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Abstract. Adaptive multiagent algorithms based upon the behaviour
of social insects are powerful decentralised systems capable of solving
complex problems. The intelligence of such a system lies not within a
single agent but is a product of a network of simple interactions. Under
the context of a mail collection environment different techniques are im-
plemented and evaluated. The paper creates a number of strategies to
tackle task allocation problems of this type based upon the principles of
self-organisation and greedy search. The paper also investigates factors
that may affect their performance.

1 Introduction

Social insects have been colonising the planet for millions of years, part of their
ability to survive in numerous climates is due to their ability to react to chang-
ing demands with little or no centralised control. Social insects are therefore
powerful decentralised problem solving systems. Theories of self-organisation,
originally developed in the context of physics and chemistry, can be extended
to social insects. Algorithms based upon these principles have been shown to be
effective on many complex problems including the travelling salesman problem,
combinatorial optimisation and graph partitioning. The success of these algo-
rithms and indeed social insects is (at least partly) due to their ability to adapt
to dynamic environments.

The aim of this paper is to investigate how adaptive nature inspired tech-
niques can be applied to a multiagent task allocation problem. The issue with all
adaptive algorithms that are designed to deal with dynamically varying problems
is that there is no standard way of evaluating their performance [1].

This paper explores nature inspired task allocation in a multiagent environ-
ment and compares its performance against other more established strategies.

The problem considered here is a variation of the mail retrieval proposal by
Bonabeau et al. in [1]. Batches of mail produced by cities need to be assigned to
processing centres all of which are spread across an area. Once produced, a batch
of mail waits for collection at its origin and that city cannot produce another
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batch until it has been collected. Cities can produce different types of batches,
each of which need to be processed differently by centres. Each centre has a
collecting agent solely responsible for the selection and collection of batches of
mail. Centres will eventually develop a queue of batches each of which must be
processed in turn. It takes a set amount of time to process a batch of mail but
it takes significantly longer to reconfigure the centre if the type of mail needing
to be processed is different from the batch previously processed. Therefore the
number of these changeovers should be minimised as best as possible.

However, a centre cannot exclusively deal with a single type of mail as a
deadlock situation may occur with all the cities having a single type of mail
waiting for collection. In addition each centre has a limited size queue of batches
that have been collected and are awaiting processing. Therefore each centre needs
to specialise as best as possible whilst being able to react to fluctuating demands.
It is clear that the performance of each centre is directly dependent upon the
decisions of the collecting agent.

The approach taken in this paper investigates a number of new areas. Firstly
the project investigates decentralised task allocation rather than the centrally
controlled approaches taken in [2, 3]. Secondly the paper compares a number of
decentralised algorithms upon the mail retrieval problem to analyse how their
performances compare and contrast. Finally the environment is more generalised
than previous work in [1, 3, 4] allowing further investigation into the behaviours
of the different algorithms.

2 Decentralised Approaches to Task Allocation

Developed by Bonabeau et al. in [5] the fixed response threshold algorithm can
explain several aspects of the behaviour of social insects. In this model, individ-
uals are more likely to engage in a task when the level of stimulus associated
with that task exceeds their threshold. As a task’s stimulus can only increase if
the task is not performed at all or with not enough efficiency, removing individ-
uals that normally conduct a specific task will result in the associated stimulus
increasing. This will cause other individuals not normally associated with this
task being stimulated to conduct it. This behaviour directly relates to the ob-
servations of the notable biologist Wilson in [6].

Every individual a is assumed to posses a set of response thresholds Θa =
{θa,0, ..., θa,N}. Each threshold θa,t correspond to a type of task t = 0, 1, 2, ..., N ,
that individual is able to perform. The initial values of the thresholds are ran-
domly initialised to ensure that their roles are not predetermined.

A response threshold algorithm combines the associated threshold with the
corresponding stimulus intensity of a task to calculate the probability that an
individual will engage in that task. A threshold response function ensures that
when the stimulus exceeds an individual’s corresponding threshold that individ-
ual is likely to engage in that task. Correspondingly if the stimulus is less than
an individual’s threshold then it should be unlikely that the individual engages
in that task. Finally if the stimulus is equal to the individual’s threshold then
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there should be a 50% chance of that individual engaging in that task. Formally
[1],

Tθa,t
(Sj) =

(Sj)
n

(Sj)n + (θa,t)n
, (1)

where Tθa,t
(Sj) is the probability that the individual a will perform task j of

type t. The probability is directly related to the magnitude of the stimulus Sj

and the individual’s response threshold θa,t to that type of task. In this paper,
the stimulus Sj is the time waited of batch of mail j whilst θa,t is the threshold
of agent a corresponding to type of mail t. In addition, the steepness of the
threshold response function can be altered through the parameter n > 2.

However, fixing an agent’s threshold limits the agent’s ability to adapt to its
environment and this model cannot account for several aspects of social insect
behaviour. A fixed threshold model assumes that an individual’s role is prede-
termined, in addition to excluding ageing and learning from the task allocation
process. Therefore a fixed threshold model is only a valid model of social insect
behaviour over a sufficiently short period of time where thresholds are considered
relatively stable.

Theraulaz et al. [7] extended the fixed threshold model by allowing vari-
able thresholds. This model allows thresholds to vary through time in a self-
reinforcing way according to what action an agent takes. In our paper, each
time an agent a collects a batch of mail of type t, its threshold for collecting
that type of batch again is lowered by a small amount ε > 0

θnewa,t = θolda,t − ε. (2)

In addition, that agent’s thresholds for all other types of batches q are increased
by a small amount φ > 0,

θnewa,q = θolda,q + φ, q 6= t. (3)

In [1], Bonabeau et al. refers to ε and φ as learning and forgetting coefficients,
respectively. A response threshold function such as (1) is still used to select tasks.
In addition each threshold θa,t is restricted to a positive interval [θmin, θmax]

1.
The variable response threshold algorithm does not assume that roles are

predetermined and allows the age of an individual to affect response thresholds.
In addition a number of experiments and observations imply the existence of a
reinforcement process within social insects [8].

The variable response threshold algorithm has been used in several nature
inspired systems. Bonabeau et al. in [1] showed that the use of variable thresh-
olds caused individuals to become highly responsive to stimulus associated with
specific tasks whilst others only became weakly responsive. By removing these
responsive individuals from the experiment individuals with previously high
thresholds become more responsive to the associated available tasks. This be-
haviour is analogous to the observations by Wilson in [6] in contrast to the

1 if θnew
a,t < θmin, then θ

new
a,t = θmin, and if θnew

a,t > θmax, then θ
new
a,t = θmax
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fixed threshold model in which thresholds cannot respond to perturbations in
the environment. This paper implements both the fixed and variable response
threshold algorithms to further analyse their behaviour.

Other work also investigates the behaviour of the response threshold algo-
rithm. In [4], Cicirello et al. showed that by using a variable response threshold
algorithm and a dynamic queueing policy based upon wasp behaviour is capa-
ble of producing an efficient and robust system that can adapt to dynamically
changing factory environments. Campos et al. [3] explain the similarities between
the variable response threshold algorithm and a more established market-based
approach. Overall related work shows that the variable response threshold algo-
rithm can be used to create a self-organised system that is flexible, efficient and
robust.

A core aim of this paper is to compare the performance of the variable re-
sponse threshold algorithm against viable alternatives, such the variable response
probability algorithm introduced below. Each agent a has an internal value Pa,t

for each type of mail t. Pa,t represents the probability of collecting mail of type
t by agent a. Each time an agent a collects a batch of mail of type t, its prob-
ability for collecting that type of mail again is increased, while probabilities for
collecting all other types of mail are decreased:

Qa,t = P old
a,t · (1 + α), (4)

Qa,q = P old
a,q · (1− α), q 6= t, (5)

Pnew
a,j =

Qa,j
∑

r Qa,r

, (6)

where 0 < α < 1.

Note that updates in the variable response probability algorithm are mul-
tiplicative in nature, whereas the threshold updates in the variable response
threshold algorithm by Theraulaz et al. [7] are additive.

As mentioned earlier the environment created for this paper is different in
many respects than alternate approaches. Each agent, regardless of strategy, is
supplied with the same information about mail awaiting collection (such as type
and time waited). No agent, in any strategy, has access to information about
other agent’s actions or states. Therefore each strategy is completely decen-
tralised. Many task allocation techniques implement centralised control and/or
communication between agents to optimise the overall performance [2, 3]. This
paper offers a fresh outlook at decentralised task allocation algorithms within
both stationary and dynamically changing environments.

3 Experiments

The experiments in this section analyse the performance of the all the strategies
upon increasingly complex environments. However, all the experiments have a
few common features. Each simulation is run for a period of 10,000 ticks and
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each experiment uses 100 simulations for each strategy to ensure comprehensive
testing.

Both fixed and variable response threshold algorithms used the following
parameter settings: θmin = 0, θmax = 100, n = 2. In addition, the variable
response threshold algorithm used ε = 5 and φ = 5. Parameter α in the variable
response probability algorithm was set to 0.2. These parameter settings where
chosen as they tended to lead to good performance levels when tested upon the
multiple versions of the environment (with varying degrees of complexity) used
in this paper.

The work presented here also implemented two base case strategies designed
to be the minimum level of acceptable performance for the other strategies. By
far the simplest of the algorithms, ‘first in - first out’ (FIFO), collects mail in
the same order it is produced. Slightly more sophisticated than FIFO is the
greedy algorithm that always attempts to collect the same type of mail it is
currently processing. The type of mail currently being processed has the highest
priority, otherwise mail is collected according to the time it has waited. One
would expect that the greedy algorithm performs to a higher standard than
FIFO by processing more mail and incurring fewer changeovers.

Performance can be evaluated by how much mail each strategy is able to
process whilst minimising the number of changeovers. The tables in this section
show for each experiment the average amount of mail processed and the average
number of changeovers of each strategy over 100 runs. In addition the standard
deviations of these figures are shown in brackets below the averages.

We tested for significance in differences between alternate strategies across
multiple runs of the same experiment using t-test. Throughout this section the
symbol ∗ signifies that a strategy is statistically significantly worse (with prob-
ability 0.95) in comparison to the variable response threshold algorithm. Anal-
ogously, symbol + signifies that a strategy is statistically significantly worse
in comparison to the variable response probability algorithm (with probability
0.95).

3.1 Experiment 1

The initial comparison used an environment of six cities (producing mail), two
centres (collecting/processing the mail) and two types of mail. The results of the
experiment are shown in Table 1.

As expected, the FIFO strategy was outperformed by every other strategy.
In addition, the greedy algorithm was only able to slightly increase through-
put and decrease changeovers. The fixed response threshold algorithm outper-
formed both of these algorithms but was unable to compete with the variable
response threshold (VRT) and variable response probability (VRP) algorithms.
The VRT algorithm was able to significantly increase throughput and decrease
changeovers by almost 50% in comparison to the fixed response threshold algo-
rithm. The VRP algorithm decreased changeovers dramatically, well below all
other algorithms, while additionally closely matching the throughput of the VRT
algorithm.
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Table 1. Average performances of strategies in Experiment 1. FRT, VRT and VRP
stand for the fixed response threshold, variable response threshold and variable response
probability algorithms, respectively.

Strategy Mail Processed Changeovers

FIFO 318.73∗,+ 162.21∗,+

(10.676) (3.817)

Greedy 321.23∗,+ 159.75∗,+

(13.348) (5.695)

FRT 332.94∗,+ 151.37∗,+

(20.840) (11.755)

VRT 401.40 88.27+

(22.609) (10.419)

VRP 400.78 18.93
(33.108) (7.137)

3.2 Experiment 2

Further experiments with increasingly complex environments showed similar re-
sults – variable response threshold algorithm processes the most mail whilst the
VRP algorithm maintains significantly lower changeovers. A typical example
(using 30 cities, 10 centres and 2 types of mail) is presented in Table 2.

Table 2. Average performances of strategies in Experiment 2 (30 cities, 10 centres, 2
types of mail).

Strategy Mail Processed Changeovers

FIFO 1587.20∗,+ 805.80∗,+

(27.167) (9.945)

Greedy 1632.51∗,+ 756.49∗,+

(44.587) (29.533)

FRT 1485.05∗,+ 508.32∗,+

(82.864) (58.587)

VRT 2318.61 222.67+

(35.622) (29.330)

VRP 2207.87∗ 65.90
(143.795) (14.721)

3.3 Experiment 3

The previous experiments only investigated stationary environments where the
probabilities of different types of mail appearing remained constant. It was rea-
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soned that because of the relatively high value of parameter α in the variable
response probability model (α = 0.2) and the multiplicative nature of updates
in this model, the response probabilities of agents quickly specialise to a type
of mail to process (the probability of picking an alternate type of mail rapidly
decreases to negligible values). This makes the model rather inflexible in dynam-
ically changing environments. The next experiment setup an environment where
initially one type of mail was twice as likely to appear as the alternate, however
after 5000 ticks these probabilities are reversed: There were 9 cities, 3 centres
and 2 types of mail. The results are presented in Table 3.

Table 3. Average performances of strategies VRT and VRP in Experiment 3 (dynam-
ically changing environment, 9 cities, 3 centres, 2 types of mail).

Strategy Mail Processed Changeovers

VRT 633.68 121.03+

(29.083) (17.555)

VRP 507.80∗ 32.30
(51.358) (7.243)

In this experiment, the variable response threshold algorithm consistently de-
voted two centres to the dominant mail type in the first half of the simulations.
At the point where the mail type probabilities switched, the algorithm reliably
caused the behaviour of one of the collecting agents to specialise to the alter-
nate and now dominant type of mail. However the VRP algorithm was unable
to adapt as suitably to the dynamic probabilities within the environment. Us-
ing this strategy, the collecting agents behaviour did not alter despite the new
environmental conditions resulting in a significantly lower overall throughput,
although the changeovers incurred remained minimal.

4 Discussion

The main findings of this paper are that the adaptive algorithms, namely the
variable response threshold (VRT) and variable response probability (VRP) al-
gorithm, where able to significantly outperform the simpler approaches. The
performance of these algorithms remained stable over increasingly complex en-
vironments. The difference in performance between the fixed and variable re-
sponse threshold algorithms highlight how a dual reinforcement process enables
collecting agents to adapt well to most environments.

Particularly of interest was how the VRP algorithm was able to incur a very
small amount of changeovers compared to every other strategy. The changeovers
occurred very early in the simulation before the collecting agents could fully
specialise to one type of mail. Once the collecting agents had adapted to the en-
vironment, changeovers occurred with little or no frequency. Further experiments
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(not included in this paper) also show that in complex stationary environments
the VRP algorithm is able to process more mail than the VRT algorithm.

By the nature of the VRP model, parameter α determines the speed of spe-
cialisation. Higher values of α lead to faster specialisation, but also to greater
inflexibility of the model to adapt to changes in the environment. In dynamic en-
vironments, the VRT algorithm consistently outperformed the VRP algorithm.
Further observations showed that the more dynamic the environment, the larger
the performance gap between the VRT and VRP algorithms becomes.

This paper offers a fresh outlook at decentralised task allocation algorithms
within both static and dynamic environments. The transfer of social insect in-
spired algorithms from static to dynamic environments has rarely been tested
[3].

The work presented here also analysed the VRT algorithm in more detail
and was shown to have many diverse features. The results highlight that the al-
gorithm is capable of creating a self-organised system through stigmergy alone.
This self-organised system also adapts well to most environments. In addition,
natural phenomena particularly in comparison to the work of Wilson in [6] are
reproducible. The behaviour of the algorithm can be altered through the pa-
rameters. Particularly of interest was how the VRT algorithm may reinforce a
hypothesis suggested by Anderson in [9]: “There must be a critical window of cor-

relation of activity among individuals in order for self-organisation to occur. That

is above some upper threshold and below some lower threshold, self-organisation

breaks down, and the emergent properties no longer exist.”

5 Conclusion

We compared the variable response threshold (VRT) algorithm of Theraulaz et
al. [7] for decentralised task allocation with four alternate strategies, namely
FIFO, greedy algorithm, fixed response threshold algorithm (FRT) and vari-
able response probability (VRP) algorithm. Each of these strategies where anal-
ysed and compared upon increasingly complex environments. It appears that
the VRP algorithm can be most suitable in stationary environments where the
probabilities of the types of mail appearing remained constant. However if the
probabilities of mail types appearing are dynamic within the environment the
VRP algorithm is less flexible than the VRT algorithm.

Overall the area of self-organisation is intriguing and new developments are
being discovered at a rapid pace. Perhaps in the future such systems will become
more widely accepted, as their behaviour is better understood. Until such a time
the area will be dominated by theoretical problems and relatively few real-world
applications. Even though social insect colonies and other biological systems
have utilised self-organisation in the real world with great success for millions of
years.
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