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Abstract

To understand trends in individual responses to medication, one can take a
purely data-driven machine learning approach, or alternatively apply pharma-
cokinetics combined with mixed-effects statistical modelling. To take advan-
tage of the predictive power of machine learning and the explanatory power of
pharmacokinetics, we propose a latent variable mixture model for learning clus-
ters of pharmacokinetic models demonstrated on a clinical data set investigat-
ing 11β-hydroxysteroid dehydrogenase enzymes (11β-HSD) activity in healthy
adults. The proposed strategy automatically constructs different population
models that are not based on prior knowledge or experimental design, but re-
sult naturally as mixture component models of the global latent variable mixture
model. We study the parameter of the underlying multi-compartment ordinary
differential equation model via identifiability analysis on the observable mea-
surements, which reveals the model is structurally locally identifiable. Further
approximation with a perturbation technique enables efficient training of the
proposed probabilistic latent variable mixture clustering technique using Esti-
mation Maximization. The training on the clinical data results in 4 clusters
reflecting the prednisone conversion rate over a period of 4 hours based on
venous blood samples taken at 20-minute intervals. The learned clusters dif-
fer in prednisone absorption as well as prednisone/prednisolone conversion. In
the discussion section we include a detailed investigation of the relationship of
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the pharmacokinetic parameters of the trained cluster models for possible or
plausible physiological explanation and correlations analysis using additional
phenotypic participant measurements.

Keywords: Dynamic systems, pharmacokinetics, identifiability analysis,
perturbation analysis, 11β-HSD activity, in vivo Glucocorticoid Activation,
Probabilistic models, Gaussian mixture model, expectation maximization,
clustering, partially observed time series analysis

1. Introduction

Glucocorticoids are widely used, with prescriptions for up to 2.5% of the
population for immunomodulatory and anti-inflammatory effects in a number
of disease states [1]. Endogenous glucocorticoid hormones (including cortisol
and cortisone) are a vital part of normal metabolism and physiological func-5

tion. They are produced by the adrenal cortex under the regulation of the
HPA (hypothalamic-pituitary-adrenal) axis, in addition to enzymatic action in
tissue. Cortisol increases blood sugar, functions as an immune system suppres-
sant, decreases bone formation and supports the metabolism of fat, protein and
carbohydrates. Unfortunately these hormones are also associated with adverse10

features including central obesity, proximal myopathy, osteoporosis, hyperten-
sion, insulin resistance, psychological effects and excessive skin changes, which
serve to reflect their action in a range of metabolically active tissues. These ef-
fects regularly affect patients receiving exogenous glucocorticoid treatment but
are particularly demonstrated in the rare condition of endogenous Cushing’s15

syndrome which can occur as the result of tumours of the pituitary or adrenal
gland or as a result of ectopic secretion of ACTH [2] and these are associated
with excess mortality [3, 4].

In recent years initiatives such as Horizon 2020 have been launched in order
to address the public health challenges of our ageing population. In Europe,20

those aged >65 years made up 17 million of the population in 1998, a number
projected to rise to 25 million by 2035 [5, 6]. Healthy life expectancy has not
kept up with this increase in longevity, with a gap between life expectancy and
disability free life expectancy in the UK of 9 years for women and 7 years for men
at the age of 65 [7]. As a result there has been much research focus on the role of25

so-called pre-receptor metabolism of glucocorticoids via the 11β-hydroxysteroid
dehydrogenase enzymes (11β-HSD), in metabolic conditions (including obesity
and diabetes) as well as those associated with adverse ageing (osteoporosis and
sarcopenia) which are similar to those found in glucocorticoid excess [8].

The two isozymes of 11β-HSD regulate glucocorticoid action at a tissue30

level by shuttling them between active and inactive forms. The type 1 enzyme
(11β-HSD1) amplifies local tissue glucocorticoid levels by replacing the C11-
keto group with a C11-hydroxyl group, converting endogenous cortisone to cor-
tisol [8]. This activity is also critically important for exogenously administered
synthetic steroids, such as prednisone, which is converted by 11β-HSD1 to its35
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active form (prednisolone). The type 2 enzyme 11β-HSD2, on the other hand,
catalyzes in vivo mainly1 the opposite reaction to 11β-HSD1, enhancing the
inactivation of cortisol/prednisolone to cortisone/prednisone. The question as
to whether altered metabolism due to more subtle changes related to ageing or
individual genetic differences for example could result in changes in glucocorti-40

coid responsive tissues and account for adverse tissue effects is a compelling one.
Assessing the variation in 11β-HSD1 activity between individuals, and within
individuals as a result of ageing and lifestyle changes, and the resulting mor-
bidity is a significant question in the field of metabolic research. 11β-HSD1 is
widely expressed in metabolically active tissues including liver, adipose, muscle,45

bone, skin and the central nervous system and the enzyme has been implicated
in the pathogenesis of associated diseases [9, 10]. Cell culture and animal models
have suggested that 11β-HSD1 is a major regulator of obesity and of the fea-
tures of glucocorticoid excess as seen in Cushing’s Syndrome [11, 4, 12, 13, 14].
Pharmaceutical companies have developed a number of selective inhibitors of50

11β-HSD1 and are assessing their therapeutic potential.
There remains a lack of consensus on the most appropriate biomarker to

measure 11β-HSD1 activity, which include urine steroid metabolite ratios after
24 hour collections, tissue biopsies to measure activity and gene expression and
dynamic tests such as the prednisolone generation test. There are limited data55

on the latter test, which involves administration of oral prednisone and serial
blood tests for measurement of prednisone and prednisolone levels, representa-
tive of in vivo activation of this synthetic glucocorticoid. This information could
inform future study protocols.

Prednisone has an identical affinity for 11β-HSD1 as cortisone and the in-60

terconversion of oral prednisone to prednisolone has been used as a marker of
predominantly hepatic 11β-HSD1 activity (reflecting first pass metabolism)[8].
To date only a few studies have used the prednisone generation test to gain in-
sight into the potential benefits for well-being, healthy ageing and personalized
medicine: Tomlinson et al.[15] investigated the effects of 11β-HSD1 inhibition65

in different compartments with regard to adipose/fat tissue based on serum cor-
tisol and prednisolone generation in 7 healthy male volunteers; [16] looked at in
vitro (cell culture) activity (as opposed to in vivo activity as we investigate in
this contribution) while [17] and [18] looked at pharmacokinetics in 6 healthy
males with IV administration of prednisolone as opposed to prednisone.70

In vitro biochemical analysis of serum provides a method for assessing the
activity levels of these enzymes. However it is unclear how informative serum
activity data are regarding the dynamic processes occurring in vivo. Meth-
ods aiming to answer this question include in vitro-to-in vivo extrapolation
(IVIVE)[19] techniques, which have become an important tool for prediction of75

human effective dosages. However, as pointed out in [20], IVIVE in general re-
quires considerably more experimental and in silico data than alternative static
models. A more direct measure of enzymatic activity in vivo is to introduce a

111β-HSD2 is also catalyzing 11β-HSD1 activation, but less efficient
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prescribed dose of the pharmacological cortisone analogue, prednisone, and to
take time series data of the resulting blood concentrations, along with the active80

metabolite prednisolone. This paper tackles the problem of how to analyse a
data set consisting of such time series from a group of healthy volunteers.

A classical pharmacokinetic approach to dealing with such datasets is to
combine multi-compartment ordinary differential equation model with a mixed
effects statistical model of inter-person variation[21, 22]. The mean (“fixed85

effect”) and standard deviation (“random effect”) associated with the rate con-
stants representing reactions between prednisone and prednisolone then provide
measures of central tendency and variability in 11β-HSD1/2 activity through
the population under study. For such systems there is often limited access for
inputs or pertubations and the mathematical models that are generated in-90

variably include state variables with associated model parameters which are
unknown and cannot be directly measured. These limitations can cause issues
when attempting to infer or estimate unknown model parameters from sets of
observations and this can severely hinder model validation. It is therefore highly
desirable to have a formal approach to determine what additional inputs and/or95

measurements are necessary in order to reduce, or remove these limitations and
permit the derivation of models that can be used for practical purposes with
greater confidence. Structural identifiability arises in the inverse problem of
inferring from the known, or assumed, properties of a system a suitable model
structure and estimates for the corresponding rate constants and other parame-100

ters. The analysis considers the uniqueness (or otherwise) of the unknown model
parameters from the input-output structure corresponding to proposed exper-
iments to collect data for parameter estimation (under an assumption of the
availability of perfect, noise-free observations). This is an important, but often
overlooked, theoretical prerequisite to experiment design, system identification105

and parameter estimation, since estimates for unidentifiable parameters are ef-
fectively meaningless. If parameter estimates are to be used to inform about
intervention or inhibition strategies, or other critical decisions, then it is essential
that the parameters be uniquely identifiable. In this paper a structural iden-
tifiability analysis of a linear compartmental model developed to characterise110

prednisone kinetics is performed using the Laplace transform approach. This
analysis demonstrates that from a structural perspective the model is struc-
turally locally identifiable for the given system observations, thus providing
more confidence in the results obtained for subsequent numerical parameter
estimation using actual times series data for these observations.115

A “data driven” approach to analysing such a data set would be to apply
unsupervised clustering methods from the field of machine learning such as k-
means[23, 24], self organizing maps[25] and Gaussian mixture models[26], in
which the data from each participant are considered as a vector from a high
dimensional space. Clustering in the space of observed data either implicitly or120

explicitly assumes a certain metric or structure of the data. In this contribution
we will pursue a hybrid multidisciplinary approach of model based clustering
integrated with structural identifiability analysis for interpretation of parameter
relations and perturbation theory to reduce the dimensionality of the parameter
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space. The core of our contribution is based on interpretable probabilistic infer-125

ential models, aiming at grouping individuals in the space of pharmacokinetic
models based on observed data. Each group/cluster is therefore represented by
a prototypical probabilistic model with a specific pharmacokinetic parametriza-
tion. This way our proposed strategy automatically constructs different “pop-
ulation” models, that are therefore not defined based on prior knowledge or130

experimental design, but come out naturally as mixture component models of
the global latent variable mixture model. In contrast to data driven clustering
techniques, we can analyse the parameter relationships and investigate possible
or plausible physiological explanation. The investigation of further phenotypic
measurements of individuals more probable to be represented by the same clus-135

ter model might lead to new hypothesis of interesting biomarkers for future
investigation and clinical studies. This contribution therefore reveals both the
capabilities and limitations of pharmacokinetic modelling combined with pa-
rameter estimation and machine learning, demonstrated on a clinical data set
for prednisone conversion as an example of its potential broader application to140

modelling of in vivo biochemical systems in heterogeneous populations.

2. Materials and Methods

2.1. Clinical Data

The investigations were performed in 12 healthy adults (6 men and 6 women)
recruited from the local population at the Queen Elizabeth Hospital Birming-145

ham with subject characteristics summarized in Table 1. Inclusion criteria in-
cluded body mass index between 20 to 30 kg/m2, females in the follicular phase
of their menstrual cycle, and post-menopausal subjects off estrogen replacement
therapy. Exclusion criteria included pregnancy, significant past medical history
(like diabetes mellitus), ischaemic heart disease, cerebrovascular disease, respira-150

tory disease and epilepsy, use of drugs including glucocorticoids, beta-blockers,
dopamine agonists and anticoagulants. A clinical study in Birmingham was
carried out between October 2010 and March 2013. Participants arrived at the
NIHR-Wellcome Trust Clinical Research Facility in a fasted state by 8:30 AM.
Baseline blood tests were taken at approximately 9:00 AM and analysed for155

urea and electrolytes, lipids, glucose (Roche Modular System), insulin (colouri-
matric ELISA from Mercodia) in addition TSH and free T4 (Advia Centaur;
Bayer Diagnostics) were sent. 10mg of prednisone was then administered orally
with additional venous blood samples taken at 20-minute intervals over a period
of 4 hours with serum extracted and analysed for cortisol and cortisone serum160

concentrations by liquid chromatography-mass spectrometry as previously de-
scribed [27]. Observations including height, weight and blood pressure were
recorded and body composition was assessed using Dual-energy X-ray absorp-
tiometry (DXA) scannning (Hologic Discovery: version Apex 3.0, Hologic Inc).

Ethical Approval. The study was approved by the Coventry and Warwickshire165

Research Ethics Committee (REC reference no. 07/H1211/68) and the Scientific
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Table 1: Subject characteristics of the 12 healthy adults recruited from the local population.
The last column shows the maximum likelihood cluster membership estimate (see section 3).

ID
Age

(years)
Sex

BMI
(kg/m2)

Total Fat
Mass (kg)

Total Lean
Mass (kg)

Fasting Glucose
(mmol/L)

Cholesterol
(mmol/L)

Cls

1 20 Male 25.0 16.1 59.0 5.1 4.2 C2
2 69 Male 24.0 15.3 45.5 4.5 5.1 C4
3 26 Male 25.9 17.5 57.7 5.1 4.3 C2
4 57 Male 27.5 18.5 61.7 5.1 5.8 C1
5 25 Male 24.1 20.2 46.1 5.5 3.4 C1
6 54 Male 25.0 16.5 45.0 4.8 5.1 C2
7 23 Female 22.2 17.2 40.7 4.3 4.3 C3
8 64 Female 22.0 18.9 39.8 4.9 4.4 C4
9 24 Female 21.4 18.2 42.6 4.5 5.1 C4

10 50 Female 24.7 23.3 35.8 4.1 5.7 C2
11 20 Female 19.9 10.9 36.3 5.0 3.8 C4
12 60 Female 29.1 33.0 44.8 4.5 6.5 C2

Committee of the NIHR-Wellcome Trust Clinical Research Facility at the Queen
Elizabeth Hospital Birmingham.

2.2. Linear kinetics, three compartment model

S
kabs

P
kPL

kLP

L

kPex kLex

Figure 1: Three-component model
schematic. Fast processes (P 
 L)
are represented with bold arrows.

The model (Figure 1) consists of three com-170

partments, an unobserved stomach compart-
ment S in which the prednisone formulation is
initially deposited after oral ingestion, a com-
partment P representing blood concentration
(nmol/L) of the inactive metabolite prednisone,175

and a compartment L representing blood con-
centration (nmol/L) of the active metabolite
prednisolone. Reactions between the three com-
partments are assumed to have linear kinetics.
This contribution focuses on the in-depth anal-180

ysis of a linear kinetic example as a proof of
concept, paving the way for analysis with increased complexity, such as non-
linear models, in the future. Rate constants for the linear kinetics include: kabs

for absorption of oral prednisone into the blood, kPL and kLP representing 11β-
HSD1 and 11β-HSD2 activity converting the inactive metabolite to active form,185

and vice versa, and excretion constants kPex and kLex quantifying excretion from
the blood of prednisone and prednisolone respectively. The enzyme activity is
assumed to be significantly faster than either the absorption or excretion respec-
tively, justified by the almost immediate presence in the blood of prednisolone
observed experimentally.190

With all reactions assumed to have linear kinetics, the mathematical model
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therefore takes the form:

dS

dt
= −kabsS,

dP

dt
= kabsS − (kPex + kPL)P + kLPL,

dL

dt
= kPLP − (kLex + kLP)L,


(1)

with initial condition [S, P, L]> = [S0, 0, 0]> at time t = 0 with observations:y1

y2

y3

 =

0 0 0
0 1 0
0 0 1

SP
L

 . (2)

This model has six parameters, S0, kabs, kPL, kLP, kPex and kLex and can be
written more compactly in the form:

dµ

dt
= Aµ, µ(0) = [S0, 0, 0]T , (3)

y = Cµ (4)

where µ(t) = [S(t), P (t), L(t)]T , y includes the observable dimensions y2 and
y3 (corresponding to P and L) as selected by matrix C as given in Eq. 2 and
the matrix A is defined by:195

A =

−kabs 0 0
kabs −(kPex + kPL) kLP

0 kPL −(kLex + kLP)

 . (5)

The formulation Eq. (2)-(5) explicitly defines model parameter and model out-
put structure, which will be analysed in detail in the following section.

2.3. Structural Identifiability Analysis

In order to estimate the (unknown) model parameters from the data avail-
able it is necessary to include in the model output structure, which corresponds200

to the function of the model variables that is to be compared with the data.
Before actually collecting experimental data it is necessary to test those model
variables with respect to this output structure for uniqueness, since estimates
for unidentifiable parameters are meaningless. Such a structural identifiability
analysis [28] assesses whether the observed model output contains enough infor-205

mation to determine all of the model parameters uniquely [29], and relates only
to the structure of the model and output. For linear systems there are many
well-established techniques for performing a structural identifiability analysis
(for further details, and details of nonlinear approaches, see the tutorial by [30]
and other works in the same volume and the book by [31]).210

Here the uniqueness, of the unknown parameters in a general systems model
is considered with respect to the outputs. Let p ∈ Ω ⊂ Rr denote a vector

7



comprising the unknown parameters in the model, which belongs to an open
set of admissible vectors [32]. To make the parameter dependence of the model
outputs more explicit it is written y(t,p).215

Two parameter vectors p, p ∈ Ω are indistinguishable, written p ∼ p, if they
give rise to identical outputs:

y(t,p) = y(t,p) for all t ≥ 0 .

For generic p ∈ Ω, the parameter pi is locally identifiable if there is a neighbour-
hood, N , of p such that

p ∈ N , p ∼ p implies that pi = pi .

In particular, if N = Ω in the above definition then pi is globally identifiable,220

otherwise it is nonuniquely (locally) identifiable. Notice that, for a given output,
a locally identifiable parameter can take any of a distinct (countable) set of val-
ues. If there does not exist a suitable neighbourhood N then pi is unidentifiable
and, for a given output, can take an (uncountably) infinite set of values.

A system model is structurally globally identifiable (SGI) if all parameters are225

globally identifiable; it is structurally locally identifiable (SLI) if all parameters
are locally identifiable and at least one is nonuniquely identifiable; and the model
is structurally unidentifiable (SU) if at least one parameter is unidentifiable.

An established approach to identifiability analysis of linear systems is to take
the Laplace transform, reducing the initial value problem to an algebraic one.230

Denoting the Laplace transform of µ as,

µ̄(s) =

∫ ∞
0

e−stµ(t)dt, (6)

the initial value problem (3) is transformed to,

−µ(0) + sµ̄(s) = Aµ̄(s), (7)

hence,
µ̄(s) = (sI −A)−1µ(0). (8)

Defining the characteristic polynomial,

χ(s) = det(sI −A) = (s+ kabs)·
(s2 + (kPex + kPL + kLex + kLP)s+ kPexkLP + kLexkLP + kPexkLex) (9)

the solution in Laplace space for the observable components is,[
P̂ (s)

L̂(s)

]
=

[
µ̂2(s)
µ̂3(s)

]
=
S0kabs

χ(s)

[
kLP + kLex + s

kPL

]
. (10)

Expressing the solution in the form of rational functions yields:

µ̂2(s) =
Φ1s+ Φ2

s3 + Φ3s2 + Φ4s+ Φ5
(11)

µ̂3(s) =
Φ6

s3 + Φ3s2 + Φ4s+ Φ5
, (12)
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where the coefficients of the powers of s in the numerators and denominators of
Eq. (11) and (12) are termed the ”moment invariants” for these input/output
expressions and, in terms of the original model parameters, are given by:

Φ1 = S0kabs, (13)

Φ2 = S0kabs(kLP + kLex), (14)

Φ3 = kabs + kPex + kPL + kLex + kLP, (15)

Φ4 = kabs(kPex + kPL + kLex + kLP) + kPexkLP + kLexkLP + kPexkLex, (16)

Φ5 = kabs(kPexkLP + kLexkLP + kPexkLex), (17)

Φ6 = S0kabskPL. (18)

The moment invariants for the system are assumed to be measurable (known)235

through the observations, and are considered unique. The system is termed
(globally/locally) identifiable if the mapping

Φ : [S0, kabs, kPL, kLP, kPex, kLex] 7→ [Φ1,Φ2,Φ3,Φ4,Φ5,Φ6] (19)

is (globally/locally) invertible. Our system Eq. 1 is locally identifiable with
three possible solutions as follows from the six moment invariants Eq. (13)-(18):
Eq. (13) implies that the product

S0kabs = Φ1 (20)

is structurally globally identifiable (SGI). With Eq. (20) substituted in Eq. (14)
it follows that Φ2 = S0kabs(kLP + kLex) and:

Φ2 = Φ1(kLP + kLex)

⇒ the sum kLP + kLex =
Φ2

Φ1
(21)

is SGI. This substituted into Eq. (15)

Φ3 = kabs + kPex + kPL + (kLP + kLex)

leads to:

Φ3 = kabs + kPex + kPL +
Φ2

Φ1

implying the sum

kabs + kPex + kPL = Φ3 −
Φ2

Φ1
(22)

is SGI. Furthermore, substituting Eq. (20) in Eq. (18) yields:

Φ6 = S0kabskPL = Φ1kPL

⇒ kPL =
Φ6

Φ1
(23)

is SGI. Note also from Eq. (23) and Eq. (22) that the sum

kabs + kPex = Φ3 −
Φ2

Φ1
− Φ6

Φ1
(24)
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is SGI. Eq. (17)

Φ5

kabs
= kPexkLP + kLexkLP + kPexkLex

substituted into Eq. (16) leads to:

Φ4 = kabs(kPex + kPL + kLex + kLP) +
Φ5

kabs

and substituting Eq. (21) and Eq. (22) results in:

Φ4 = kabs

(
−kabs + Φ3 −

Φ2

Φ1
+

Φ2

Φ1

)
+

Φ5

kabs
,

which yields a cubic equation in kabs:

⇒ k3
abs − Φ3k

2
abs + Φ4kabs − Φ5 = 0 . (25)

From analysis using Descartes’ rule of signs it can readily be shown that Eq. 25
has three changes of signs in the coefficients, which means it has maximal three
positive (real) roots. Since the negative polynomial f(−kabs) has no change of
sign it has no negative roots. Furthermore, Eq. (17) can be written as

Φ5 = kabs(kPex(kLP + kLex) + kLexkLP) . (26)

In summary the structural identifiability analysis yields:

1) kabs is structurally locally identifiable (SLI) with up to 3 possible solutions
2) S0 is SLI (based on Eq. (20))240

3) kPex is SLI (follows from Eq. (24))
4) kLex and kLP are SLI (since kLex +kLP is SLI seen by Eq. (21) and kLexkLP

is SLI because of 1), 3), Eqs. (21) and (26))
5) kPL is SGI (see Eq. (23)).

2.4. Dimensional analysis245

Because the model is linear, the dependent variables may be scaled arbi-
trarily; choosing the initial stomach concentration S0 as the scaling factor and
denoting dimensionless variables with primes we have,

S = S0S
′, P = S0P

′, L = S0L
′. (27)

Taking as time-scale the inverse of the rate of absorption from the stomach, i.e.
t = k−1

abst
′, the problem can be written in terms of dimensionless variables as,250

dS′

dt′
= −S′,

dP ′

dt′
= S′ −

(
ηP + ρ

ε

)
P ′ + 1

εL
′,

dL′

dt′
= ρ

εP
′ −

(
ηL + 1

ε

)
L′,


(28)

with initial condition (S′, P ′, L′)> = (1, 0, 0)> at time t′ = 0. The groups
ηP = kPex/kabs and ηL = kLex/kabs are the dimensionless excretion rates of
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prednisone and prednisolone respectively, ρ = kPL/kLP is the ratio between
the rates of forward and backward conversion between the inactive and active
metabolites, and ε = kabs/kLP the ratio between the rate of stomach absorption255

and rate of backward conversion from the active to inactive metabolite. The
assumption that conversion between metabolites occurs on a faster time-scale
than absorption and excretion implies that ε� 1.

2.5. Quasi-steady approximation

While model (28) is linear and therefore can be readily solved via matrix260

exponentials, it is possible to exploit the small parameter ε to yield an even
simpler system with two fewer free parameters. Equation (28) for S′ decouples
and has the analytic solution S′(t′) = e−t

′
. Substituting for S′ and adding the

remaining equations yields the following equation for the dynamics of the total
inactive and active metabolites in the blood:265

d(P ′ + L′)

dt′
= e−t

′
− ηPP

′ − ηL′L′, (29)

with initial condition P ′ + L′ = 0 at t′ = 0.
Equation (29) is exact. The presence of the small parameter ε motivates

seeking an approximate solution with a smaller number of parameters. Ex-
amining equation (28) and retaining only terms O(1/ε) yields the quasi-steady
approximation,270

ρP ′ ≈ L′, (30)

therefore, P ′ + L′ ≈ (1 + ρ)P ′ ≈ (1 + ρ)ρ−1L′. Intuitively, this relation can be
interpreted as 11β-HSD1 activity being sufficiently rapid that the ratio between
active and inactive metabolites is approximately constant over the time-scales
associated with absorption and excretion. Substituting into equation (29) we
then have the approximate model for total metabolite dynamics,275

d(P ′ + L′)

dt′
≈ e−t

′
−
(
ηP + ρηL

1 + ρ

)
(P ′ + L′), (31)

with initial condition P ′ + L′ = 0 at t′ = 0. The analytic solution is,

(P ′ + L′)(t) ≈ 1 + ρ

ηP′ − 1 + ρ(ηL − 1)

(
e−t

′
− exp

(
−ηP + ρηL

1 + ρ
t

))
. (32)

The dimensionless metabolite concentrations can then be determined by
substituting expression (30) into (32) to give

P ′(t′) ≈ 1

ηP − 1 + ρ(ηL − 1)

(
e−t

′
− exp

(
−ηP + ρηL

1 + ρ
t′
))

, (33)

L′(t′) ≈ ρ

ηP − 1 + ρ(ηL − 1)

(
e−t

′
− exp

(
−ηP + ρηL

1 + ρ
t′
))

. (34)

The above can be derived formally as the leading order terms in a perturbation
expansion P ′(t′) = P ′0(t′) + εP ′1(t′) + . . ., L′(t′) = L′0(t′) + εL′1(t′) + . . .

11



Following re-dimensionalisation, the approximate solution of the system Eq. (1)
can be expressed in terms of the original variables and parameters as,

S(t) ≈ S0 exp(−kabst), (35)

P (t) ≈ S0kabskLP

kPLkLex + kLPkPex − kabs(kPL + kLP)

·
(

exp(−kabst)− exp

(
−kLPkPex + kPLkLex

kPL + kLP
t

))
, (36)

L(t) ≈ S0kabskPL

kPLkLex + kLPkPex − kabs(kPL + kLP)

·
(

exp(−kabst)− exp

(
−kLPkPex + kPLkLex

kPL + kLP
t

))
. (37)

The following four-parameter approximate model µ(t; w) can then be defined
for the observed variables P ≈ µ2, L ≈ µ3:

µ2(t; w) = w2 (exp(−w1t)− exp (−w1w3t)) , (38)

µ3(t; w) = w2w4 (exp(−w1t)− exp (−w1w3t)) , (39)

where the parameter vector w = [w1, w2, w3, w4]> is related to the physical
parameters by,

w1 = kabs (40)

w2 =
S0kabskLP

kPLkLex + kLPkPex − kabs(kPL + kLP)
(41)

w3 =
kLPkPex + kPLkLex

kabs(kPL + kLP)
(42)

w4 =
kPL

kLP
. (43)

In Figure 2 we see excellent agreement between the numerical solution of the
six-parameter model Eq. (1) computed with the Matlab function ode15s and280

the four parameters approximate solution given by equations (36, 37), with
parameter values kabs = 4, kPL = 90, kLP = 30, kPex = 2, kLex = 1.6, S0 = 10
yielding ε = 0.133.

2.6. Maximum Likelihood Estimation for Clustering of Pharmokokinetic Models

The data for the absorption of prednisone and conversion to prednisolone285

(abbreviated by P and L respectively) exhibit large variations in healthy indi-
viduals. Therefore, the question arises as to whether there are groups of people
with similar trajectories over the course of time and if those groups have com-
mon phenotypical characteristics.

We assume the generating process for the observed data can be reasonably
well approximated by the simplified model Eq. (38) and (39) parametrized by
w. The aim is to find parameter vectors wk corresponding to different models
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approximate solution with four parameters given by equations (36, 37), based on parameter
values kabs = 4, kPL = 90, kLP = 30, kPex = 2, kLex = 1.6, S0 = 10.

explaining k groups of conversion behaviour over the course of time, such that
prednisone (P ) and prednisolone (L) measurements in the serum of subjects
within a cluster are more similar compared to another cluster. We use Maximum
Likelihood Estimation of a Gaussian Mixture Model explained in the following.
The data set D = {Dj}Nj=1 is composed of N individuals. For each participant

j we assume a collection Dj = {yjc(tjm)}o
j
c
m=1 of measurements of P and L at

time points tjm. Here yjc with c ∈ {2, 3} corresponds to noisy measurements
of P and L, which are modelled by components µc of the dynamical system
M approximated by Eq. (38) and (39). The number of available observations
of substance c and subject j is denoted by ojc and may vary across subjects.
We assume that the observations from substances c are normally distributed
with mean component µc and substance related variance σ2

c . Therefore, the
probability of a measurement yjc(t

j
m) being produced by component µc(t

j
m,wk)

is

P (yjc(t
j
m)|wk) = N (yjc(t

j
m);µc(t

j
m,wk), σ2

c ) (44)

Figure 3 illustrates our machine learning model and assumptions on the data.290

The curves denote the cluster model concentrations of prednisone µ2(t; wk) (red)
and prednisolone µ3(t; wk) (blue), whereas differently shaped markers represent
individual measurements from participants for both compounds at different time
points yjc(t

j
m) respectively. The solid black line illustrates the normally dis-

tributed obervations yjc=3(200) centered at µc=3(200,wk) with variance σ2
c=3.295
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Figure 3: Illustration of the data, variables and assumptions to train our cluster algorithm.
P and L represent the compartments for blood concentration of prednisone and prednisolone
respectively. The markers show example data from subjects with ID 1, 3 and 10 (see table 1).

Since measurements of different individuals are considered independent we
write the likelihood of the data given parameters Ψ = {{wk, P (k)}Kk=1, {σc}} as

P (D|Ψ) =
∏N
j=1 P̃ (Dj |Ψ). We maximize the log likelihood:

logP (D|Ψ) =

N∑
j=1

log P̃ (Dj |Ψ) (45)

using a mixture model

P̃ (Dj |Ψ) =

K∑
k=1

Pk · P̃ (Dj |Ψk) (46)

with priors Pk and

P̃ (Dj |Ψk) =

3∏
c=2

 ojc∏
m=1

P (yjc(t
j
m)|wk)

1/ojc

. (47)

We weight each observation to account for the potentially varying number of
successful measurements ojc per participant.

For the EM algorithm we assume that the latent Bernoulli random indica-
tor variable Zjk is 1 if the data collection Dj was generated from the model300

parametrized by wk and 0 otherwise. The complete log-likelihood is given by

L({Zjk}, D) =

N∑
j=1

K∑
k=1

Zjk log(P̃ (Dj |Ψk)Pk) . (48)

The maximum likelihood estimate (MLE) is determined by marginalizing the
likelihood of the observed data by iterating over 2 steps:
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E: Since the complete likelihood is not known we calculate the expected value
of the log likelihood function with respect to the conditional distribution
of Z given D given the current estimate of the parameters Ψ(t):

Q(Ψ|Ψ(t)) =

N∑
j=1

K∑
k=1

E[Zjk] · log(P̃ (Dj |Ψk)Pk)

Q(Ψ|Ψ(t)) =

N∑
j=1

K∑
k=1

γ
(t)
jk · log(P̃ (Dj |Ψk)Pk) with (49)

γ
(t)
jk =

P̃ (Dj |Ψ(t)
k )P

(t)
k∑

l P̃ (Dj |Ψ(t)
l )P

(t)
l

. (50)

M: Find the parameters maximizing the following quantity:

Ψ(t+1) = arg max
Ψ

Q(Ψ|Ψ(t)) (51)

3. Results

We performed experiments varying the number of clusters from 2 to 6 possi-305

ble models to represent the time course of prednisone and prednisolone for the
respective number of groups of subjects. For each number of clusters we use
leave-one-out cross validation of the 12 people with 5 independent repetitions
resulting in 60 clusterings for each experiment. The algorithm is always initial-
ized with individual fits of randomly chosen training subjects corresponding to310

the number of clusters assumed. The resulting median log-likelihood Eq. (48)
and 50% IQR versus the number of clusters is shown in the boxplot in Fig-
ure 4. Incrementing the number of clusters up to 4 increases the performance
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Figure 4: Median log-likelihood and 50% IQR boxplot versus the number of clusters used for
the “elbow” method to determine the number of clusters to model the data.

considerably, after that adding another cluster does not improve the clustering
significantly. Based on this “elbow criterion” [33] we further analyze 4 class315

clustering results in detail.
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For the investigation of the models and parameters we first compute the
probabilities Pij by counting how often two subjects i and j appeared together
in the same cluster throughout the 60 independent runs, assuming 4 clusters. We
define 1− Pij as the pairwise distance and perform complete linkage clustering320

as shown in the dendrogram Figure 5. The cut-off value of 4 clusters is used
0.
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Figure 5: Complete linkage clustering based on pairwise probabilities Pij of perticipant IDi
and IDj appearing together in the same cluster throughout the experiment assuming 4 models.

as cluster assignment Zjk to initialize our EM procedure once more to find the
final model parameters for detailed investigation. In this last experiment we
initialize by a least squares individual group fit based on 5 repetitions of random
parameters and the resulting final models are shown in Figure 6.325

4. Discussion

The final trained cluster models are very robust with respect to the random
initialization in the training based on the given initial 4 cluster assignment of
participants extracted from the dendrogram Figure 5. Therefore, only the av-
erage parameters cluster models are shown in Figure 6. Cluster 1 resembles330

the slowest absorption of prednisone and also the least growing concentration
of prednisolone in the blood. The second slowest absorption rate is captured
by cluster 2. People assigned to that cluster reach higher levels of prednisolone.
People in the fourth cluster reach higher concentrations of prednisolone 20 min-
utes after administration of prednisone and after 100 minutes it starts to de-335

crease. The third cluster containing only subject ID7 resembles an outlier from
the data set. The conversion pattern of this subject is very different compared
to all other individuals in this data set.

With the knowledge about the functional relationships of the parameters
from the identifiability analysis we can investigate the trained parameters and340

investigate possible explanations for the behaviour. In order to view the re-
lationship for the original parameters (Figure 1) we solve the linear equation
system Eq. (40)-(43) for each of the cluster models. The mean and standard
deviation of those relationships for each cluster based on the 5 random initial-
izations is shown in Table 2. Very small standard variations quantify the above345
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Figure 6: Four learned models of prednisone (P; dashed lines) and prednisolone (L; solid lines)
blood concentrations and the actual measurements of the 12 subjects (Table 1).

statement that the final cluster models are very robust with respect to random
initialization. The excretions of prednisolone kLex and prednisone kPex ex-

Table 2: Relationship of the original parameters for the 4 cluster models shown in Figure 6.
We show means and standard deviations based on 5 random initializations.

kLex = a · kPex + b
C S0 · kabs = kPL = a b

1 3.74362 (0.00976) 5.02783(0.00614) · kLP −0.19889 (0.00024) 0.00480 (0.00005)

2 5.47217 (0.00744) 6.00644(0.00293) · kLP −0.16649 (0.00008) 0.00391 (0.00005)

4 21.34430 (0.01347) 7.40155(0.00212) · kLP −0.13511 (0.00004) 0.01675 (0.00999)

3 34.35457 (0.02879) 12.56240(0.00352) ·kLP −0.07960 (0.00002) 0.01116 (0.00021)

hibit a linear antiproportional relationship: the more prednisone is excreted the
lower the rate for prednisolone. Only a small interval of kPex values is possibly
dependent on the value of b where kLex is larger (see Figure 7). The clusters350

C1, C2, C4 to C3 exhibit increasing absorption rate S0 · kabs of prednisone into
the blood as can be seen from Table 2. Prednisone is converted to prednisolone
by a factor of 5 times faster than that for cluster 1. For the other clusters this
factor is increasing.

After estimating the final cluster assignment we got back to our medical
expert asking for additional information about the participants to investigate
characteristics within the same cluster. Of course, due to the small sample size
the following analysis is only exploratory and we cannot make strong claims,
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but the investigation might lead to new hypothesis and provide some evidence
for interesting measurements for future clinical studies. Therefore, we compute
the Area Under the Curve (AUC) of prednisolone conversion of each cluster
model k:

AUC =

∫ t=240

t=0

µ3(t; wk) (52)

and weight it with the trained mixture component γjk for each participant j355

resulting in an individual AUC value dependent on the membership in each clus-
ter. We test the association between these AUC values and measurement of the
additional clinical satellite data for each individual. First we observe that there
are no strong correlations between the age or BMI in general, with a p-value of
0.45 and 0.128 respectively. Cortisol on the other hand is correlated to the AUC360

and exhibits a p-value of 0.006, which is not very suprising since prednisolone
is a synthetic derivative of cortisol processed by the same enzymes as modeled
here. Since the hormonal activity of female and male population is different we
furthermore investigate the correlation dividing the groups by gender. There
is some indication that specific measurements could be interesting as subject365

for further investigation, for example we observe a p-value of 0.029 for the BMI
within men, while it is 0.47 for the female participants. The investigation of
the phenotypic measurements of individuals that are more probable to be rep-
resented by the same cluster model might therefore lead to new hypothesis of
potentially interesting biomarkers for future investigation and clinical studies.370

5. Conclusions and Future Work

The core of our contribution is based on interpretable probabilistic inferen-
tial models aiming at clustering pharmacokinetic models for the absorption of
prednisone in the blood. The collection of all individual blood measurements is
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modelled as a probabilistic latent variable model with pharmacokinetic models375

playing the role of mixture components. Therefore, each group or cluster is
represented by a prototypical probabilistic model with a specific pharmacoki-
netic parametrization. This way our proposed strategy automatically constructs
different “population” models, that are therefore not defined based on prior
knowledge or experimental design, but come out naturally as mixture compo-380

nent models of the global latent variable mixture model. In contrast to solely
data-driven clustering techniques, we can analyse the parameter relationships
and investigate possible or plausible physiological explanation. The strategy
is suitable for sparse measurements, which is especially beneficial if these are
collected by an invasive procedure. Our approach is designed for time series385

measurements potentially taken at different time points and is demonstrated
on a clinical data set investigating the in vivo glucocorticoid activation by 11β-
HSD1/2 activity in healthy adults.

The model was thoroughly studied by identifiability analysis and then ap-
proximated using the perturbation method. The latent variable mixture of390

pharmacokinetic models is trained by an Expectation Maximization strategy,
which is a widely used efficient natural choice for the estimation of such latent
variable models. We achieved robust results for 4 prototypical cluster models re-
sembling the prednisone/prednisolone concentration in the blood over the course
of 240 minutes after admission of the drug for the 12 subjects in the data set.395

We observed a weak correlation of the AUC of prednisolone concentration in the
blood with resepct to the cluster models and the BMI of male suspects, which
does not seem to be immanent for the female participants. The investigation
of further phenotypic measurements of individuals more probable to be repre-
sented by the same cluster model might lead to new hypothesis of interesting400

biomarkers for future investigation and clinical studies. With the availability
of more data in the future the approach can be extended to non-linear phar-
macokinetic models, while this contribution serves as a proof of concept. Our
proposal emphasise the potential of exploratory analysis of partially observed
time series data by combining pharmacokinetics, structural identifiability anal-405

ysis, dimensional analysis/perturbation theory with machine learning.
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