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these data sets, our preditive models have a superior, or omparable performaneto that of VLMMs, yet, their onstrution is fully automati, whih, is shown to beproblemati in the ase of VLMMs. On one data set, VLMMs are outperformed by thelassial MMs. On this set, our models perform signi�antly better than MMs. On theremaining data set, lassial MMs outperform the variable ontext length strategies.Keywords: variable memory length Markov models, iterative funtion systems, fra-tal geometry, haoti sequenes, DNA sequenes, volatility preditionRunning head: Prediting disrete sequenes from fratal representations of the past
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1 IntrodutionStatistial modeling of omplex sequenes is a fundamental goal of mahine learning dueto its wide variety of appliations (Ron, Singer, & Tishby, 1996): in genetis (Prum,Rodolphe, & deTurkheim, 1995), speeh reognition (Nadas, 1984), �nane (B�uhlmann,1998), or seismology (Brillinger, 1994).One of the models for sequenes generated by stationary soures, assuming no partiu-lar underlying mehanisti system, are Markov models (MMs) of �nite order (B�uhlmann,& Wyner, 1999). The only impliit assumption made is about the �nite memory of theproess. These statistial models de�ne rih families of sequene distributions and giveeÆient proedures for both generating sequenes and omputing their probabilities. How-ever, MMs an beome very hard to estimate due to the familiar explosive inrease in thenumber of free parameters (yielding highly variable estimates) when inreasing the modelorder. Consequently, only low order MMs an be onsidered in pratial appliations.Approahes proposed in the literature (Ron, Singer, & Tishby, 1996; Laird, & Saul,1994; Nadas, 1984; Rissanen, 1983; Weinberger, Rissanen, & Feder, 1995; Willems,Shtarkov, & Tjalkens, 1995; B�uhlmann, & Wyner, 1999) to overome the urse of di-mensionality in MMs share the same basi idea: instead of �xed order MMs onsidervariable memory length Markov models (VLMMs) with a \deep" memory just where it isreally needed (Ron, Singer, & Tishby, 1994).Predition ontexts of variable length in VLMMs are often represented as preditionsuÆx trees (PSTs) (Rissanen, 1983). The relevant predition ontext is de�ned as thedeepest node in the PST that an be reahed from the root when reading the inputstream in reversed order.Predition suÆx trees an be onstruted in a top-down (Ron, Singer, & Tishby, 1994;Ron, Singer, & Tishby, 1996; Weinberger, Rissanen, & Feder, 1995), or bottom-up (Guyon,& Pereira, 1995; B�uhlmann, & Wyner, 1999) fashion. Both shemes strongly depend onthe onstrution parameters regulating andidate ontext seletion and growing/pruningdeisions (B�uhlmann, & Wyner, 1999; Guyon, & Pereira, 1995). The appropriate values3



for those parameters are derived only under asymptoti onsiderations. In pratial ap-pliations, the parameters must be set by the modeler, whih an be, as we will see, quiteinonvenient and problemati (see also (B�uhlmann, 2000)). B�uhlmann and Wyner (1999)suggest to optimize the onstrution parameters' values through minimization of modelomplexity measured, for example, by the Akaike information riterion (Akaike, 1974). Inanother study on VLMM model seletion (B�uhlmann, 2000), B�uhlmann proposes a resam-pling strategy to estimate the asymptoti behavior of di�erent risk funtions. However, inpratial appliations, suh a strategy may not be appliable, sine �tting the individualVLMMs an be highly time-onsuming.We introdue �nite-ontext preditive models similar in spirit to VLMMs. The keyidea behind our approah is a geometri representation of andidate predition ontexts,where ontexts with long ommon suÆxes (i.e. ontexts that are likely to produe sim-ilar ontinuations) are mapped lose to eah other, while ontexts with di�erent suÆxes(and potentially di�erent ontinuations) orrespond to points lying far from eah other.Seletion of the appropriate predition ontexts is left to a vetor quantizer. Dense areasin the spatial representation of potential predition ontexts orrespond to ontexts withlong ommon suÆxes and are given more attention by the vetor quantizer.The paper has the following organization:In setions 2 and 3, we use the framework of �nite memory soures to introdue ourpreditive models as well as the lassial and variable memory length Markov models.Setion 4 ontains a detailed omparison of the studied model lasses on �ve data setsof di�erent origin, representing a wide range of grammatial and statistial struture.A disussion summarizes the empirial results and outlines diretions in our urrentand future researh.2 Statistial modeling of omplex sequenesWe onsider sequenes S = s1s2::: over a �nite alphabet A = f1; 2; :::; Ag (i.e. everysymbol si is from A) generated by stationary information soures (Khinhin, 1957). The4



sets of all sequenes over A with a �nite number of symbols and exatly n symbols aredenoted by A+ and An, respetively. By Sji , i � j, we denote the string sisi+1:::sj , withSii = si. The (empirial) probability of �nding an n-blok w 2 An in S is denoted byP̂n(w). A string w 2 An is said to be an allowed n-blok in the sequene S, if P̂n(w) > 0.The set of all allowed n-bloks in S is denoted by [S℄n.An information soure (Khinhin, 1957; Weinberger, Rissanen, & Feder, 1995) over analphabet A = f1; 2; :::; Ag is de�ned by a family of probability measures Pn on n-bloksover A, n = 0; 1; 2; :::. Consistent measures satisfy the marginality ondition: for all1s 2 A, w 2 An, n = 0; 1; 2:::, Xs2APn+1(ws) = Pn(w):In appliations it is useful to onsider probability funtions Pn that are both onsistentand easy to handle. This an be ahieved, for example, by assuming a �nite soure memoryof length at most L, and formulating the onditional measuresP (sjw) = PL+1(ws)PL(w) ; w 2 AL;using a so-alled ontext funtion  : AL ! C, from L-bloks over A to a (presumablysmall) �nite set C of predition ontexts,P (sjw) = P (sj(w)): (1)The task of a learner is now to �rst �nd an appropriate ontext funtion (w) andto estimate the probability distribution P (sjw) from the data. On one hand suh a �-nite memory model an be used for predition. On the other hand, it an also be usedas a sequene generator by initiating it with the �rst L-blok and letting it produe aontinuation aording to the next-symbol distribution (1).We now present two spei� examples of �nite memory learners and then introdueour novel approah for onstruting �nite memory soures from geometri representationsof training sequenes.1A0 = f�g and P0(�) = 1, where � denotes the empty string.5



2.1 Fixed-order Markov modelsIn lassial Markov models (MMs) of (�xed) order n � L, for all L-bloks w 2 AL,the relevant predition ontext (w) is hosen a priori as the length-n suÆx of w, i.e.(uv) = v, v 2 An, u 2 AL�n. In other words, for making a predition about the nextsymbol, only the last n symbols are relevant. Formally, the ontext funtion  : AL ! Cfor Markov models (MMs) of order n < L an be interpreted as a natural homomorphism : AL ! ALjE orresponding to an equivalene relation E � AL � AL on L-bloks overA: (u; v) 2 E , if the L-bloks u; v share the same suÆx of length n. The fator set ALjE ,i.e. the set of all equivalene lasses on L-bloks AL under the equivalene E , onsists ofall n-bloks over A, ALjE = C = An:As already mentioned in the introdution, for large suÆx lengths n, the estimation ofpredition probabilities P (sj(w)) an beome infeasible. By inreasing the model ordern the number of probability distributions to be estimated rises by An leaving the learnerwith the problem to ope with a strong urse of dimensionality.2.2 Variable length Markov modelsThe urse of dimensionality in lassial Markov models has lead several authors to developso-alled variable memory length Markov models (VLMMs). The task of a VLMM is theestimation of an appropriate ontext funtion, giving rise to a potentially muh smallernumber of ontexts onsidered. This is ahieved by permitting the suÆxes (w) of L-bloks w 2 AL to be of di�erent lengths, depending on the partiular L-blok w. Webriey review strategies for seleting and representing the predition ontexts.Suppose we are given a long training sequene S over A. Let w 2 [S℄n be a potentialpredition ontext of length n < L used to predit the next symbol s 2 A aording tothe empirial estimates P̂ (sjw) = P̂n+1(ws)P̂n(w) :
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If for a symbol a 2 A, suh that aw 2 [S℄n+1, the predition probability of the next symbols, P̂ (sjaw) = P̂n+2(aws)P̂n+1(aw) ;with respet to the extended ontext aw di�ers \signi�antly" from P (sjw), then addingthe symbol a 2 A in the past helps in the next-symbol preditions. Several deision riteriahave been suggested in the literature. For example, one an extend the predition ontextw with a symbol a 2 A, if� the Kullbak-Leibler divergene between the next-symbol distributions for the an-didate predition ontexts w and aw, weighted by the prior distribution of the ex-tended ontext aw, exeeds a given threshold (Ron, Singer, & Tishby, 1994; Guyon,& Pereira, 1995), P̂n+1(aw)Xs2A P̂ (sjaw) logA P̂ (sjaw)P̂ (sjw) � �KL: (2)� there exists a symbol s 2 A, suh that (Ron, Singer, & Tishby, 1996)P̂ (sjaw) � 1A(1 + �1)�1 and P̂ (sjaw)P̂ (sjw) > 1 + 3�1: (3)The (small, positive) onstrution parameters �KL, �1 are supplied by the modeler. Forother variants of deision riteria see (Weinberger, Rissanen, & Feder, 1995; B�uhlmann,& Wyner, 1999).A natural representation of the set C of predition ontexts, together with the assoiat-ed next-symbol probabilities, has the form of a predition suÆx tree (PST) (Ron, Singer,& Tishby, 1996; Rissanen, 1983). The edges of PST are labeled by symbols from A. Fromevery internal node there is at most one outgoing edge labeled by eah symbol. The nodesof PST are labeled by pairs (s; P̂ (sjv)), s 2 A, v 2 A+, where v is a string assoiated withthe walk starting from that node and ending in the root of the tree. For eah L-blokw = v1v2:::vL 2 AL, the orresponding predition ontext (w) is then the deepest node inthe PST reahed by taking a walk labeled by the reversed string, wR = vL:::v2v1, startingin the root. 7



The algorithm for building PSTs has the following form2 (Ron, Singer, & Tishby, 1996;Ron, Singer, & Tishby, 1994; Guyon, & Pereira, 1995):� the initial PST is a single root node and the initial set of andidate ontexts isW = fs 2 Aj P̂1(s) > �growg.� while W 6= ;, do:1. pik any v = aw 2W , a 2 A, and remove it from W2. add the ontext v to the PST by growing all the neessary nodes, provided theondition (2) (or (3)) holds33. provided jvj < L, then for every s 2 A, if P̂ (sv) > �grow, add sv to W .The depth of the resulting PST is at most L. The tree is grown from the root to theleaves. If a string v does not meet the riterion (2) (or (3)), it is not de�nitely ruled out,sine its desendants are added to W in step 3. The idea is to keep a provision for thefuture desendents of v whih might meet the seletion riterion. In general, as the valuesof �grow and �KL (�1) derease, the size of the onstruted PST inreases.Predition suÆx trees are usually onstruted using a one-parameter sheme intro-dued in (Ron, Singer, & Tishby, 1994). This sheme varies only one parameter �=�KL=�grow. In this ase, however, it an happen that for small values of �, many low-probabilitysubsequenes are inluded as potential ontexts in step 3 of the PST onstrution. Theresulting PSTs are too spei� and greatly over�t the training sequene. One an improveon that by �xing the growth parameter �grow to a small positive value and varying onlythe aeptane threshold parameter �KL. This usually removes the over�tting e�et inlarger PSTs. However, smaller PSTs, orresponding to larger values of �KL, often performpoorly, sine the small �xed value of �grow results in onsidering unneessarily spei� on-texts. We empirially found the proedure with ratio-related parameters �grow = � �KL,50 � � � 100, to give the best results.2�grow is a small positive onstrution parameter3P̂ (sj�) = P̂1(s), � is the empty string. 8



Variable memory length Markov models (VLMMs) are usually ompatly desribed asstohasti mahines (SMs). Briey, SMs are like �nite state mahines exept that the statetransitions take plae with probabilities presribed by a distribution Ti;j;s. The generatingproess is started in an initial state and then, at any given time step, the mahine is insome state i, and at the next time step moves to another state j outputting some symbols, with the transition probability Ti;j;s.The set C of predition ontexts enoded in a PST is the state set of the orrespondingSM that ontains the leaves of the PST plus ontexts added so that the symbol driven statetransition probabilities Ti;j;s are properly de�ned (see (Ron, Singer, & Tishby, 1996; Ron,Singer, & Tishby, 1994; Guyon, & Pereira, 1995)). SMs representing VLMMs have suÆx-free state sets Q and are known as probabilisti suÆx automata (PSA) (Ron, Singer, &Tishby, 1996; Weinberger, Rissanen, & Feder, 1995). Although VLMMs an be emulatedwith the orresponding PSTs, PSA representations of VLMMs give higher proessingspeed. In PSA, the longest suÆes are preomputed into states, whereas in PSTs thelongest suÆes must be dynamially determined (Guyon, & Pereira, 1995).3 Fratal predition mahinesWe propose a novel approah for learning the statistial struture of symboli sequenes,whih we all fratal predition mahines (FPMs). FPMs are similar in spirit to VLMMs,but derive a ontext funtion (w) in a more eÆient way.The main idea behind a FPM is to �rst transform the L-bloks appearing in the trainingsequene into points in a D-dimensional vetor metri spae (<D; d), so that the suÆxstruture of L-bloks is oded into a luster struture in (<D; d). The equivalene relationE de�ning the ontext funtion is then onstruted by vetor-quantizing the geometrirepresentations of allowed L-bloks. This way, we have a diret ontrol over the number ofpreditive ontexts and, at the same time, avoid using auxiliary onstrution parametersemployed in the PST onstrution (see the last setion).
9



3.1 Chaos game representationsThe basis for the transformation of symboli strings into points in <D is the so-alledhaos game representation (CGR), originally introdued by Je�rey (1990) to study DNAsequenes (see also (Oliver, Galv�an, Garia, & Roldan, 1993; Roldan, Galv�an, & Oliver,1994; Li, 1997)). CGRs of symboli sequenes have been formally studied in (Ti�no, 1999)revealing the desired properties for our purposes.The basis of the haos game representation of sequenes over an alphabetA = f1; 2; :::; Agis an iterative funtion system (IFS) (Barnsley, 1988) onsisting of A aÆne ontrativemaps4 1; 2; :::; A, ating on the D-dimensional unit hyperube5 X = [0; 1℄D, D = dlog2Ae:i(x) = kx+ (1� k)ti; ti 2 f0; 1gD ; ti 6= tj for i 6= j: (4)The ontration oeÆient of the maps 1; :::; A, is k 2 (0; 12 ℄.The haos game representation CGRk(S) of a sequene S = s1s2::: over A is obtainedas follows (Ti�no, 1999):1. Start in the enter x� = f12gD of the hyperube X, x0 = x�.2. Plot the point xn = j(xn�1); n � 1, provided the n-th symbol sn is j.As an example, onsider a sequene S = 142::: over the four-symbol alphabet A =f1; 2; 3; 4g. Let the four aÆne maps on the unit square [0; 1℄2, orresponding to the symbolsin A, be de�ned as (k = 12 )1(x) = 12x+ 12(0; 0); 2(x) = 12x+ 12(1; 0);3(x) = 12x+ 12(0; 1); 4(x) = 12x+ 12(1; 1):Here, symbols 1, 2, 3 and 4, are assoiated with the unit square orners t1 = (0; 0),t2 = (1; 0), t3 = (0; 1) and t4 = (1; 1), respetively. Eah map i(x), i = 1; 2; 3; 4, �rst4To keep the notation simple, we slightly abuse mathematial notation and, depending on the ontext,regard the symbols 1; 2; :::; A, as integers, or as referring to maps on X.5for x 2 <, dxe is the smallest integer y, suh that y � x10
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Figure 1: Illustration of the iterative funtion system behind the haos sequene repre-sentations of symboli streams. Eah symbol 1, 2, 3 and 4 is assoiated with a uniqueorner of the blak unit square at the top left. Upon seeing symbol 1, the unit squareis ontrated and shifted towards to orner assoiated with symbol 1. This proess isiteratively repeated as more new symbols arrive. Inreasingly longer sequenes are odedin the shrinking opies of the original blak unit square. In eah onstrution step, theresulting unit square is labeled by the suÆx oded by the blak subsquare.ontrats the unit square [0; 1℄2 into the subsquare [0; 12 ℄2, and then shifts the subsquaretowards the orresponding orner ti of the unit square.This is illustrated in �gure 1. Under the map 1(x), the blak unit square at the topleft is ontrated and then shifted, so that it �lls the subsquare position assoiated withsymbol 1. The shift vetors ti are shematially shown as the orresponding symbols iappearing at the orners of the unit square.The whole proess an be iteratively repeated. Assume that the next symbol is 4.Again, the unit square is ontrated into [0; 12 ℄2, but this time the ontrated subsquare is11



shifted to the upper right orner of the unit square. Upon seeing yet another symbol, say,2, the result of the previous step is ontrated into [0; 12 ℄2 and shifted to the lower rightorner of the unit square, et...Note that by iteratively making ontrations and shifts, we e�etively ode the historyof seen symbols into subsquares of [0; 1℄2. Blak subsquares inside unit squares in �gure 1orrespond to seen strings shematially written on top of the squares. For example, theblak square at the top left of �gure 1 odes the state of total ignorane - every stringover A ould have been seen. The blak subsquare inside the unit square labeled by *1orresponds to all strings ending with symbol 1. The blak \subsubsquare" in the unitsquare labeled by *14 lies in the subsquare orresponding to strings ending with 4 (shadedarea) and odes all strings ending with 14. Likewise, the blak region in the unit squarelabeled by *142 orresponds to all strings ending with 142.Two properties of the haos game representation CGR(S) of symboli sequenes Sare of importane to us. First, if histories of the last symbols in two sequenes S1, S2,are the same, i.e. if the sequenes S1, S2 share a ommon suÆx, the last points in therepresentations, CGR(S1), CGR(S2), lie lose to eah other. Seond, the longer is theommon suÆx shared by S1 and S2, the smaller is the region ontaining the last points ofCGR(S1), CGR(S2).3.2 Deriving an appropriate ontext funtionWe slightly modify the onept of haos game representations to ompute a haos L-blok representation CBRL;k(S) of the sequene S. It is onstruted by plotting only thelast points of the haos game representations CGRk(w) of allowed L-bloks w 2 [S℄L.The representation of a single blok, resulting in a single point, is de�ned by the map� : AL ! [0; 1℄D , from L-bloks v1v2:::vL over A to the unit hyperube,�(v1v2:::vL) = vL(vL�1(:::(v2(v1(x�))):::)) = (vL Æ vL�1 Æ ::: Æ v2 Æ v1)(x�); (5)where x� = f12gD is the enter of the hyperube. The maps v1; :::; vL, orresponding tosymbols appearing in L-bloks are de�ned in (4).12



We thus obtain the (multi)set of points CBRL;k(S) in <D ontaining the geometrirepresentations of allowed L-bloks in S. The set CBRL;k(S) odes the suÆx struture inallowed L-bloks in the following sense (Ti�no, 1999): if v 2 A+ is a suÆx of length jvj ofa string u = rv, r; u 2 A+, then u(X) � v(X), where v(X) is a D-dimensional hyperubeof side length kjvj. Hene, the longer is the ommon suÆx shared by two L-bloks, theloser the L-bloks are mapped in the haos L-blok representation CBRL;k(S)6. On theother hand, the Eulidean distane between points representing two L-bloks u; v, thathave the same pre�x of length L� 1 and di�er in the last symbol, is at least 1� k.Given this property, �nding an appropriate ontext funtion an easily be done byperforming vetor quantization (VQ) on the haos L-blok representation CBRL;k(S) ofthe training sequene S. VQ in the metri spae (<D; d), where d is the metri, positionsin <D M odebook vetors (CVs), b1; :::; bM , eah CV representing a subset of points fromCBRL;k(S) that are loser to it (w.r.t. metri d) than to any other CV, so that the overallerror of substituting CVs for points they represent is minimal. In other words, CVs tendto represent points in CBRL;k(S) lying lose to eah other (in metri d).As the distane funtion d, we onsider the L1 distaned1(x; y) = DXi=1 jxi � yij; (6)or the L2 (Eulidean) distane d2(x; y) =vuut DXi=1(xi � yi)2; (7)where x = (x1; x2; :::; xD); y = (y1; y2; :::; yD) 2 <D. Compared to the L1 metri, theL2 metri is less sensitive to smaller distanes, while emphasizing the larger ones. Vetor6For k lose to 12 , geometri representations of ompletely di�erent L-bloks may lie lose to eah other.This happens, for example, for bloks 444...41 and 333...32 over the alphabet f1; 2; 3; 4g, geometriallyrepresented through the iterative funtion system (4) ating on [0; 1℄2, with t1 = (0; 0), t2 = (1; 0),t3 = (0; 1) and t4 = (1; 1). As a remedy, one may lower the ontration ratio k. The issue of optimalontration ratio with respet to a given training sequene and vetor quantizer is also being urrentlyinvestigated. 13



quantization in L1 and L2 metris positions CVs in the median and the mean, respetively,of the set of points they represent.Now, as with lassial Markov models, we de�ne the predition ontext funtion  :AL ! C via an equivalene E on L-bloks over A. This time, the equivalene E reads: twoL-bloks u; v are in the same lass if their images under the map � (eq. (5)) are representedby the same odebook vetor. In this ase, the set of predition ontexts C an be identi�edwith the set of odebook vetors fb1; b2; :::; bMg. We refer to preditive models with suha ontext funtion as fratal predition mahines (FPMs)7. The predition probabilities(1) are determined by P (sjbi) = N(i; s)Pa2AN(i; a) ; s 2 A; (8)where N(i; a) is the number of (L+1)-bloks ua, u 2 AL, a 2 A, in the training sequene,suh that the point �(u) (eq. (5)) is alloated to the odebook vetor bi.3.3 FPM onstrutionTo summarize what was desribed above, fratal predition mahines are onstruted asfollows:1. alulate the haos L-blok representation CBRL;k(S) of the training sequene S =s1s2:::sm ontaining point representations �(w) 2 <D (eq. (5)) of all allowed L-bloks w 2 [S℄L in S2. partition the hyperube [0; 1℄D into M regions V1; :::; VM , by running a vetor quan-tizer on the set CBRL;k(S). The regions Vi, i = 1; :::;M , in the metri spae7We note that FPMs depend on luster density in the geometri L-blok representations, that is on-trolled by the ontration parameter k (see eq. (4)). Smaller k's yield more dense lusters. Furthermore,quantization of the geometri representations is ontrolled by the magni�ation fator (Ritter, & Shulten,1986; Bauer, Der, & Herrmann, 1996) of the used vetor quantization sheme. The magni�ation fatorrelates, under asymptoti onsiderations, the frequeny of odebook vetors in the quantized region withthe frequeny of L-blok representations in that region. One an �nd a formal relationship among theontration fator k, magni�ation fator of the vetor quantizer and the dynamis of the FPM ontexttransitions. This and other related issues are urrently under investigation.14



(<D; d), are the Voronoi ompartments (Aurenhammer, 1991) of the odebook ve-tors b1; :::; bM , Vi = fx 2 [0; 1℄D j d(x; bi) = minj d(x; bj)g:All points in Vi are alloated8 to the odebook vetor bi.3. set the ounters N(i; a), i = 1; :::;M , a = 1; :::; A, to zero4. for 1 � t � m� L� ode the L-blok St+L�1t by a point � �St+L�1t �� if � �St+L�1t � 2 Vi, inrement the ounter N(i; st+L) by one5. with eah predition ontext (odebook vetor) b1; :::; bM , assoiate the next symbolprobabilities P (sjbi) = N(i; s)Pa2AN(i; a) ; s 2 A:4 ExperimentsWe ompared the fratal predition mahines (FPMs) with both the lassial and variablememory length Markov models referred to as MM and VLMM (or PST, for preditionsuÆx tree), respetively. The experiments were performed on �ve data sets of variousorigin and di�erent levels of subsequene distribution struture. These �ve data setsomprise the following:� two lassial symboli sequenes studied previously, namely DNA sequenes and textsequenes from the bible,� two sequenes obtained by quantizing haoti time series, whih have been well-studied and have a known deep and omplex struture: quantized Laser data andthe Feigenbaum sequene,8Ties as events of measure zero (points land on the border between the ompartments) are brokenaording to index order 15



� one sequene derived from quantizing a time series from a real world stohastiproess, namely the historial Dow Jones industrial average.By hoosing these data sets we aim to demonstrate where and when FPMs an out-perform the lassial �xed-order and the more exible variable-order Markov models. Atthe same time, we demonstrate the feasibility of transforming ontinuous time series intosymboli streams and subsequently using MMs, VLMMs and FPMs to learn about theirstruture.Quantizing real-valued time series into symboli streams has been a well-understoodand useful information redution tehnique in symboli dynamis. Under ertain ondi-tions, stohasti symboli models of quantized haoti time series represent, in a naturaland ompat way, the basi topologial, metri and memory struture of the underlyingreal-valued trajetories (see e.g. Cruth�eld & Young, 1990; Katok, & Hausselblatt, 1995).Analogous ideas in the ontext of stohasti real-valued time series were reently putforward by B�uhlmann (1999). He introdues a new lass of hybrid real-valued/symbolimodels, the so-alled quantized variable length Markov hains (QVLMCs), that desribes alass of real-valued stohasti proesses. QVLMCs are roughly VLMMs onstruted on thequantized sequenes with the next step distribution in < de�ned as a mixture of loal (say,Gaussian) densities orresponding to the individual partition elements (symbols). Themixture weights orrespond to the next-symbol probabilities given by the symboli model(VLMM). B�uhlmann (1999) proves two key results. First, the lass of QVLMCs onstitutesa good representational basis for stationary real-valued proesses. In partiular, the lassof QVLMCs is weakly dense in the set of stationary <-valued proesses. Seond, given anappropriate partition funtion into symbols, �nding the optimal QVLMC in the maximumlikelihood setting an be ahieved exlusively by �nding the optimal underlying VLMMon the symboli level. Hene, modeling quantized time series is of great importane. Wefound the quantization approah very e�etive in our reent study on �nanial time seriesmodeling (Ti�no et al., 2000a). See also (B�uhlmann, 1998; Giles, Lawrene, & Tsoi, 1997;Papageorgiou, 1998). 16



4.1 Experimental setupIn all experiments we onstruted FPMs using a ontration oeÆient k = 12 (see eq. (4))and K-means lustering (MaQueen, 1967; Buhmann, 1995), in both L1 and L2 norms,as a vetor quantization tool. PSTs representing VLMMs were onstruted using theKullbak-Leibler riterion (eq. (2)).4.2 DNA { oding vs. non-oding regions4.2.1 Data and methodsThe DNA alphabet onsists of four symbols A, C, T and G that, for our purposes, orre-spond to symbols 1, 2, 3 and 4, respetively. In the �rst experiment, we lassi�ed DNAsequenes into oding and non-oding lasses. In ontrast to non-oding sequenes, odingDNA strands ontain protein oding genes. Loating the oding genes is a neessary stepbefore any further DNA analysis. For eah model lass, the lassi�ation module onsistsof two models { a oding expert built on the oding sequenes and a non-oding expertbuilt on the non-oding ones. Upon presentation of an unseen DNA sequene, the lassi-�ation module makes its deision based on the probabilities assigned to the sequene bythe two experts.In DNA sequenes, almost all short subsequenes are allowed, with a rather uniformsubsequene distribution. Among the models studied in this paper, �xed order Markovmodels should perform well in this experiment.We olleted a large data set of vertebrate DNA sequenes9 used to test gene struturepredition programs (Burset & Guig�o, 1996). From the data set, we extrated a portionof 880 oding sequenes as the oding training set and a di�erent portion of 880 odingsequenes as the oding test set. The same applies to the non-oding sequenes. So boththe training and test sets onsisted of 880 oding and 880 non-oding sequenes. Thelength of sequenes ranged from 100 to 20 000.Maximal memory depth was set to L = 7�3 = 21 (to aount for the triplet struture of9http://www1.imim.es/GeneIdentifiation/Evaluation/Index.html17



the oding genes). For eah model lass and model size, we built two di�erent models, onefor the oding regions (onstruted on the oding training set), and one for the intergeniregions (onstruted on the non-oding training set). We tested the model performaneby alulating the normalized negative log-likelihood (NNL) of the two models on eah ofthe test sequenes. The model pair lassi�es a test sequene as oding if the NNL ahievedby the oding expert is lower than that of the non-oding expert. Otherwise, the sequeneis lassi�ed as non-oding.The likelihood an be alulated as follows. Denote the empirial n-blok frequenyounts in S by P̂n. Let M be a �nite memory soure built on S. The probability that themodel M, initiated with the �rst L-blok SL1 , assigns to the ontinuation SmL+1 isPM �SmL+1jSL1 � = mYi=L+1P �sij �Si�1i�L�� (9)and the likelihood of the sequene S with respet to the model M is determined asPM(S) = P̂L �SL1 �PM �SmL+1jSL1 � : (10)The normalized negative log-likelihood10 is alulated byNNLM(S) = � logA PM(S)m : (11)Normalized negative log-likelihood measures the amount of \statistial surprise" induedby the model (Ron, Singer, & Tishby, 1996).4.2.2 ResultsThe lassi�ation results are summarized in the ontingeny table ontaining four items:true positives (TP ) { the number of oding sequenes orretly lassi�ed as oding, truenegatives (TN) { the number of non-oding sequenes orretly lassi�ed as non-oding,false positives (FP ) { the number of non-oding sequenes inorretly lassi�ed as oding,and false negatives (FN) { the number of oding sequenes inorretly lassi�ed as non-oding.10base of the logarithm is the number of symbols A in the alphabet A18



From the ontingeny table, four performane measures were alulated:hit rate (HR) { proportion of orretly lassi�ed sequenesHR = TP + TNTP + TN + FP + FN ;sensitivity (Sen) { proportion of oding sequenes orretly lassi�ed as odingSen = TPTP + FN ;spei�ity (Sp) { proportion of non-oding sequenes orretly lassi�ed as non-odingSp = TNTN + FP ;and orrelation oeÆient (CC) { Pearson produt-moment orrelation oeÆient in thepartiular ase of two binary variables (Burset & Guig�o, 1996)CC = TP � TN � FN � FPp(TP + FN) � (TN + FP ) � (TP + FP ) � (TN + FN) :CC is an alternative measure of overall predition auray: CC = 1 orresponds toperfet predition, CC = 0 is expeted for a random predition.Classi�ation results are summarized in tables 1 and 2. In this experiment, FPMsperform worse than VLMMs, but VLMMs never ahieve the performane of lassialMMs. We used MNemar's test (Everitt, 1977) (on 5% level) to test for signi�anein the model performane di�erenes. PSTs built with the �xed growth strategy (�grow =0:001) perform always signi�antly better than FPMs of omparable size. Sine the size ofPSTs is ontrolled only indiretly through the onstrution parameters, the PST expertsin oding/non-oding pairs have only approximately the same size. MMs signi�antlyoutperform both the L1 norm and L2 norm based FPMs, and PSTs built using the one-parameter and ratio �grow = 50 �KL shemes.Classial MMs are diÆult to beat in this experiment, beause the suÆx struturein the DNA strands is rather uniform. In �gure 2 we show geometri representations ofL-bloks of both the oding and non-oding training sequenes. Compared with geometrirepresentations of L-bloks in the laser or Feigenbaum sequenes (�gures 6, 8), there is19



Table 1: Classi�ation results of FPMs in the DNA experiment. Models were used tolassify unseen strings of DNA into oding (positive lass) and non-oding (negative lass)sequenes. Hit rate, sensitivity and spei�ity are given in perentages. Column Signifollets signi�ane results of MNemar's test (on 5% level) applied to pairs of lassi-�ers with omparable number of free parameters: � and + mean that the lassi�er issigni�antly worse than the orresponding Markov model and �xed-growth-PST basedlassi�er, respetively; { marks no signi�ane; dots appear where the model pair of theorresponding size does not exist.model # ontexts Hit rate Sensitivity Spei�ity Corr. oef. SignifFPM{L1 1 63.7 66.9 60.4 0.274 � �4 67.7 59.5 75.8 0.358 � �16 76.5 80.6 72.5 0.532 � �64 82.1 82.3 81.9 0.642 � +256 84.9 80.3 89.5 0.701 � �500 85.5 79.9 91.9 0.715 � +750 85.1 76.9 93.4 0.713 � +1024 83.8 74.2 93.4 0.689 � +FPM{L2 4 72.5 74.1 70.9 0.450 { �16 76.5 81.8 71.1 0.533 � �64 81.8 80.7 82.3 0.636 � +256 85.2 80.7 89.6 0.706 � �500 85.0 78.4 91.5 0.705 � +750 84.7 76.9 92.6 0.704 � +1024 84.5 74.5 94.5 0.705 � +
20



Table 2: Classi�ation results of MMs and PSTs in the DNA experiment. PSTs on-struted using the one-parameter, �xed growth parameter �grow = 0:001, and ratio�grow = 50 �KL shemes are identi�ed by PST, PST-fg, and PST(50), respetively. Sizes ofPST based lassi�ers are shown as (S1; S2), where S1 and S2 are the sizes of the odingand non-oding PST experts, respetively. For other details, see aption to the previoustable.model # ontexts Hit rate Sensitivity Spei�ity Corr. oef. SignifPST (54,31) 85.3 83.9 86.8 0.707 � +(910,760) 83.2 72.8 94.6 0.712 � +PST{fg (56,30) 86.3 84.9 87.9 0.728 {(520,410) 87.4 79.9 95.0 0.758 �(860,840) 88.1 80.4 95.7 0.770 {PST(50) (52,32) 86.4 85.2 87.6 0.729 { {(920,533) 84.9 74.2 95.7 0.716 � +MM 4 73.2 75.8 70.6 0.464 �16 84.4 86.0 82.8 0.689 �64 87.1 85.3 88.9 0.742 {256 90.0 86.1 94.0 0.803 �1024 86.9 76.9 96.8 0.752 {
21



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
CBR − coding DNA

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1
CBR − noncoding DNA

Figure 2: Geometri haos blok representations (CBR) of L-bloks in the DNA oding(left) and non-oding (right) training sequenes.almost no struture in the DNA L-bloks and both the L1 and L2 norm vetor quantizersplae the odebook on an approximately uniform grid similar to that formed by MMs.FPMs onstruted on a perfetly uniform square grid mimi the orrespondingMM. Poorerperformane of FPMs is aused by deviations of the odebooks from regular grids.The distribution of allowed bloks in the DNA sequenes is more at than that foundin the haoti laser sequene (setion 4.4), but more subtle than the speial self-similarFeigenbaum subsequene metri struture (setion 4.5). Therefore, for small onstrutionparameter values, the one-parameter and ratio PST onstrution shemes are prone toover�tting and the best PST results are ahieved by the �xed growth parameter �grow =0:001 onstrution.
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4.3 The Bible4.3.1 Data and methodsIn the seond experiment, we tested our model on the experiments of Ron, Singer andTishby with language data from the Bible (Ron, Singer, & Tishby, 1996). The alphabetwas English letters and the blank harater (27 symbols). They trained lassial MMsand a VLMM on the books of the Bible exept for the book of Genesis. Then the modelswere evaluated on the basis of normalized negative log-likelihood (eq. (11)) on an unseenportion of 236 haraters from the book of Genesis. When onstruting PST, Ron, Singerand Tishby set the maximal memory depth to L = 30. They built a PST with about 3000nodes.We ompared likelihood results of our model with those obtained by Ron, Singer andTishby for MMs and VLMMs. The training and test sets were the same as in (Ron,Singer, & Tishby, 1996). As with the VLMM, we set the maximal memory length toL = 30. FPMs were onstruted by vetor quantizing (in both L1 and L2 norms) a5-dimensional11 geometri representation of 30-bloks appearing in the training set.4.3.2 ResultsNNL results on the test set are shown in �gure 3.Both the PST and FPMs learly outperform the MMs. FPMs appear to performslightly better than the PST. Unfortunately, we were not able to further expand thisexperiment by giving results for various PST sizes and onstrution shemes. The trainingsequene ontains approximately 3:4 106 symbols from an alphabet of 27 haraters. On a2x-Ultraspar workstation, all the FPM experiments were �nished within a few days. Weould not reprodue the PST reported in Ron, Singer and Tishby (1996) and (1994). ThePST onstrution proedures worked extremely slow (reall that the maximal memorydepth was set to L = 30, and the alphabet has 27 symbols), or resulted in small PSTs.Even after 3 months of omputation we were not able to �nd suitable parameters that11alphabet has 27 symbols 23
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would yield a series of PSTs of size 500{3000. In this respet, the speed and self-organizingharater of FPM onstrution proved to be of great advantage.4.4 Laser in a haoti regime4.4.1 Data and methodsIn the third experiment, we trained the models on a sequene of quantized ativity hangesof a laser in a haoti regime. Deterministi haoti dynamial systems usually organizetheir behavior around haoti attrators ontaining regions of di�erent levels of instabil-ity (sensitivity to small perturbations in initial onditions), measured e.g by the loalLyapunov exponents. Periods of relatively preditable behavior are followed by periods ofunpreditable development (due to �nite preision of our measuring devies and omputingmahines). By quantizing a haoti trajetory into a symboli stream (eah symbol orre-sponds to a region of the state spae where the system evolves), a tehnique well-knownin symboli dynamis, we obtain a rough piture about the basi topologial, metri andmemory struture of the trajetories (see e.g. Katok, & Hausselblatt, 1995). Relativelypreditable subsequenes having various levels of memory struture are followed by highlyunpreditable events usually requiring a deep memory. For example, in this experiment,the haoti laser produes periods of osillations with inreasing amplitude, followed bysudden, diÆult to predit, ativity ollapses (see �gure 4). To model suh sequenes withthe simple lass of stohasti models studied in this paper { �nite ontext soures { weneed to vary the memory depth with respet to the ontext. This is exatly the thingvariable memory length models should be good at.The data set was a long sequene12 fDtg of 10 000 di�erenes between the suessiveativations of a real laser in a haoti regime. The sequene fDtg was quantized into a sym-boli stream S = fstg over four symbols orresponding to low and high positive/negativelaser ativity hange:12taken from http://www.s.olorado.edu/�andreas/Time-Series/SantaFe.html
25



st = 8>>>>>>>><>>>>>>>>:
1 (normal up); if 0 � Dt < �22 (extreme up); if �2 � Dt3 (normal down); if �1 � Dt < 04 (extreme down); if Dt < �1; (12)where the parameters �1 and �2 orrespond to Q perent and (100 � Q) perent samplequantiles, respetively. The number of positive di�erenes is approximately the same asthat of the negative di�erenes. So, the upper (lower) 2Q% of all laser ativation inreases(dereases) in the sample are onsidered extremal, and the lower (upper) (100� 2Q)% oflaser ativation inreases (dereases) are viewed as normal. The quantileQ was set to 10%.Figure 4 shows a portion of the �rst 1000 laser ativations, together with a histogram of thedi�erenes between the suessive ativations. Dotted vertial lines show the ut values�1 and �2 orresponding to the 10% and 90% quantiles, respetively.The �rst 8000 symbols and the remaining 2000 symbols from the laser symboli se-quene S formed the training and test sequenes, respetively. After onstruting the�nite-ontext soures MMs, VLMMs and FPMs on the training sequene (maximal mem-ory depth was set to L = 20), we evaluated the normalized negative log-likelihood (NNL)(see eq.(11)) of the test sequene with respet to the �tted models.4.4.2 ResultsThe results are shown in �gure 5.Classial MMs of order up to 5 are outperformed by FPMs with omparable numberof ontexts. There is almost no di�erene between the performanes of FPMs onstrutedusing the L1-norm and L2-norm based proedures13.13In this experiment, we also tried other vetor quantization tehniques like the lassial Kohonen self-organizing feature maps (SOFM) (Kohonen, 1990), SOFM with the star topology of neuron �eld (Ti�no,& �Sajda, 1995), dynami ell strutures (Bruske, & Sommer, 1995) or deterministi annealing basedhierarhial lustering (Rose, Gurewitz, & Fox, 1990). We got model performanes omparable to thoseof the models obtained via the K-means lustering. Clustering via deterministi annealing took enormoustime without any apparent improvement in the resulting preditive models.26
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As disussed in setion 2.2, small values of �= �KL= �grow in the one-parameter PSTonstrution sheme lead to inluding low-probability subsequenes as potential preditionPST ontexts. This results in PSTs greatly over�tting the training sequene (line indiatedby PST in �gure 5). The line indiated by PST-fg traes the NNLs ahieved by the �xedgrowth parameter �grow = 0:001 PST onstrution sheme. Only the aeptane thresholdparameter �KL is varied. While the over�tting e�et in larger PSTs has disappeared,smaller PSTs (orresponding to larger values of �KL) perform poorly, sine the �xed smallvalue of �grow resulted in onsidering unneessarily spei� ontexts. Finally, we show theresults for the proedure onstruting PSTs with ratio-related parameters �grow = � �KL,� = 10; 50; 100 (lines indiated by PST(�)). For small �KL, the ratio value of 10 is still toolow to prevent the over�tting e�et. PSTs onstruted with ratios � = 50 and � = 100ahieve performanes omparable to those of FPMs.This experiment demonstrates that VLMM onstrution an be highly dependent ononstrution parameters and that using the one-parameter sheme of Ron, Singer, & Tish-by, (1994) may result in too spei� models strongly over�tting the training sequene.FPMs, on the other hand, are onstruted by simply enlarging the odebook in the vetorquantization phase and show no deterioration in performane when inreasing the numberof predition ontexts14.To illustrate the di�erene between the �xed-order and variable-ontext-length Markovmodels, we plot in �gure 6 the geometri representations � �St+L�1t �, t = 1; 2; :::;m�L+1,of L-bloks appearing in the training sequene S = s1s2:::sm, (see eq. (5)), together withgeometri representations �(w) of predition ontexts w 2 C found in the MM, PST andFPMs of omparable size (approximately 256 ontexts). Geometri representations of thetraining sequene L-bloks are shown as dots in the upper left part of �gure 6.Geometri representations of predition ontexts of the 4th-order MM, shown as irlesin the lower right, blindly over the unit square [0; 1℄2, regardless of the atual L-blokdistribution in the training sequene.Predition ontexts of the VLMM (PST onstruted with ratio related parameters14at least up to 300 ontexts 29
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�grow = 50 �KL) are suÆxes of the allowed L-bloks, and so geometri representations ofthe predition ontexts onentrate on the areas inhabited by representations of the allowedL-bloks (see setion 3.1). The ontext seletion riteria favor predition ontexts whoseprobability exeeds the \aeptane" threshold �grow and whose next-symbol probabilitiesdo not signi�antly di�er from those of the extended ontexts. The result (lower left of�gure 6) is a sort of \onditional" vetor quantization of geometri representations of thetraining sequene L-bloks, whose aim is to over the set of \aepted" allowed bloks witha set of predition ontexts, taking into aount the assoiated next-symbol probabilities.FPM ontexts, shown in the upper right of �gure 6, orrespond to odebooks on-struted by vetor quantization in the L1 (irles) and L2 (rosses) norms.4.5 Feigenbaum sequene4.5.1 Data and methodsIn the fourth experiment, we applied the models to the Feigenbaum binary sequene witha very strit topologial and metri organization of allowed subsequenes (see e.g. (Katok,& Hausselblatt, 1995)). The sequene was obtained by quantizing the time series resultingfrom the well-known logisti equation in the haoti regime with respet to the sign of theiterands (1{negative, 2{non-negative). Highly speialized, very deep predition ontextsare needed to model this sequene. Classial Markov models annot sueed and the fullpower of admitting a limited number of variable length ontexts an be exploited.The sequene is well-studied in symboli dynamis and has a number of interestingproperties. First, the topologial struture of the sequene (i.e. the struture of allowedn-bloks, not regarding their probabilities) an only be desribed using a ontext sensitivetool { a restrited indexed ontext-free grammar (Cruth�eld, & Young, 1990). Seond, foreah blok length n = 1; 2; :::, the distribution of n-bloks is either uniform, or has just twoprobability levels. Third, the n-blok distributions are organized in a self-similar fashion(Freund, Ebeling, & Rateitshak, 1996). The transition between the ranked distributionsfor blok lengths 2g ! 2g+1, 3 �2g�1 ! 3 �2g, g � 1, is ahieved by resaling the horizontal31
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the issues onerning the growth parameter �grow in the PST onstrution, prominentin the previous experiment, are not relevant. Therefore we report just VLMM resultsorresponding to the one-parameter PST onstrution sheme.Nevertheless, onstruting a series of inreasingly omplex VLMMs by varying the on-strution parameter appeared to be a troublesome task. Unlike in the previous experiment,the PST onstrution proedure did not work \smoothly" with varying the onstrutionparameter. We experiened a highly non-regular behavior with intervals of parametervalues yielding unhanged PSTs, and tiny regions in parameter spae orresponding to alarge spetrum of PST sizes. Therefore, it was impossible to simply iteratively hange theparameters by a small amount and save the resulting PSTs (as done in the previous exper-iment). Instead, one had to spent a fair amount of time to �nd the \ritial" parametervalues.In ontrast, a fully automati onstrution of FPMs involved sliding a window oflength L = 30 through the training set; for eah window position, mapping the L-blok wappearing in the window to the point �(w) (eq. (5)), vetor-quantizing (in both L1 andL2 norms) the resulting set of points (up to 30 odebook vetors). After the quantizationstep, we omputed preditive probabilities aording to eq. (8).Figure 8 is analogous to �gure 6 from the previous experiment. One dimensional15 ge-ometri representations of the training sequene L-bloks form very dense, well-separatedlusters. In this ase, vetor quantization in L1 and L2 norms gives almost idential ode-books and so both the L1 and L2 norm based FPM onstrutions yielded the same results.Variable-ontext-length models quikly grasp the struture in allowed L-bloks. The rigid�xed-order MMs, instead of speializing on deeper ontexts, spare their resoures to overthe missing subsequenes.Normalized negative log-likelihoods (NNL) (eq.(11)) of the test set omputed usingthe �tted models exhibited a step-like inreasing tendeny shown in Table 3. We alsoinvestigated the ability of the models to reprodue the n-blok distribution found in thetraining and test sets. This was done by letting the models generate sequenes of length15Alphabet A = f1; 2g has two symbols 33
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Table 3: Normalized negative log-likelihoods (NNL) on the Feigenbaum test set.model # ontexts NNL aptured blok distributionFPM 2{4 0.6666 1{35{7 0.3333 1{68{22 0.1666 1{1223{ 0.0833 1{24PST 2{4 0.6666 1{35 0.3333 1{611 0.1666 1{1223 0.0833 1{24MM 2,4,8,16,32 0.6666 1{3equal to the length of the training sequene and for eah blok length n = 1; 2; :::; 30,omputing the L1 distane between the n-blok distribution of the training and model-generated sequenes. The n-blok distributions on the test and training sets were virtuallythe same for n = 1; 2; :::30. In Table 3 we show blok lengths for whih the L1 distanedoes not exeed a small threshold �. We set � = 0:005, sine in this experiment, eitherthe L1 distane was less 0:005, or exeeded 0:005 by a large amount.The lassial MM totally fails in this experiment, sine the ontext length 5 is far toosmall to enable the MM to mimi the ompliated subsequene struture in the Feigenbaumsequene. FPMs and VLMMs quikly learn to explore a limited number of deep preditionontexts and perform omparatively well.An explanation of the step-like behavior in the log-likelihood and n-blok modeling be-havior of VLMMs and FPMs is out of the sope of this paper. For a detailed analysis, see(Ti�no, Dor�ner, & Shittenkopf, 2000). We briey mention, however, that by ombiningthe knowledge about the topologial and metri strutures of the Feigenbaum sequene(e.g. (Freund, Ebeling, & Rateitshak, 1996)) with a areful analysis of the models, onean show why and when an inlusion of a predition ontext leads to an abrupt improve-35



ment in the modeling performane. In fat, we show that VLMMs and FPMs onstituteinreasingly better approximations to the in�nite self-similar Feigenbaum mahine knownin symboli dynamis (Cruth�eld, & Young, 1990).4.6 Finanial data4.6.1 Data and methodsThe �nal data set onsisted of quantized daily volatility hanges of the Dow Jones Indus-trial Average (DJIA) from Feb. 1 1918 until April 1 1997, transformed into a time seriesof returns rt = log xt+1 � log xt. Preditive models were used to predit the diretion ofvolatility move for the next day. In (Ti�no et al., 2000a) we show that the quantization,symbol based approah to volatility predition an outperform the more traditional eono-metri models of the ARCH and GARCH families (Bollerslev, 1986). Finanial time seriesare known to be highly stohasti with a relatively shallow memory struture (Jaditz, &Sayers, 1993). In addition, to aount for stationarity, �nanial time series of daily valuesare usually kept short. In this ase, it is diÆult to beat the low-order lassial MMs. Onean perform better than MMs only by developing a few deeper speialized ontexts, butthat, on the other hand, an easily lead to over�tting.We onsidered the squared return r2t a volatility estimate for day t. Volatility hangeforeasts (volatility is going to inrease or derease) based on historial returns an beinterpreted as a buying or selling signal (in an option market) for a straddle (see e.g.(Noh, Engle, & Kane, 1994)). If the volatility dereases, we go short (straddle is sold), ifit inreases, we take a long position (straddle is bought). In this respet, the quality ofa volatility model an be measured by the perentage of orretly predited diretions ofdaily volatility di�erenes.The series of returns frtg was transformed into a series fDtg of di�erenes between thesuessive squared returns Dt = r2t+1 � r2t . We then partitioned the series fDtg of dailyvolatility moves into 13 non-overlapping intervals, eah ontaining 1700 values (spanningapproximately 612 years). Eah interval was further partitioned into the training set (the36



1920 1930 1940 1950 1960 1970 1980 1990
−15

−10

−5

0

5

10

15
Returns of DJIA (in %)

Figure 9: Series of returns (in perent) of the DJIA from February 1918 till April 1997.The solid vertial lines indiate division into intervals, the dotted vertial line within eahinterval indiates the split between the training and validation sets. The �rst 600 valuesfrom the training set of an interval forms a test set for the previous interval.�rst 1100 values) and the validation set (the remaining 600 values). The series of returnsof the DJIA an be seen in �gure 9. The solid vertial lines indiate division into theintervals, the dotted vertial line within eah interval indiates the split between thetraining and validation sets. For eah interval I = 1; 2; :::; 12, preditive models weretrained on the training set, andidate models were seleted on the validation set, and theseleted andidate models were tested on the test set formed by the �rst 600 values fromthe training set of the next interval. This way, we got 12 partially overlapping epohs ofthe series fDtg, eah ontaining 1100+600+600=2300 values (spanning approximately 9years). Training sets of the 12 epohs do not overlap. The same applies to the test andvalidation sets.In eah epoh, we transformed the training series fDtg of daily volatility di�erenes into37



a sequene over four symbols via the quantile tehnique used in the laser data experiment(see eq. (12)). Given a quantile Q, the validation and test sets were quantized using theut values determined for Q on the training set.Maximum memory length L for VLMMs and FPMs was set to 10 (two weeks). Wetrained lassial MMs, PSTs and FPMs with various numbers of predition ontexts (upto 256) and extremal event quantiles Q 2 f10; 20; :::; 40g. For eah model lass, the modelsize and the quantile Q to be used on the test set were seleted aording to the validationset performane. Performane of the models was quanti�ed as the perentage of orretguesses of the volatility hange diretion for the next day. If the next symbol was 1 or 2(3 or 4) and the sum of onditional next symbol probabilities for 1 and 2 (3 and 4) givenby a model was greater than 0.5, the model guess was onsidered orret.4.6.2 ResultsFor all 12 epohs, test set performanes of the models seleted on the validation sets areshown in �gure 10.We subjeted the di�erenes in model performanes aross the 12 epohs to the para-metri t- and non-parametri Wiloxon paired signi�ane tests. The results of signi�anetests are summarized in table 4. Both tests reveal that the FPMs signi�antly outperformVLMMs. The L2 norm based FPMs perform signi�antly better than MMs. Both test-s also suggest that MMs signi�antly outperform PSTs onstruted with one-parametersheme. Restriting to t-test, MMs appear to be signi�antly better than any PST sheme.This experiment illustrates the pratial problems in �tting VLMMs. Training se-quenes in this experiment are relatively short (1100 symbols { approximately 412 years).Considering stationarity issues, they an hardly be made substantially larger. In addition,�nanial time series are known to be highly stohasti with a relatively shallow memorystruture (Jaditz, & Sayers, 1993). All PST onstrution shemes develop too speializedpredition ontexts, even for small PSTs. In this ase, the use of validation set strategydoes not ompletely prevent PSTs from overestimating the memory struture in the data.38
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Table 4: Tests for signi�ane in model performanes aross 12 epohs in the DJIA exper-iment. Item (i; j) reports results of the test whether the model orresponding to the row isigni�antly outperforms the model assoiated with the olumn j. Signi�ane suggestedby the (parametri) t- and (non-parametri) Wiloxon paired tests is marked with � and+, respetively. A double star (plus) means a signi�ane on 1% level, a single star (plus)orresponds to a signi�ane on 5% level, { means no signi�ane. PSTs onstruted us-ing the one-parameter, �xed growth parameter �grow = 0:001, and ratio �grow = 50 �KLshemes are denoted by PST, PST{fg, and PST(50), respetively.model FPM{L1 FPM{L2 PST PST{fg PST(50) MMFPM{L1 { { � �++ � �++ � �++ {FPM{L2 { { � �++ � �++ � �++ �+PST { { { { { {PST{fg { { { { { {PST(50) { { { { { {MM { { �+ � � {
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5 DisussionIn four of the �ve experiments, fratal predition mahines (FPMs) performed at leastas well as variable memory length Markov models (VLMMs). The only exeption is theDNA sequene, where due to the uniform distribution of ontexts, lassial Markov models(MMs) are favored. In this ase, FPMs performed worse than VLMMs.In the remaining four ases FPMs outperformed lassial MMs, and showed a deisiveadvantage over VLMMs with respet to model performane and/or ease of onstrution:� in the ase of the bible text, inhibitive omputational demands of the VLMM wererevealed. In ontrast, FPMs ould eÆiently be estimated on the same data set witha variety of numbers of ontexts,� in the ase of quantized Laser data, the experiments pointed to a severe parameter-dependeny of the estimation algorithm for VLMMs, whereas FPMs proved to berobust and e�etive,� in the ase of the Feigenbaum sequene, FPMs ahieved the same level of performane(measured by negative log likelihood) as the VLMM, but the onstrution of FPMswas muh less troublesome.� in the ase of quantized �nanial data, FPMs signi�antly outperformed VLMMs,mainly due to the availability of only short training sequenes rendering the estima-tion of a VLMM diÆult.In summary, the experiments demonstrate that fratal predition mahines are aneÆient and viable andidate for learning the statistial struture of symboli sequenes,whenever the lassial Markov models are not appropriate due to the existene of deepstruture involving only a few relevant ontexts.One of the main advantages of our approah is the self-organizing harater of on-struting a series of fratal-based preditive models, fratal predition mahines (FPMs),of inreasing size. Vetor quantization overs the geometri L-blok representations of41



the training sequene with inreasingly large odebooks in a natural and self-organizedmanner. Preditive models onstruted on suh odebooks an be ompared through amodel seletion riterion, e.g. validation set performane.Construting a series of inreasingly large models to enter the model seletion phase isan important issue that has attained little attention in the VLMM literature. In pratialappliations with larger alphabets and very long sequenes, onstruting a set of potentialandidate VLMMs an take a prohibitively long time. Indeed, results in the VLMM liter-ature are usually presented only for a few �tted models, stressing the memory requirementadvantage of VLMMs over the lassial MMs. Little is said about whether a partiularmodel was seleted from a set of potential andidates, or how diÆult it was to arriveat the presented solution (see, for example (Ron, Singer, & Tishby, 1996; Ron, Singer, &Tishby, 1994)).Guyon and Pereira (1995) study two ways of onstruting inreasingly omplex VLMM-s: by inreasing the soure memory L with other onstrution parameters kept �xed, or by�xing a (long enough) soure memory L and gradually hanging a single parameter, whilekeeping all the other onstrution parameters �xed. The latter sheme was experimentallyshown to yield a superior performane (Guyon, & Pereira, 1995). It should be noted, thatwhile Guyon and Pereira (1995) do onstrut a series of inreasingly omplex VLMMs ona very large set (AP news orpus, ontaining about 108 haraters), they do so by settingthe maximal memory depth to L = 5. Suh a shallow memory onstrution16 enabledthe authors to onstrut a series of VLMMs in a realisti time. Larger memory lengths Lwould lead to an exponential inrease in PST onstrution time.In addition, as mentioned in setion 4.5, the onstrution parameters' seletion is anon-intuitive task that may require a lot of interative steps. In this respet, the FPMonstrution is more intuitive (the number of odebook vetors diretly orresponds tothe number of preditive ontexts), easier to automate (growth of preditive models isdireted by the odebook growth in the self-organizing quantization algorithms) and oftenfaster.16ompare with memory depth of L = 30 in the Ron, Singer and Tishby (1996) Bible experiment42



Moreover, we illustrated in the laser data experiment, that onsidering di�erent VLM-M parameter seletion strategies an lead to ompletely di�erent learning senarios. Inontrast, the simple FPM onstrution is free of suh defets. Interestingly enough, itgives similar results for both the L1 and L2 norm FPM algorithms17.Variable memory length strategies work better than the lassial �xed order Markovmodels when there is a signi�ant suÆx struture in long allowed bloks of the trainingsequene, not explainable by onsidering some pre-de�ned, (relatively) small suÆx length.Natural language, as demonstrated in the Bible experiment, is an example of suh asituation. Another example is provided by the Feigenbaum sequene.DNA sequenes stand at the opposite end, with a rather uniform suÆx struture. Inthis ase, it is diÆult to outperform the lassial MMs. Better performane might beahieved with speialized models, inorporating some a-priori knowledge, e.g. gene stru-ture expressed in a hidden Markov model topology (Krogh, 1997), or similarity searheswith respet to known amino aid sequenes (Burset & Guig�o, 1996).However, allowing for a variable memory length is a double-edged sword. Espeiallyon shorter sequenes (relative to the alphabet size), the variable memory length modelonstrution often speializes on overly deep predition ontexts, even for small modelsizes. As shown in the Dow Jones Industrial Average experiment, in this ase, modelseletion strategies annot eliminate the overlearning e�ets.Is is only fair to note that even though the FPMs emerge from our experiments aspotentially interesting and favorable alternatives to VLMMs, so far, they lak a soundtheoretial bakground omparable to that supporting the use of VLMMs (Ron, Singer,& Tishby, 1996; Weinberger, Rissanen, & Feder, 1995; B�uhlmann, & Wyner, 1999). Pro-eeding in this diretion, we have theoretially analyzed the multifratal properties ofthe basis for our preditive models' onstrution { the geometri L-blok representation(Ti�no, 1999), and found a relationship among the haos blok representation ontrationfator, magni�ation fator of the vetor quantizer and the dynamis of the FPM ontext17We thank one of the anonymous reviewers for suggesting to use also the L1-norm FPM onstrutionsheme 43
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