sequen
es 
orre
tly 
lassi�ed as non-
oding,false positives (FP ) { the number of non-
oding sequen
es in
orre
tly 
lassi�ed as 
oding,and false negatives (FN) { the number of 
oding sequen
es in
orre
tly 
lassi�ed as non-
oding.10base of the logarithm is the number of symbols A in the alphabet A18



From the 
ontingen
y table, four performan
e measures were 
al
ulated:hit rate (HR) { proportion of 
orre
tly 
lassi�ed sequen
esHR = TP + TNTP + TN + FP + FN ;sensitivity (Sen) { proportion of 
oding sequen
es 
orre
tly 
lassi�ed as 
odingSen = TPTP + FN ;spe
i�
ity (Sp) { proportion of non-
oding sequen
es 
orre
tly 
lassi�ed as non-
odingSp = TNTN + FP ;and 
orrelation 
oeÆ
ient (CC) { Pearson produ
t-moment 
orrelation 
oeÆ
ient in theparti
ular 
ase of two binary variables (Burset & Guig�o, 1996)CC = TP � TN � FN � FPp(TP + FN) � (TN + FP ) � (TP + FP ) � (TN + FN) :CC is an alternative measure of overall predi
tion a

ura
y: CC = 1 
orresponds toperfe
t predi
tion, CC = 0 is expe
ted for a random predi
tion.Classi�
ation results are summarized in tables 1 and 2. In this experiment, FPMsperform worse than VLMMs, but VLMMs never a
hieve the performan
e of 
lassi
alMMs. We used M
Nemar's test (Everitt, 1977) (on 5% level) to test for signi�
an
ein the model performan
e di�eren
es. PSTs built with the �xed growth strategy (�grow =0:001) perform always signi�
antly better than FPMs of 
omparable size. Sin
e the size ofPSTs is 
ontrolled only indire
tly through the 
onstru
tion parameters, the PST expertsin 
oding/non-
oding pairs have only approximately the same size. MMs signi�
antlyoutperform both the L1 norm and L2 norm based FPMs, and PSTs built using the one-parameter and ratio �grow = 50 �KL s
hemes.Classi
al MMs are diÆ
ult to beat in this experiment, be
ause the suÆx stru
turein the DNA strands is rather uniform. In �gure 2 we show geometri
 representations ofL-blo
ks of both the 
oding and non-
oding training sequen
es. Compared with geometri
representations of L-blo
ks in the laser or Feigenbaum sequen
es (�gures 6, 8), there is19



Table 1: Classi�
ation results of FPMs in the DNA experiment. Models were used to
lassify unseen strings of DNA into 
oding (positive 
lass) and non-
oding (negative 
lass)sequen
es. Hit rate, sensitivity and spe
i�
ity are given in per
entages. Column Signif
olle
ts signi�
an
e results of M
Nemar's test (on 5% level) applied to pairs of 
lassi-�ers with 
omparable number of free parameters: � and + mean that the 
lassi�er issigni�
antly worse than the 
orresponding Markov model and �xed-growth-PST based
lassi�er, respe
tively; { marks no signi�
an
e; dots appear where the model pair of the
orresponding size does not exist.model # 
ontexts Hit rate Sensitivity Spe
i�
ity Corr. 
oef. SignifFPM{L1 1 63.7 66.9 60.4 0.274 � �4 67.7 59.5 75.8 0.358 � �16 76.5 80.6 72.5 0.532 � �64 82.1 82.3 81.9 0.642 � +256 84.9 80.3 89.5 0.701 � �500 85.5 79.9 91.9 0.715 � +750 85.1 76.9 93.4 0.713 � +1024 83.8 74.2 93.4 0.689 � +FPM{L2 4 72.5 74.1 70.9 0.450 { �16 76.5 81.8 71.1 0.533 � �64 81.8 80.7 82.3 0.636 � +256 85.2 80.7 89.6 0.706 � �500 85.0 78.4 91.5 0.705 � +750 84.7 76.9 92.6 0.704 � +1024 84.5 74.5 94.5 0.705 � +
20



Table 2: Classi�
ation results of MMs and PSTs in the DNA experiment. PSTs 
on-stru
ted using the one-parameter, �xed growth parameter �grow = 0:001, and ratio�grow = 50 �KL s
hemes are identi�ed by PST, PST-fg, and PST(50), respe
tively. Sizes ofPST based 
lassi�ers are shown as (S1; S2), where S1 and S2 are the sizes of the 
odingand non-
oding PST experts, respe
tively. For other details, see 
aption to the previoustable.model # 
ontexts Hit rate Sensitivity Spe
i�
ity Corr. 
oef. SignifPST (54,31) 85.3 83.9 86.8 0.707 � +(910,760) 83.2 72.8 94.6 0.712 � +PST{fg (56,30) 86.3 84.9 87.9 0.728 {(520,410) 87.4 79.9 95.0 0.758 �(860,840) 88.1 80.4 95.7 0.770 {PST(50) (52,32) 86.4 85.2 87.6 0.729 { {(920,533) 84.9 74.2 95.7 0.716 � +MM 4 73.2 75.8 70.6 0.464 �16 84.4 86.0 82.8 0.689 �64 87.1 85.3 88.9 0.742 {256 90.0 86.1 94.0 0.803 �1024 86.9 76.9 96.8 0.752 {
21
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Figure 2: Geometri
 
haos blo
k representations (CBR) of L-blo
ks in the DNA 
oding(left) and non-
oding (right) training sequen
es.almost no stru
ture in the DNA L-blo
ks and both the L1 and L2 norm ve
tor quantizerspla
e the 
odebook on an approximately uniform grid similar to that formed by MMs.FPMs 
onstru
ted on a perfe
tly uniform square grid mimi
 the 
orrespondingMM. Poorerperforman
e of FPMs is 
aused by deviations of the 
odebooks from regular grids.The distribution of allowed blo
ks in the DNA sequen
es is more 
at than that foundin the 
haoti
 laser sequen
e (se
tion 4.4), but more subtle than the spe
ial self-similarFeigenbaum subsequen
e metri
 stru
ture (se
tion 4.5). Therefore, for small 
onstru
tionparameter values, the one-parameter and ratio PST 
onstru
tion s
hemes are prone toover�tting and the best PST results are a
hieved by the �xed growth parameter �grow =0:001 
onstru
tion.
22



4.3 The Bible4.3.1 Data and methodsIn the se
ond experiment, we tested our model on the experiments of Ron, Singer andTishby with language data from the Bible (Ron, Singer, & Tishby, 1996). The alphabetwas English letters and the blank 
hara
ter (27 symbols). They trained 
lassi
al MMsand a VLMM on the books of the Bible ex
ept for the book of Genesis. Then the modelswere evaluated on the basis of normalized negative log-likelihood (eq. (11)) on an unseenportion of 236 
hara
ters from the book of Genesis. When 
onstru
ting PST, Ron, Singerand Tishby set the maximal memory depth to L = 30. They built a PST with about 3000nodes.We 
ompared likelihood results of our model with those obtained by Ron, Singer andTishby for MMs and VLMMs. The training and test sets were the same as in (Ron,Singer, & Tishby, 1996). As with the VLMM, we set the maximal memory length toL = 30. FPMs were 
onstru
ted by ve
tor quantizing (in both L1 and L2 norms) a5-dimensional11 geometri
 representation of 30-blo
ks appearing in the training set.4.3.2 ResultsNNL results on the test set are shown in �gure 3.Both the PST and FPMs 
learly outperform the MMs. FPMs appear to performslightly better than the PST. Unfortunately, we were not able to further expand thisexperiment by giving results for various PST sizes and 
onstru
tion s
hemes. The trainingsequen
e 
ontains approximately 3:4 106 symbols from an alphabet of 27 
hara
ters. On a2x-Ultraspar
 workstation, all the FPM experiments were �nished within a few days. We
ould not reprodu
e the PST reported in Ron, Singer and Tishby (1996) and (1994). ThePST 
onstru
tion pro
edures worked extremely slow (re
all that the maximal memorydepth was set to L = 30, and the alphabet has 27 symbols), or resulted in small PSTs.Even after 3 months of 
omputation we were not able to �nd suitable parameters that11alphabet has 27 symbols 23
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would yield a series of PSTs of size 500{3000. In this respe
t, the speed and self-organizing
hara
ter of FPM 
onstru
tion proved to be of great advantage.4.4 Laser in a 
haoti
 regime4.4.1 Data and methodsIn the third experiment, we trained the models on a sequen
e of quantized a
tivity 
hangesof a laser in a 
haoti
 regime. Deterministi
 
haoti
 dynami
al systems usually organizetheir behavior around 
haoti
 attra
tors 
ontaining regions of di�erent levels of instabil-ity (sensitivity to small perturbations in initial 
onditions), measured e.g by the lo
alLyapunov exponents. Periods of relatively predi
table behavior are followed by periods ofunpredi
table development (due to �nite pre
ision of our measuring devi
es and 
omputingma
hines). By quantizing a 
haoti
 traje
tory into a symboli
 stream (ea
h symbol 
orre-sponds to a region of the state spa
e where the system evolves), a te
hnique well-knownin symboli
 dynami
s, we obtain a rough pi
ture about the basi
 topologi
al, metri
 andmemory stru
ture of the traje
tories (see e.g. Katok, & Hausselblatt, 1995). Relativelypredi
table subsequen
es having various levels of memory stru
ture are followed by highlyunpredi
table events usually requiring a deep memory. For example, in this experiment,the 
haoti
 laser produ
es periods of os
illations with in
reasing amplitude, followed bysudden, diÆ
ult to predi
t, a
tivity 
ollapses (see �gure 4). To model su
h sequen
es withthe simple 
lass of sto
hasti
 models studied in this paper { �nite 
ontext sour
es { weneed to vary the memory depth with respe
t to the 
ontext. This is exa
tly the thingvariable memory length models should be good at.The data set was a long sequen
e12 fDtg of 10 000 di�eren
es between the su

essivea
tivations of a real laser in a 
haoti
 regime. The sequen
e fDtg was quantized into a sym-boli
 stream S = fstg over four symbols 
orresponding to low and high positive/negativelaser a
tivity 
hange:12taken from http://www.
s.
olorado.edu/�andreas/Time-Series/SantaFe.html
25



st = 8>>>>>>>><>>>>>>>>:
1 (normal up); if 0 � Dt < �22 (extreme up); if �2 � Dt3 (normal down); if �1 � Dt < 04 (extreme down); if Dt < �1; (12)where the parameters �1 and �2 
orrespond to Q per
ent and (100 � Q) per
ent samplequantiles, respe
tively. The number of positive di�eren
es is approximately the same asthat of the negative di�eren
es. So, the upper (lower) 2Q% of all laser a
tivation in
reases(de
reases) in the sample are 
onsidered extremal, and the lower (upper) (100� 2Q)% oflaser a
tivation in
reases (de
reases) are viewed as normal. The quantileQ was set to 10%.Figure 4 shows a portion of the �rst 1000 laser a
tivations, together with a histogram of thedi�eren
es between the su

essive a
tivations. Dotted verti
al lines show the 
ut values�1 and �2 
orresponding to the 10% and 90% quantiles, respe
tively.The �rst 8000 symbols and the remaining 2000 symbols from the laser symboli
 se-quen
e S formed the training and test sequen
es, respe
tively. After 
onstru
ting the�nite-
ontext sour
es MMs, VLMMs and FPMs on the training sequen
e (maximal mem-ory depth was set to L = 20), we evaluated the normalized negative log-likelihood (NNL)(see eq.(11)) of the test sequen
e with respe
t to the �tted models.4.4.2 ResultsThe results are shown in �gure 5.Classi
al MMs of order up to 5 are outperformed by FPMs with 
omparable numberof 
ontexts. There is almost no di�eren
e between the performan
es of FPMs 
onstru
tedusing the L1-norm and L2-norm based pro
edures13.13In this experiment, we also tried other ve
tor quantization te
hniques like the 
lassi
al Kohonen self-organizing feature maps (SOFM) (Kohonen, 1990), SOFM with the star topology of neuron �eld (Ti�no,& �Sajda, 1995), dynami
 
ell stru
tures (Bruske, & Sommer, 1995) or deterministi
 annealing basedhierar
hi
al 
lustering (Rose, Gurewitz, & Fox, 1990). We got model performan
es 
omparable to thoseof the models obtained via the K-means 
lustering. Clustering via deterministi
 annealing took enormoustime without any apparent improvement in the resulting predi
tive models.26
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Figure 4: Left { the �rst 1000 a
tivations of a laser in a 
haoti
 regime. Right { histogramof the di�eren
es between the su

essive a
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utvalues �1 and �2 
orresponding to theQ% and (100�Q)% quantiles, respe
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ontext sour
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e. Markov models are indi
atedby MM. FPMs 
orresponding to the L1-norm and L2-norm based 
onstru
tions are indi
atedby FPM-L1 and FPM-L2, respe
tively. PSTs 
onstru
ted using the one-parameter s
heme,PSTs build with �xed growth parameter �grow, and PSTs 
onstru
ted with ratio-relatedgrowth and threshold parameters �grow = ��KL, � = 10; 50; 100, are indi
ated by PST,PST-fg, and PST(�), respe
tively.
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As dis
ussed in se
tion 2.2, small values of �= �KL= �grow in the one-parameter PST
onstru
tion s
heme lead to in
luding low-probability subsequen
es as potential predi
tionPST 
ontexts. This results in PSTs greatly over�tting the training sequen
e (line indi
atedby PST in �gure 5). The line indi
ated by PST-fg tra
es the NNLs a
hieved by the �xedgrowth parameter �grow = 0:001 PST 
onstru
tion s
heme. Only the a

eptan
e thresholdparameter �KL is varied. While the over�tting e�e
t in larger PSTs has disappeared,smaller PSTs (
orresponding to larger values of �KL) perform poorly, sin
e the �xed smallvalue of �grow resulted in 
onsidering unne
essarily spe
i�
 
ontexts. Finally, we show theresults for the pro
edure 
onstru
ting PSTs with ratio-related parameters �grow = � �KL,� = 10; 50; 100 (lines indi
ated by PST(�)). For small �KL, the ratio value of 10 is still toolow to prevent the over�tting e�e
t. PSTs 
onstru
ted with ratios � = 50 and � = 100a
hieve performan
es 
omparable to those of FPMs.This experiment demonstrates that VLMM 
onstru
tion 
an be highly dependent on
onstru
tion parameters and that using the one-parameter s
heme of Ron, Singer, & Tish-by, (1994) may result in too spe
i�
 models strongly over�tting the training sequen
e.FPMs, on the other hand, are 
onstru
ted by simply enlarging the 
odebook in the ve
torquantization phase and show no deterioration in performan
e when in
reasing the numberof predi
tion 
ontexts14.To illustrate the di�eren
e between the �xed-order and variable-
ontext-length Markovmodels, we plot in �gure 6 the geometri
 representations � �St+L�1t �, t = 1; 2; :::;m�L+1,of L-blo
ks appearing in the training sequen
e S = s1s2:::sm, (see eq. (5)), together withgeometri
 representations �(w) of predi
tion 
ontexts w 2 C found in the MM, PST andFPMs of 
omparable size (approximately 256 
ontexts). Geometri
 representations of thetraining sequen
e L-blo
ks are shown as dots in the upper left part of �gure 6.Geometri
 representations of predi
tion 
ontexts of the 4th-order MM, shown as 
ir
lesin the lower right, blindly 
over the unit square [0; 1℄2, regardless of the a
tual L-blo
kdistribution in the training sequen
e.Predi
tion 
ontexts of the VLMM (PST 
onstru
ted with ratio related parameters14at least up to 300 
ontexts 29
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Figure 6: Chaos blo
k representations (CBR) of L-blo
ks in the laser training sequen
e(upper left), predi
tion 
ontexts of FPMs (upper right), PST (lower left), and MM (lowerright). Chaos blo
k representations of predi
tion 
ontexts are shown as 
ir
les, ex
ept for
ontexts of the L2-norm 
onstru
ted FPM (shown as 
rosses).
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�grow = 50 �KL) are suÆxes of the allowed L-blo
ks, and so geometri
 representations ofthe predi
tion 
ontexts 
on
entrate on the areas inhabited by representations of the allowedL-blo
ks (see se
tion 3.1). The 
ontext sele
tion 
riteria favor predi
tion 
ontexts whoseprobability ex
eeds the \a

eptan
e" threshold �grow and whose next-symbol probabilitiesdo not signi�
antly di�er from those of the extended 
ontexts. The result (lower left of�gure 6) is a sort of \
onditional" ve
tor quantization of geometri
 representations of thetraining sequen
e L-blo
ks, whose aim is to 
over the set of \a

epted" allowed blo
ks witha set of predi
tion 
ontexts, taking into a

ount the asso
iated next-symbol probabilities.FPM 
ontexts, shown in the upper right of �gure 6, 
orrespond to 
odebooks 
on-stru
ted by ve
tor quantization in the L1 (
ir
les) and L2 (
rosses) norms.4.5 Feigenbaum sequen
e4.5.1 Data and methodsIn the fourth experiment, we applied the models to the Feigenbaum binary sequen
e witha very stri
t topologi
al and metri
 organization of allowed subsequen
es (see e.g. (Katok,& Hausselblatt, 1995)). The sequen
e was obtained by quantizing the time series resultingfrom the well-known logisti
 equation in the 
haoti
 regime with respe
t to the sign of theiterands (1{negative, 2{non-negative). Highly spe
ialized, very deep predi
tion 
ontextsare needed to model this sequen
e. Classi
al Markov models 
annot su

eed and the fullpower of admitting a limited number of variable length 
ontexts 
an be exploited.The sequen
e is well-studied in symboli
 dynami
s and has a number of interestingproperties. First, the topologi
al stru
ture of the sequen
e (i.e. the stru
ture of allowedn-blo
ks, not regarding their probabilities) 
an only be des
ribed using a 
ontext sensitivetool { a restri
ted indexed 
ontext-free grammar (Crut
h�eld, & Young, 1990). Se
ond, forea
h blo
k length n = 1; 2; :::, the distribution of n-blo
ks is either uniform, or has just twoprobability levels. Third, the n-blo
k distributions are organized in a self-similar fashion(Freund, Ebeling, & Rateits
hak, 1996). The transition between the ranked distributionsfor blo
k lengths 2g ! 2g+1, 3 �2g�1 ! 3 �2g, g � 1, is a
hieved by res
aling the horizontal31
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Figure 7: Plots of self-similar rank-ordered blo
k distributions of the Feigenbaum sequen
efor di�erent blo
k lengths (indi
ated by the numbers above the plots). The self similarityrelates blo
k distributions for blo
k lengths 2g ! 2g+1, 3 � 2g�1 ! 3 � 2g, g � 1 (
onne
tedby arrows).and verti
al axis by a fa
tor 2 and 12 , respe
tively. Plots of the Feigenbaum sequen
e n-blo
k distributions, n = 1; 2; :::; 8, 
an be seen in �gure 7. Numbers above the plots indi
atethe 
orresponding blo
k lengths. The arrows 
onne
t distributions with the (2; 12)-s
alingself-similarity relationship.The sequen
e 
an be spe
i�ed by the 
omposition rulea0 = 2; a1 = 21; an+1 = anan�1an�1: (13)We 
hose to work with the Feigenbaum sequen
e, be
ause in
reasingly a

urate mod-eling of the sequen
e with �nite memory models requires a sele
tive me
hanism for deeppredi
tion 
ontexts.We 
reated a large portion of the Feigenbaum sequen
e and trained a series of 
lassi
alMMs, variable memory length MMs (VLMMs), and fra
tal predi
tion ma
hines (FPMs)on the �rst 260 000 symbols. The following 200 000 symbols formed a test set. Maximummemory length L for VLMMs and FPMs was set to 30.4.5.2 ResultsDue to the spe
ial metri
 stru
ture of the Feigenbaum sequen
e, where for ea
h blo
klength n, the n-blo
k distribution is either uniform, or has just two probability levels,32



the issues 
on
erning the growth parameter �grow in the PST 
onstru
tion, prominentin the previous experiment, are not relevant. Therefore we report just VLMM results
orresponding to the one-parameter PST 
onstru
tion s
heme.Nevertheless, 
onstru
ting a series of in
reasingly 
omplex VLMMs by varying the 
on-stru
tion parameter appeared to be a troublesome task. Unlike in the previous experiment,the PST 
onstru
tion pro
edure did not work \smoothly" with varying the 
onstru
tionparameter. We experien
ed a highly non-regular behavior with intervals of parametervalues yielding un
hanged PSTs, and tiny regions in parameter spa
e 
orresponding to alarge spe
trum of PST sizes. Therefore, it was impossible to simply iteratively 
hange theparameters by a small amount and save the resulting PSTs (as done in the previous exper-iment). Instead, one had to spent a fair amount of time to �nd the \
riti
al" parametervalues.In 
ontrast, a fully automati
 
onstru
tion of FPMs involved sliding a window oflength L = 30 through the training set; for ea
h window position, mapping the L-blo
k wappearing in the window to the point �(w) (eq. (5)), ve
tor-quantizing (in both L1 andL2 norms) the resulting set of points (up to 30 
odebook ve
tors). After the quantizationstep, we 
omputed predi
tive probabilities a

ording to eq. (8).Figure 8 is analogous to �gure 6 from the previous experiment. One dimensional15 ge-ometri
 representations of the training sequen
e L-blo
ks form very dense, well-separated
lusters. In this 
ase, ve
tor quantization in L1 and L2 norms gives almost identi
al 
ode-books and so both the L1 and L2 norm based FPM 
onstru
tions yielded the same results.Variable-
ontext-length models qui
kly grasp the stru
ture in allowed L-blo
ks. The rigid�xed-order MMs, instead of spe
ializing on deeper 
ontexts, spare their resour
es to 
overthe missing subsequen
es.Normalized negative log-likelihoods (NNL) (eq.(11)) of the test set 
omputed usingthe �tted models exhibited a step-like in
reasing tenden
y shown in Table 3. We alsoinvestigated the ability of the models to reprodu
e the n-blo
k distribution found in thetraining and test sets. This was done by letting the models generate sequen
es of length15Alphabet A = f1; 2g has two symbols 33
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k representations of L-blo
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 representations of the pre-di
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Table 3: Normalized negative log-likelihoods (NNL) on the Feigenbaum test set.model # 
ontexts NNL 
aptured blo
k distributionFPM 2{4 0.6666 1{35{7 0.3333 1{68{22 0.1666 1{1223{ 0.0833 1{24PST 2{4 0.6666 1{35 0.3333 1{611 0.1666 1{1223 0.0833 1{24MM 2,4,8,16,32 0.6666 1{3equal to the length of the training sequen
e and for ea
h blo
k length n = 1; 2; :::; 30,
omputing the L1 distan
e between the n-blo
k distribution of the training and model-generated sequen
es. The n-blo
k distributions on the test and training sets were virtuallythe same for n = 1; 2; :::30. In Table 3 we show blo
k lengths for whi
h the L1 distan
edoes not ex
eed a small threshold �. We set � = 0:005, sin
e in this experiment, eitherthe L1 distan
e was less 0:005, or ex
eeded 0:005 by a large amount.The 
lassi
al MM totally fails in this experiment, sin
e the 
ontext length 5 is far toosmall to enable the MM to mimi
 the 
ompli
ated subsequen
e stru
ture in the Feigenbaumsequen
e. FPMs and VLMMs qui
kly learn to explore a limited number of deep predi
tion
ontexts and perform 
omparatively well.An explanation of the step-like behavior in the log-likelihood and n-blo
k modeling be-havior of VLMMs and FPMs is out of the s
ope of this paper. For a detailed analysis, see(Ti�no, Dor�ner, & S
hittenkopf, 2000). We brie
y mention, however, that by 
ombiningthe knowledge about the topologi
al and metri
 stru
tures of the Feigenbaum sequen
e(e.g. (Freund, Ebeling, & Rateits
hak, 1996)) with a 
areful analysis of the models, one
an show why and when an in
lusion of a predi
tion 
ontext leads to an abrupt improve-35



ment in the modeling performan
e. In fa
t, we show that VLMMs and FPMs 
onstitutein
reasingly better approximations to the in�nite self-similar Feigenbaum ma
hine knownin symboli
 dynami
s (Crut
h�eld, & Young, 1990).4.6 Finan
ial data4.6.1 Data and methodsThe �nal data set 
onsisted of quantized daily volatility 
hanges of the Dow Jones Indus-trial Average (DJIA) from Feb. 1 1918 until April 1 1997, transformed into a time seriesof returns rt = log xt+1 � log xt. Predi
tive models were used to predi
t the dire
tion ofvolatility move for the next day. In (Ti�no et al., 2000a) we show that the quantization,symbol based approa
h to volatility predi
tion 
an outperform the more traditional e
ono-metri
 models of the ARCH and GARCH families (Bollerslev, 1986). Finan
ial time seriesare known to be highly sto
hasti
 with a relatively shallow memory stru
ture (Jaditz, &Sayers, 1993). In addition, to a

ount for stationarity, �nan
ial time series of daily valuesare usually kept short. In this 
ase, it is diÆ
ult to beat the low-order 
lassi
al MMs. One
an perform better than MMs only by developing a few deeper spe
ialized 
ontexts, butthat, on the other hand, 
an easily lead to over�tting.We 
onsidered the squared return r2t a volatility estimate for day t. Volatility 
hangefore
asts (volatility is going to in
rease or de
rease) based on histori
al returns 
an beinterpreted as a buying or selling signal (in an option market) for a straddle (see e.g.(Noh, Engle, & Kane, 1994)). If the volatility de
reases, we go short (straddle is sold), ifit in
reases, we take a long position (straddle is bought). In this respe
t, the quality ofa volatility model 
an be measured by the per
entage of 
orre
tly predi
ted dire
tions ofdaily volatility di�eren
es.The series of returns frtg was transformed into a series fDtg of di�eren
es between thesu

essive squared returns Dt = r2t+1 � r2t . We then partitioned the series fDtg of dailyvolatility moves into 13 non-overlapping intervals, ea
h 
ontaining 1700 values (spanningapproximately 612 years). Ea
h interval was further partitioned into the training set (the36
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Figure 9: Series of returns (in per
ent) of the DJIA from February 1918 till April 1997.The solid verti
al lines indi
ate division into intervals, the dotted verti
al line within ea
hinterval indi
ates the split between the training and validation sets. The �rst 600 valuesfrom the training set of an interval forms a test set for the previous interval.�rst 1100 values) and the validation set (the remaining 600 values). The series of returnsof the DJIA 
an be seen in �gure 9. The solid verti
al lines indi
ate division into theintervals, the dotted verti
al line within ea
h interval indi
ates the split between thetraining and validation sets. For ea
h interval I = 1; 2; :::; 12, predi
tive models weretrained on the training set, 
andidate models were sele
ted on the validation set, and thesele
ted 
andidate models were tested on the test set formed by the �rst 600 values fromthe training set of the next interval. This way, we got 12 partially overlapping epo
hs ofthe series fDtg, ea
h 
ontaining 1100+600+600=2300 values (spanning approximately 9years). Training sets of the 12 epo
hs do not overlap. The same applies to the test andvalidation sets.In ea
h epo
h, we transformed the training series fDtg of daily volatility di�eren
es into37



a sequen
e over four symbols via the quantile te
hnique used in the laser data experiment(see eq. (12)). Given a quantile Q, the validation and test sets were quantized using the
ut values determined for Q on the training set.Maximum memory length L for VLMMs and FPMs was set to 10 (two weeks). Wetrained 
lassi
al MMs, PSTs and FPMs with various numbers of predi
tion 
ontexts (upto 256) and extremal event quantiles Q 2 f10; 20; :::; 40g. For ea
h model 
lass, the modelsize and the quantile Q to be used on the test set were sele
ted a

ording to the validationset performan
e. Performan
e of the models was quanti�ed as the per
entage of 
orre
tguesses of the volatility 
hange dire
tion for the next day. If the next symbol was 1 or 2(3 or 4) and the sum of 
onditional next symbol probabilities for 1 and 2 (3 and 4) givenby a model was greater than 0.5, the model guess was 
onsidered 
orre
t.4.6.2 ResultsFor all 12 epo
hs, test set performan
es of the models sele
ted on the validation sets areshown in �gure 10.We subje
ted the di�eren
es in model performan
es a
ross the 12 epo
hs to the para-metri
 t- and non-parametri
 Wil
oxon paired signi�
an
e tests. The results of signi�
an
etests are summarized in table 4. Both tests reveal that the FPMs signi�
antly outperformVLMMs. The L2 norm based FPMs perform signi�
antly better than MMs. Both test-s also suggest that MMs signi�
antly outperform PSTs 
onstru
ted with one-parameters
heme. Restri
ting to t-test, MMs appear to be signi�
antly better than any PST s
heme.This experiment illustrates the pra
ti
al problems in �tting VLMMs. Training se-quen
es in this experiment are relatively short (1100 symbols { approximately 412 years).Considering stationarity issues, they 
an hardly be made substantially larger. In addition,�nan
ial time series are known to be highly sto
hasti
 with a relatively shallow memorystru
ture (Jaditz, & Sayers, 1993). All PST 
onstru
tion s
hemes develop too spe
ializedpredi
tion 
ontexts, even for small PSTs. In this 
ase, the use of validation set strategydoes not 
ompletely prevent PSTs from overestimating the memory stru
ture in the data.38
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ted through the L1 and L2norm pro
edures are indi
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Table 4: Tests for signi�
an
e in model performan
es a
ross 12 epo
hs in the DJIA exper-iment. Item (i; j) reports results of the test whether the model 
orresponding to the row isigni�
antly outperforms the model asso
iated with the 
olumn j. Signi�
an
e suggestedby the (parametri
) t- and (non-parametri
) Wil
oxon paired tests is marked with � and+, respe
tively. A double star (plus) means a signi�
an
e on 1% level, a single star (plus)
orresponds to a signi�
an
e on 5% level, { means no signi�
an
e. PSTs 
onstru
ted us-ing the one-parameter, �xed growth parameter �grow = 0:001, and ratio �grow = 50 �KLs
hemes are denoted by PST, PST{fg, and PST(50), respe
tively.model FPM{L1 FPM{L2 PST PST{fg PST(50) MMFPM{L1 { { � �++ � �++ � �++ {FPM{L2 { { � �++ � �++ � �++ �+PST { { { { { {PST{fg { { { { { {PST(50) { { { { { {MM { { �+ � � {
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5 Dis
ussionIn four of the �ve experiments, fra
tal predi
tion ma
hines (FPMs) performed at leastas well as variable memory length Markov models (VLMMs). The only ex
eption is theDNA sequen
e, where due to the uniform distribution of 
ontexts, 
lassi
al Markov models(MMs) are favored. In this 
ase, FPMs performed worse than VLMMs.In the remaining four 
ases FPMs outperformed 
lassi
al MMs, and showed a de
isiveadvantage over VLMMs with respe
t to model performan
e and/or ease of 
onstru
tion:� in the 
ase of the bible text, inhibitive 
omputational demands of the VLMM wererevealed. In 
ontrast, FPMs 
ould eÆ
iently be estimated on the same data set witha variety of numbers of 
ontexts,� in the 
ase of quantized Laser data, the experiments pointed to a severe parameter-dependen
y of the estimation algorithm for VLMMs, whereas FPMs proved to berobust and e�e
tive,� in the 
ase of the Feigenbaum sequen
e, FPMs a
hieved the same level of performan
e(measured by negative log likelihood) as the VLMM, but the 
onstru
tion of FPMswas mu
h less troublesome.� in the 
ase of quantized �nan
ial data, FPMs signi�
antly outperformed VLMMs,mainly due to the availability of only short training sequen
es rendering the estima-tion of a VLMM diÆ
ult.In summary, the experiments demonstrate that fra
tal predi
tion ma
hines are aneÆ
ient and viable 
andidate for learning the statisti
al stru
ture of symboli
 sequen
es,whenever the 
lassi
al Markov models are not appropriate due to the existen
e of deepstru
ture involving only a few relevant 
ontexts.One of the main advantages of our approa
h is the self-organizing 
hara
ter of 
on-stru
ting a series of fra
tal-based predi
tive models, fra
tal predi
tion ma
hines (FPMs),of in
reasing size. Ve
tor quantization 
overs the geometri
 L-blo
k representations of41



the training sequen
e with in
reasingly large 
odebooks in a natural and self-organizedmanner. Predi
tive models 
onstru
ted on su
h 
odebooks 
an be 
ompared through amodel sele
tion 
riterion, e.g. validation set performan
e.Constru
ting a series of in
reasingly large models to enter the model sele
tion phase isan important issue that has attained little attention in the VLMM literature. In pra
ti
alappli
ations with larger alphabets and very long sequen
es, 
onstru
ting a set of potential
andidate VLMMs 
an take a prohibitively long time. Indeed, results in the VLMM liter-ature are usually presented only for a few �tted models, stressing the memory requirementadvantage of VLMMs over the 
lassi
al MMs. Little is said about whether a parti
ularmodel was sele
ted from a set of potential 
andidates, or how diÆ
ult it was to arriveat the presented solution (see, for example (Ron, Singer, & Tishby, 1996; Ron, Singer, &Tishby, 1994)).Guyon and Pereira (1995) study two ways of 
onstru
ting in
reasingly 
omplex VLMM-s: by in
reasing the sour
e memory L with other 
onstru
tion parameters kept �xed, or by�xing a (long enough) sour
e memory L and gradually 
hanging a single parameter, whilekeeping all the other 
onstru
tion parameters �xed. The latter s
heme was experimentallyshown to yield a superior performan
e (Guyon, & Pereira, 1995). It should be noted, thatwhile Guyon and Pereira (1995) do 
onstru
t a series of in
reasingly 
omplex VLMMs ona very large set (AP news 
orpus, 
ontaining about 108 
hara
ters), they do so by settingthe maximal memory depth to L = 5. Su
h a shallow memory 
onstru
tion16 enabledthe authors to 
onstru
t a series of VLMMs in a realisti
 time. Larger memory lengths Lwould lead to an exponential in
rease in PST 
onstru
tion time.In addition, as mentioned in se
tion 4.5, the 
onstru
tion parameters' sele
tion is anon-intuitive task that may require a lot of intera
tive steps. In this respe
t, the FPM
onstru
tion is more intuitive (the number of 
odebook ve
tors dire
tly 
orresponds tothe number of predi
tive 
ontexts), easier to automate (growth of predi
tive models isdire
ted by the 
odebook growth in the self-organizing quantization algorithms) and oftenfaster.16
ompare with memory depth of L = 30 in the Ron, Singer and Tishby (1996) Bible experiment42



Moreover, we illustrated in the laser data experiment, that 
onsidering di�erent VLM-M parameter sele
tion strategies 
an lead to 
ompletely di�erent learning s
enarios. In
ontrast, the simple FPM 
onstru
tion is free of su
h defe
ts. Interestingly enough, itgives similar results for both the L1 and L2 norm FPM algorithms17.Variable memory length strategies work better than the 
lassi
al �xed order Markovmodels when there is a signi�
ant suÆx stru
ture in long allowed blo
ks of the trainingsequen
e, not explainable by 
onsidering some pre-de�ned, (relatively) small suÆx length.Natural language, as demonstrated in the Bible experiment, is an example of su
h asituation. Another example is provided by the Feigenbaum sequen
e.DNA sequen
es stand at the opposite end, with a rather uniform suÆx stru
ture. Inthis 
ase, it is diÆ
ult to outperform the 
lassi
al MMs. Better performan
e might bea
hieved with spe
ialized models, in
orporating some a-priori knowledge, e.g. gene stru
-ture expressed in a hidden Markov model topology (Krogh, 1997), or similarity sear
heswith respe
t to known amino a
id sequen
es (Burset & Guig�o, 1996).However, allowing for a variable memory length is a double-edged sword. Espe
iallyon shorter sequen
es (relative to the alphabet size), the variable memory length model
onstru
tion often spe
ializes on overly deep predi
tion 
ontexts, even for small modelsizes. As shown in the Dow Jones Industrial Average experiment, in this 
ase, modelsele
tion strategies 
annot eliminate the overlearning e�e
ts.Is is only fair to note that even though the FPMs emerge from our experiments aspotentially interesting and favorable alternatives to VLMMs, so far, they la
k a soundtheoreti
al ba
kground 
omparable to that supporting the use of VLMMs (Ron, Singer,& Tishby, 1996; Weinberger, Rissanen, & Feder, 1995; B�uhlmann, & Wyner, 1999). Pro-
eeding in this dire
tion, we have theoreti
ally analyzed the multifra
tal properties ofthe basis for our predi
tive models' 
onstru
tion { the geometri
 L-blo
k representation(Ti�no, 1999), and found a relationship among the 
haos blo
k representation 
ontra
tionfa
tor, magni�
ation fa
tor of the ve
tor quantizer and the dynami
s of the FPM 
ontext17We thank one of the anonymous reviewers for suggesting to use also the L1-norm FPM 
onstru
tions
heme 43
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