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Incorporating Privileged Information Through
Metric Learning

Shereen Fouad, Peter Tino, Somak Raychaudhury, and Petra Schneider

Abstract—In some pattern analysis problems, there
exists expert knowledge, in addition to the original data
involved in the classification process. Vast majority of
existing approaches simply ignore such auxiliary (priv-
ileged) knowledge. Recently a new paradigm - Learning
Using Privileged Information was introduced in the
framework of SVM+. This approach is formulated for
binary classification and, as typical for many kernel
based methods, can scale unfavorably with the number
of training examples. While speeding-up training meth-
ods and extensions of SVM+ to multi-class problems
are possible, In this contribution we present a more
direct novel methodology for incorporation of valuable
privileged knowledge in the model construction phase,
primarily formulated In the framework of Generalized
Matrix Learning Vector Quantization. This is done by
changing the global metric in the input space, based on
distance relations revealed by the privileged informa-
tion. Hence, unlike in SVM+, any convenient classifier
can be used after such metric modification, bringing
more flexibility to the problem of incorporating priv-
ileged information during the training. Experiments
demonstrate that manipulation of input space metric
based on privileged data improves classification accu-
racy. Moreover, our methods can achieve competitive
performance against the SVM+ formulations.

Index Terms—Learning Using Privileged Infor-
mation (LUPI), Generalized Matrix Learning Vec-
tor Quantization (GMLVQ), Distance Metric Learn-
ing (DML), Information Theoretic Metric Learning
(ITML).

I. Introduction

TRADITIONALLY in classification learning problems
the learner is given a labeled training set T of

examples xi ∈ X from a data space X and aims to find a
decision function f (preferably with a small generalization
error) over the domain X. Although the main data set
plays an important role when designing a classifier, ad-
ditional privileged knowledge (represented through ‘privi-
leged space’ X∗) may contain substantial information that
might be used when constructing f . Designing classifiers
that incorporate privileged knowledge along with the origi-
nal data set is an important and challenging research issue.
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Recently, [1], [2] integrated privileged knowledge in Sup-
port Vector Machine (SVM) classifier via a new learning
paradigm called Learning Using Privileged Information
(LUPI). In the training stage, along with training input
xi ∈ X, a classifier may be given some additional infor-
mation x∗

i ∈ X∗ about xi. Such additional (privileged) in-
formation, however, will not be available in the test phase,
where labels must be estimated using the trained model
for previously unseen inputs x ∈ X only (without x∗). In
the SVM context, the additional information is used to
estimate a slack variable model in SVM+. However,

1) SVM classifiers use decision hyperplane1 and are
inherently constructed to deal with binary classi-
fication problems. Even though there have been
developments in extending SVM to multi-class sce-
narios (e.g. [3]), such formulations do not naturally
represent the multi-class nature of the data in a
single model.

2) It may be difficult to interpret how exactly the addi-
tional information influences the resulting classifier
through the slack model in SVM+.

3) SVM+ training can be computationally expensive
(even impractical for large-scale data sets).

This paper proposes a completely different approach to
learning with privileged information through metric learn-
ing in prototype based models, particularly in the Learning
Vector Quantization (LVQ) frameworks. LVQ models lend
themselves naturally to multi-class problems, are more
amenable to interpretations and can be constructed at a
smaller computational cost.

In this paper we extend a recently proposed modifica-
tion of LVQ, termed Generalized Matrix LVQ (GMLVQ)
[4], [5], to the case of additional (privileged) information
available only during the training phase. In GMLVQ the
prototype positions, as well as the (global) metric in the
data space X can be modified.

The main idea behind our approach is the modification
of the metric in the original data space X based in data
proximity ‘hints’ obtained from the privileged information
space X∗. We present two approaches for metric manipu-
lation in X based on X∗. We also introduce two methods
for incorporating the new metric in X in the context of
prototype based classification.

One of the main advantages of our approach is that,
unlike in the SVM+ formulation [1], [2], the privileged
information is used to manipulate the metric in the input

1in the original, or feature spaces
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space and thus any convenient classifier can be subse-
quently used, bringing more flexibility to the problem of
incorporating privileged information during the training.

We experimentally study the performance of our general
methodology and compare it with the SVM+ model [1]. In
addition, we illustrate its advantages in galaxy morphology
classification using a large scale astronomical data set (on
which application of the standard SVM based methodol-
ogy would be computationally costly2).

This paper has the following organization: Section II
gives the background and briefly describes previous meth-
ods related to this study. Sections III and IV introduce
novel approaches for incorporation of privileged knowledge
in prototype based classification. Experimental results
presented in section VI are discussed in section VII.
Section VIII concludes the study by summarizing the key
contributions.

II. Background and Related Work

A. Learning Using Privileged Information (LUPI)

Learning Using Privileged Information (LUPI) frame-
work [1], [2] aims to improve learning in the presence of an
additional (privileged) information x∗ ∈ X∗ about train-
ing examples x ∈ X, where the privileged information will
not be available at the test stage, For example, when clas-
sifying proteins based on their amino-acid sequences, pro-
tein 3D-structures can be used as privileged information In
[1]. Another example is time series prediction, where future
events (present in the training set, but not available in the
test phase) form privileged information. The incorporation
of the privileged information into training was formulated
within the Support Vector Machine (SVM) framework, in
particular, [1], [2] present a new learning scheme for SVM
based on SVM+. In addition, several approaches have been
introduced for incorporation of privileged information in
the unsupervised learning context, e.g. [7].

The basic process of the original supervised Support
Vector Machine (SVM) model starts with mapping the
training data from the original input space into a higher
dimensional feature space, by using kernels, so that a lin-
early non separable problem is transformed into a linearly
separable one. Within the feature space, the hyperplane
with maximum margin is constructed to separate two
classes in case of binary classification. In order to find the
hyperplane, SVM model presents an objective function in
a dual form and employs quadratic programming to solve
the optimization problem. If the training set is not linearly
separable, the standard SVM model allows the decision
margin to make a few “mistakes” represented by slack
variables (ξi).

In the standard SVM classification [8] we are given a set
of (input,label) pairs, {(x1, y1), ...., (xn, yn)}, xi ∈ X, yi ∈
{−1, 1} , i = 1, ..., n, generated according to a fixed (but
unknown) probability measure P (x, y). The data is used

2There have been developments in the SVM literature aiming to
handle large data sets (e.g.[6] ). However, direct transformation of
the LUPI framework to such formulations would be non-trivial

to estimate a decision function h(zi) = 〈w, zi〉 + b, where
〈·, ·〉 represents the dot product and w, b are solutions of:

min
w,b,ξi

1

2
||w||22 + B

n
∑

i=1

ξi under the constraints,

∀1 ≤ i ≤ n, yi(〈w, zi〉 + b) ≥ 1 − ξi, ξi ≥ 0,

where B ≥ 0 is a hyper-parameter. Training inputs xi

are (implicitly) transformed to their feature space images
zi through the use of ‘kernel trick’: Given a kernel K,
K(xi, xj) represents a dot product 〈zi, zj〉 in the corre-
sponding Hilbert space.

In the LUPI framework additional information x∗
i ∈ X∗

may be given about a training example xi ∈ X during
the training stage. However, such information will not be
available (i.e. hidden) at the test stage. In the SVM+
model we are given a set of training triplets,

{(x1, x
∗
1, y1), ...., (xn, x∗

n, yn)}xi ∈ X,x∗
i ∈ X∗,

yi ∈ {−1, 1} , i = 1, ..., n,

generated according to a fixed (unknown) probability mea-
sure P (x, x∗, y). The training triplets are used to estimate
two linear functions concurrently:

1) The decision function h(zi) = 〈w, zi〉 + b
2) A correcting function (i.e. slack function) ξi =

〈w∗, z∗i 〉 + b∗, where w∗ , w, b and b∗ are the
solutions of

min
w,b,w∗,b∗

1

2
||w||22 +

ρ

2
||w∗||22 + B

n
∑

i=1

(〈w∗, z∗i 〉 + b∗)

under the constraints, ∀1 ≤ i ≤ n,

yi(〈w, zi〉+b) ≥ 1−(〈w∗, z∗i 〉+b∗), (〈w∗, z∗i 〉+b∗) ≥ 0

In SVM+ model correcting functions control the slack
variables based on the privileged information. The ob-
jective function of SVM+ contains two hyper-parameters
B, ρ > 0. Training triplets (x1, x

∗
1, y1), ......, (xn, x∗

n, yn) are
transformed into the triplets (z1, z

∗
1 , y1), ......, (zn, z∗n, yn)

by mapping vectors x ∈ X into z ∈ Z and x∗ ∈ X∗

into z∗ ∈ Z∗, where Z and Z∗ are the corresponding
feature spaces endowed with inner products 〈zi, zj〉 =
K(xi, xj), 〈z∗i , z

∗
j 〉 = K∗(x∗

i , x
∗
j ) defined by kernels K and

K∗.

In [1] another related approach, dSVM+, is introduced.
In dSVM+ the space of admissible non-negative correct-
ing functions is constrained to a 1-dimensional space (d-
space). Privileged information x∗

i is transformed into so-
called deviation (scalar) values di and the SVM+ method
is applied to training triplets (xi, di, yi). For more details
see [1].

It has been experimentally verified that classifiers
trained with both privileged information x∗

i ∈ X∗ and
original data xi ∈ X can improve over classifiers fitted on
xi ∈ X only [1].
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B. Prototype Based Learning Algorithms

Learning Vector Quantization (LVQ) [9] constitutes a
family of supervised learning algorithms which are widely
used for the classification of potentially high dimen-
sional data. The classifiers are parametrized by a set of
prototypical-vectors which represent the classes in the
input space. In the working phase, an unknown sample is
assigned to the class represented by the closest prototype.
Kohonen introduced the original LVQ1 scheme in 1986
[10] which uses Hebbian online learning to adapt the
prototypes to the training data. Meanwhile, researchers
proposed numerous modifications of the basic learning
scheme. Recent variations can be derived from an explicit
cost function [11] or allow for the incorporation of adaptive
distance measures [12], [4], [5].

Assume training data (xi, yi) ∈ R
m × {1, ...,K}, i =

1, 2, ..., n is given, m denoting the data dimensionality and
K is number of different classes. A typical LVQ network
consists of L prototypes wq ∈ R

m, q = 1, 2, 3, ..., L,
characterized by their location in the input space and
their class label c(wq) ∈ {1, ...,K}. Obviously, at least one
prototype per class needs to be included in the model. The
overall number of prototypes is a model hyper-parameter
optimized e.g. in a data driven manner through a val-
idation process. Given the (squared) Euclidean distance
d(x,w) = (x − w)T (x − w) in R

m between input vectors
and prototypes, classification is based on a winner-takes-
all scheme: a data point xi ∈ R

m is assigned to the label
c(wj) of prototype wj with d(x,wj) < d(x,wq),∀j 6= q.
Each prototype wj with class label c(wj) will represent a
receptive field in the input space3. Points in the receptive
field of prototype wj will be assigned class c(wj) by the
LVQ model. The goal of learning is to adapt prototypes
automatically such that the distances between data points
of class c ∈ {1, ...,K} and the corresponding prototypes
with label c (to which the data belong) is minimized. In
the training phase for each data point xi with class label
c(xi), the closest prototype with the same label is rewarded
by pushing it closer to the training input; the closest pro-
totype with different label is penalized by moving it away
of the pattern xi. In Generalized LVQ (GLVQ) algorithm
[11], which is an expansion of the basic LVQ, prototypes
adaptation is derived by minimizing of an explicit cost
function with a stochastic gradient descent procedure.
However, GLVQ suffers from the problem that the clas-
sification is based on a predefined Euclidean metric. The
squared Euclidean distance can only be useful, if the data
displays a Euclidean characteristic. This is particularly
problematic in case of high-dimensional, heterogeneous
data sets, where noise accumulates the data or different
scaling and correlations of dimensions can be observed.

Recently, special attention was paid to schemes for
manipulating the input space metric used to quantify
‘similarity’ between prototypes and feature vectors [12],
[4]. Generalized Relevance LVQ (GRLVQ) [12] uses an

3The receptive field of prototype w is defined as the set of points
in the input space which pick this prototype as their winner.

adaptive diagonal matrix acting as a metric tensor defining
the distance in the input space. The distance is a weighted
squared Euclidean metric dπ(x,w) =

∑

i πi(xi − wi)
2 with

π ∈ R
m, πi ≥ 0,

∑

i πi = 1. During classification
the parameters πi weight the input dimensions according
to their relevance, which helps to prune out ‘irrelevant’
dimensions (with respect to the classification task). An
empirical and theoretical comparison of GRLVQ with
SVM [13] has shown that the two model classes share
several crucial advantages, such as convergence to global
optimum4, interpretation as large margin optimizers for
which dimensionality independent generalization bounds
exist and formulation of learning in a feature space defined
by non-linear kernels.

The diagonal metric tensor of GRLVQ was further
extended in [4], [5] to a fully adaptive metric tensor
accounting for relevance factors as well as rotations of
coordinate axis.

C. Generalized Matrix LVQ (GMLVQ)

Generalized Matrix LVQ (GMLVQ, see [4], [5]) is a
new heuristic extension of the GRLVQ [12] with a full
(e.g. not only diagonal elements) matrix tensor based
distance measure. Matrix learning in the GMLVQ allows
to account for different scalings and pairwise correlations
between different features. Given an (m × m) positive
definite matrix Λ ≻ 05, the algorithm uses a generalized
form of the squared Euclidean distance

dΛ(xi, w) = (xi − w)T Λ(xi − w). (1)

Positive definiteness of Λ can be achieved by substitut-
ing Λ = ΩT Ω, where Ω ∈ R

m × m is a full-rank matrix6.
Furthermore, Λ needs to be normalized after each learning
step to prevent the algorithm from degeneration. Here,
we set

∑

i Λii = 1 to fix the sum of diagonal elements
(eigenvalues) to be constant.

The model is trained in an on-line-learning manner,
minimizing the cost function

fGMLV Q =
n

∑

i=1

φ(µΛ(xi)) where

µΛ(xi) =
dΛ(xi, w

+) − dΛ(xi, w
−)

dΛ(xi, w+) + dΛ(xi, w−)
(2)

based on the steepest descent method. Φ is a monotonic
function, e.g. the logistic function or the identity φ(ℓ) = ℓ,
dΛ(xi, w

+) is the distance of data point xi from the closest
prototype with the same class label c(w+) = c(xi) = yi,
and dΛ(xi, w

−) is the distance to xi from the closest
prototype w− with a different class label than yi. Note
that the numerator is smaller than 0 if the classification
of the data point is correct. The smaller the numerator, the

4if GRLVQ is combined with the Neural Gas model
5 We use the notation A ≻ 0 and A � 0 to signify that A is

positive definite and positive semi-definite, respectively.
6 In some cases parts of the data relevant for classification can lie

in a linear subspace of R
m, In such situations Ω (and thus Λ) can

be lower rank.
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greater the ‘security’7 of classification, i.e. the difference
of the distance from a correct and wrong prototype. The
denominator scales the argument of φ such that it falls in
the interval [−1, 1].

Hebbian-like on-line updates are implemented for pro-
totypes w+, w− along with the metric parameter Ω: w+ is
pushed towards the training instance xi and w− is pushed
away from it. The derivatives of fGMLV Q with respect to
the prototypes w+, w− and the metric parameter Ω yield
the following adaptation rules [4], [5].

∆w+ = +ǫw · φ′(µΛ(xi)) · γ
+ · Λ · (xi − w+),

∆w− = −ǫw · φ′(µΛ(xi)) · γ
− · Λ · (xi − w−),

∆Ω = −ǫΩφ′(µΛ(xi))
[

γ+ · (Ω(xi − w+)(xi − w+)T )

−γ− · (Ω(xi − w−)(xi − w−)T )
]

,

where

γ+ =
4dΛ(xi, w

−)

(dΛ(xi, w+) + dΛ(xi, w−))2
,

γ− =
4dΛ(xi, w

+)

(dΛ(xi, w+) + dΛ(xi, w−))2
,

φ′ is the derivative of φ and ǫw, ǫΩ are positive learning
rates for prototypes and metric, respectively. For more
details, please consult [4], [5].

D. Distance Metric Learning (DML)

Over the last few years, there has been considerable
research on Distance Metric Learning (DML) algorithms
which aim to optimize a target distance for a given set
of data points under various types of constraints (given in
the form of side information) [14], [15], [16], [17], [18], [19],
[20], [21].

In the context of supervised metric learning, the dis-
tance metric is learned from training data associated with
explicit class labels and pairwise similarity constraints.
Such constraints indicate that points in the same class
should have smaller distances to each other than points in
different classes (e.g. Neighbourhood Components Anal-
ysis [14], Large Margin Nearest Neighbor [15]). In [22]
generalization error of a regularized supervised DML
formulation has been investigated - under appropriate
constraints the generalization error is independent from
the data dimensionality. In a different research stream
[23], the metric is estimated within the Empirical Risk
Minimization (ERM) framework. The learnt metric is
consistent in the asymptotic regime of training set size
approaching infinity. This work was further extended in
[24] by proposing a constrained ERM DML framework.
Generalization bound proved in [24] demonstrates the
importance of the employed constraints.

7Note that, the ‘security’ of classification characterizes the hypoth-
esis margin of the classifier. The larger this margin, the more robust
is the classification of a data pattern with respect to noise in the
input or function parameters [4], [12]

Supervised subspace selection approaches can be viewed
as ‘appropriately’ changing the input features and metric
in order to enhance the classification performance, e.g.
Fisher’s Linear Discriminant Analysis (FLDA) [25]. In
multi-class classification, multi-class FLDA may merge
classes which are close in the original data space. This
problem has been addressed in [26]. Assuming (as in
FLDA) that the classes are Gaussian-distributed with the
same covariance matrix, the algorithm maximizes the ge-
ometric mean (rather than the arithmetic mean implicitly
used in FLDA) of the (normalized) Kullback-Leibler (KL)
divergences between the projected class distributions. The
requirement of the same covariance matrix shared by
all classes has been relaxed in the kernelized version
of Max-Min Distance Analysis (MMDA) approach [27].
The method separates all class pairs by maximizing the
minimum distance between the projected class pairs.

In semi-supervised metric learning, the distance metric
is learnt from a weaker supervisory information, such as
pairwise similarity constraints and partially available or
completely absent class labels. The similarity constraints
describe pairs of points that should, or should not be
grouped together (e.g. Relevance Component Analysis
[17], Discriminant Component Analysis [18])).

In the context of supervised clustering, the algorithm
presented in [19] learns a metric using a semi-definite
programming through minimizing the sum of squared
distances between similarly labeled examples, while im-
posing a lower bound on the distances between examples
with different labels. However, the algorithm suffers from
high computational cost especially in the case of high-
dimensional data.

In this research we will utilize an exiting supervised
DML method, namely, Information Theoretic Metric
Learning (ITML) [16] to learn a Mahalanobis distance
metric for the original space X using a supervisory infor-
mation (pairwise similarity constraints and class labels)
extracted from the privileged space X∗.

In ITML [16] given a set of n points {x1, ..., xn}, xi ∈
R

m, one learns a positive definite matrix A ≻ 0 defining
the the (squared) Mahalanobis distance dA (xi, xj) =

(xi − xj)
T

A (xi − xj), subject to categorical pairwise sim-
ilarity information on the data points that should be
preserved. In semi-supervised multi-class settings, the con-
straints are taken directly from the provided labels: points
in the same class are constrained to be ’similar’, and points
in different classes are constrained to be ’dis-similar’.
Consider distance bounds l < u. Then the new distance on
the data space should be as close to the squared Euclidean
metric as possible, subject to

dA (xi, xj) ≤ l, if xi, xj are ’similar’, and

dA (xi, xj) ≥ u, if xi, xj are ’dis-similar’.

The closeness relation between the original Euclidean met-
ric and the new one is measured through K-L divergence
between the multivariate zero-mean Gaussians having I

and A as precision matrices.
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In this research we adopt ITML [16] as a supervised
DML method because it can naturally incorporate prior
distances and can be solved through efficient optimization
avoiding costly computations (e.g. semi-definite program-
ming as in [19])

III. LUPI in the Prototype Based Model
GMLVQ

This section presents two metric learning approaches
of incorporating Privileged information in the GMLVQ’s
learning phase. In the following algorithms data metric
U is learnt in the original space informed by inter point
distances in the privileged space.

A. Metric Fusion (MF) Approach

We propose a method that incorporates the distance
structure in the privileged space X∗ into the metric in the
original space X. Assume that we are given a global metric
tensor M on space X which parametrizes the (squared)
Mahalanobis distance

dM (xi, xj) = (xi − xj)
T M(xi − xj), (xi, xj) ∈ X. (3)

We assume that the data set is ordered such that the first
p ≤ n data items have privileged information. The sum
of pairwise squared distances of the training points with
privileged information is then equal to

D =

p
∑

i<j

dM (xi, xj). (4)

Assume further that we are given a global metric ten-
sor M∗ on space X∗ which parametrizes the (squared)
Mahalanobis distance

dM∗(x∗
i , x

∗
j ) = (x∗

i − x∗
j )

T M∗(x∗
i − x∗

j ), (x∗
i , x

∗
j ) ∈ X∗.

(5)
The sum of pairwise squared distances of the training
points in X∗ is then equal to

D∗ =

p
∑

i<j

dM∗(x∗
i , x

∗
j ). (6)

In order to be able to directly compare the distances in
X and X∗, we need to rescale the distances in X∗ by a
scaling factor α that levels out the difference in scales of
D and D∗:

α = arg min
a>0

[D − aD∗]
2
, leading to α = D

D∗
.

The proposed distance metric learning is formulated as the
following optimization problem: Find a full-rank matrix U

of size m × m, parameterizing a positive-definite matrix
C = UT U , that minimizes the cost function

I(C) =
2γ

p(p − 1)

p
∑

i<j

(

dC (xi, xj) − α dM∗

(

x∗
i , x

∗
j

))2

+
2(1 − γ)

n(n − 1)

n
∑

i<j

(dC (xi, xj) − dM (xi, xj))
2
. (7)

where γ ∈ [0, 1] is constant that determines the ‘impor-
tance’ of the auxiliary metric. There are two forces at play
in the above expression: One pulls the new metric dC in
the direction of the metric dM∗ in the privileged space X∗,
the other one prevents dC from deviating too far from
the distance dM in the original space X. Note that the
normalization terms 2/(p(p− 1)) and 2/(n(n− 1)) appear
since not all training items have an associated privileged
information (only p ≤ n out of n training points).

The cost function I(UT U) is quartic (degree 4) in U ,
which means that a gradient based optimization of I
can get stuck in a local optimum. However, for uncon-
strained C, I(C) is quadratic in C. We will initialize
gradient descent optimization of I(UT U) by first finding
the unconstrained minimizer of I(C) analytically, and
then projecting it to the space of positive definite matrices
parametrized by UT U . In order to find C minimizing
I(C) we first differentiate

dI

dC
=

4γ

p(p − 1)

p
∑

i<j

[

(xi − xj)
T C(xi − xj)

−α(x∗
i − x∗

j )
T M∗(x∗

i − x∗
j )

]

· (xi − xj)(xi − xj)
T

+
4(1 − γ)

n(n − 1)

n
∑

i<j

[

(xi − xj)
T C(xi − xj)−

(xi − xj)
T M(xi − xj)

]

· (xi − xj)(xi − xj)
T . (8)

Denoting the rank-1 matrix (xi − xj)(xi − xj)
T by J (i,j),

the optimal C is the solution of

4γ

p(p − 1)

p
∑

i<j

(xi − xj)
T C(xi − xj)J

(i,j)

+
4(1 − γ)

n(n − 1)

n
∑

i<j

(xi − xj)
T C(xi − xj)J

(i,j)

=
4γ

p(p − 1)

p
∑

i<j

α(x∗
i − x∗

j )
T M∗(x∗

i − x∗
j ) J (i,j)

+
4(1 − γ)

n(n − 1)

n
∑

i<j

(xi − xj)
T M(xi − xj) J (i,j). (9)

Note that

(xi − xj)
T C(xi − xj)J

(i,j)

= [(xi − xj)
T C(xi − xj)](xi − xj)(xi − xj)

T

= (xi − xj)(xi − xj)
T C(xi − xj)(xi − xj)

T

= J (i,j)CJ (i,j).

Therefore, denoting the RHS of (9) by H, and introducing
further notation

P (i,j) = 2

√

γ

p(p − 1)
J (i,j), N (i,j) = 2

√

1 − γ

n(n − 1)
J (i,j),

we have
p

∑

i<j

P (i,j)CP (i,j) +

n
∑

i<j

N (i,j)CN (i,j) = H. (10)
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The solution C of the encapsulating sum system (10) can
be written as

Vec(C) =





p
∑

i<j

P (i,j)T ⊗

P (i,j)

+

n
∑

i<j

N (i,j)T ⊗

N (i,j)





−1

· Vec(H).

where
⊗

denotes the Kronecker product and Vec is the
vectorization operator on matrices.

We found that the unconstrained solution C was typi-
cally already ‘close’ to being symmetric positive-definite.
The L2 projection of C onto the space of matrices
parametrized by UT U can be found by minimizing

U0 = arg min
U

||UT U − C||2,

which is achieved e.g. by first finding a 2-norm positive
approximant G of C [28] and then decomposing the
positive definite matrix G ≻ 0 into the product UT

0 U0

(Cholesky decomposition).
The projection U0 then initializes a gradient descent

algorithm

U t+1 = U t − η ·
dI(UT

t U t)

dU t

. (11)

where 0 ≤ η ≤ 1 is a positive step size parameter8 and

dI(UT U)

dU
=

8γ

p(p − 1)

p
∑

i<j

[

(xi − xj)
T UT U(xi − xj)

−α(x∗
i − x∗

j )
T M∗(x∗

i − x∗
j )

]

· U(xi − xj)(xi − xj)
T

+
8(1 − γ)

n(n − 1)

n
∑

i<j

[

(xi − xj)
T UT U(xi − xj)−

(xi − xj)
T M(xi − xj)

]

· U(xi − xj)(xi − xj)
T .

Unconstrained analytically obtained minimizer C of the
cost function I (eq. (7)) is projected (with respect to the
L2-norm) onto the manifold M of symmetric positive defi-
nite matrices. The projection UT

0 U0 is not necessarily the
constrained minimizer of I (constrained to the manifold
M). We therefore run a gradient descent on I constrained
to M to find the minimizer of I parametrized as UT U .

B. Information Theoretic (IT) Approach

In the previous approach, the resulting squared metric
dC formed a ‘compromise’ between the squared metric
dM in the original space X and the scaled squared metric
α · dM

∗ in the privileged space X∗. The actual pairwise
distances played a crucial role. In this section we suggest
another approach where the privileged information is used
to describe closeness relations between some of the points
in a categorical manner only - e.g. the points are ‘close’ or
‘far apart’. This categorical information is then imposed on
the original space through the framework of Information

8We employed a line search algorithm to identify the ‘optimal’
value of η.

Theoretic Metric Learning (ITML) [16] (see section II-D).
Our aim is to learn a new metric in the original space which
imposes small distances on points within the same class
and with ‘similar’ associated privileged data, and large
distances between points across different classes and with
‘dis-similar’ associated privileged information.

Consider training data (xi, yi), i = 1, 2, ..., n, as in
section II-B. As before, additional information x∗

i ∈ X∗ is
given about training examples xi ∈ X, i = 1, 2, ..., p ≤ n.
Assume that we are given a global metric tensor M on
space X defining the squared Mahalanobis distance dM (3)
We would like to modify dM so that the distances under
the new metric dC on X are enlarged and shrunk for pairs
of points that have ‘dis-similar’ and ‘similar’ privileged
information, respectively.

In the ITML approach, two sets of pairs of data points
from X are formed corresponding to the ‘similar and dis-
similar’ data items:

• S+ = {(xi, xj)|xi and xj are judged to be similar}
• S− = {(xi, xj)|xi and xj are judged to be dis-similar}

We construct these two sets based in proximity infor-
mation in the privileged space X∗. In particular, assume
we are given a global metric tensor M∗ on X∗ giving the
squared Mahalanobis distance dM∗ (5). We calculate all
pairwise squared distances dM∗(x∗

i , x
∗
j ), 1 ≤ i < j ≤ p.

These distances are then sorted in ascending order and,
given a lower percentile parameter a∗ > 0, a distance
threshold l∗ is found such that a∗ percent of the low-
est pairwise squared distances dM∗(x∗

i , x
∗
j ) are smaller

than l∗. Analogously, given an upper percentile parameter
b∗ > a∗, a distance threshold u∗ > l∗ is found such that
(1 − b∗) percent of the largest pairwise squared distances
dM∗(x∗

i , x
∗
j ) are greater than u∗.

The sets S+ and S− are constructed using privileged
information as follows:

• If dM∗

(

x∗
i , x

∗
j

)

≤ u∗ and c (xi) = c (xj) = yi (same
class label) then (xi, xj) ∈ S+.

• If dM∗

(

x∗
i , x

∗
j

)

≥ l∗ and c (xi) 6= c (xj) 6= yi (different
class labels), then (xi, xj) ∈ S−.

Note that it is not necessary for all training points in X
to be involved pairs of points in S+ or S−.

In IT approach the ‘similarity’ between two metrics dC

and dM on X ⊂ R
m , given by metric tensors C and M ,

respectively, is measured through the Bregman divergence
(Burg). The divergence is defined over the cone of positive
definite matrices as [16]:

DBurg (C,M) = tr (CM)
−1

− log det (CM) − m,

where tr denotes the trace operator and m is the data
dimensionality. Given distance thresholds 0 < l < u on X,
the Bregman divergence is minimized while enforcing the
desired constraints:

min
C≻0

DBurg (C, M) , subject to (12)

dC (xi, xj) ≤ l, if (xi, xj) ∈ S+, and

dC (xi, xj) ≥ u, if (xi, xj) ∈ S−.
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As in the original ITML formulation [16], in order to
guarantee the existence of a feasible solution for C, a slack
variable ν is introduced: Let s(i, j) denote the index of the
(i, j)-th constraint, and let ξ be a vector of slack variables,
initialized to ξ0, with components equal l for similarity
constraints and u for dissimilarity constraints. Then the
optimization problem can be reformulated as [16]:

min
C≻0,ξ

DBurg (C, M) + ν ·DBurg (diag(ξ), diag(ξ0)) (13)

subject to

dC (xi, xj) ≤ ξs(i,j), if (xi, xj) ∈ S+, and

dC (xi, xj) ≥ ξs(i,j), if (xi, xj) ∈ S−.

In IT approach the trade-off between the minimization
problem and satisfying the constraints is controlled by
the parameter ν, set through cross-validation. As in [16],
optimizing (13) involves repeatedly projecting (Bregman
projections) the current solution onto a single constraint,
via the update:

Ct+1 = Ct + βtCt(xit − xjt
)(xit − xjt

)T Ct, (14)

where xit and xjt
are data points associated with one of

the (dis)similarity constraints from S± at time t and βt is
a projection parameter computed by the algorithm. The
algorithm is initialized with C equal to the Mahalanobis
matrix of the data distribution in the original space.

IV. Incorporating Privileged Information in
Classifiers

We propose two approaches for incorporation of the
learnt metric dC into a classifier operating on X. The first
approach linearly transforms data in the original space
X so that the distance information from the privileged
space X∗ is ‘preserved’. The classifier is then trained on
the transformed points. In the second approach,specially
designed for the GMLVQ classification, the new metric dC

is used for only retraining the prototype positions in X,
given that the metric tensor on X has changed. This is
achieved by running GMLVQ with dC fixed.

A. Transformed Basis (TB)

Recall that dC is found in the parametrized form C =
UT U . Then for any x ∈ X, we have

‖x‖2
C = xT Cx = xT UT Ux = x̃T x̃ = ‖x̃‖2

2,

where x̃ = Ux is the image of x under the basis
transformation U . The layout of the transformed points
x̃i = Uxi now reflects the ‘similarity/dis-similarity’ in-
formation from X∗. Data points with ‘similar’ privileged
data representation will now in general be closer than
in the original data layout. Likewise, data points with
more distant privileged representations will tend to move
further apart. The classification algorithm (e.g. GMLVQ
in its original form) is now applied to the transformed data
{(x̃1, y1), ...., (x̃n, yn)}. We stress that the TB approach is
flexible and, unlike SVM+, allows for application of any
suitable metric-based classifier , e.g. k-nearest neighbors
(k-NN).

B. Extended Model (Ext)

Unlike the TB approach, this methodology is spe-
cially designed to incorporate the privileged-information-
induced learned metric C in the GMLVQ algorithm. First,
GMLVQ is run on the training set (xi, yi) ∈ R

m×{1, ..., c},
i = 1, 2, ..., n, yielding a global metric dM (given by metric
tensor M) and a set of prototypes wj ∈ R

m, j = 1, 2, ..., L.
Then, one of the two techniques of section III is used
to find metric dC on X that will replace the metric dM

originally found by GMLVQ. Hence, the Ext in GMLVQ
squared metric will have the form

dC(w, x) = (x − w)T C(x − w).

The metric dC incorporates the privileged information.
Finally, GMLVQ is run once more with metric tensor C

fixed to modify the prototype positions9.

V. Computational Complexity Analysis

Our methodology incorporates three main steps:

1) metric learning in the original space X via Met-
ric Fusion (MF) or Information Theoretic approach
(IT),

2) incorporation of the learned metric in the underlying
classifier - Transformed Basis (TB) or Extended
Model (Ext),

3) forming the resulting classifier.

We study the computational complexity of each by each
phase separately.

1) Analytical computation of the unconstrained matrix
C in MF by solving the quadratic problem I(C) (Eq.
(7)) costs O(n2 + m2), where n is the number of
training examples and m is the data dimensionality.
This is also the cost of each iteration of gradient
descent in Eq. (11). Learning matrix C in IT costs
O(m2) per projection (Eq. 14). Each iteration of IT
costs O(s · m2), where s is the number of pairwise
constrains (s = |S+ ∪ S−|) [29].

2) TB linearly transforms each data point (cost O(n)).
The complexity of the closest correct and incorrect
prototypes’ adaptation in each step of Ext costs
O(m2 · Nw), where Nw is the number of updated
prototypes [4].

3) In the TB case, the complexity depends on the clas-
sifier used. For example, The original GMLVQ costs
O(m2) for matrix adaptation in each adaptation step
together with O(m2 ·Nw) for the closest correct and
incorrect prototypes adaptation in each adaptation
step [4]. In the case of Ext, the cost per adaptation
steps is O(m2 · Nw).

VI. Experiments and Evaluations

The effectiveness of the proposed methodology, inte-
grating privileged information in learning, was evaluated
in the context of classification accuracy obtained against

9 The prototype positions will in general change, since the metric
has been changed from dM to dC .
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the state of art algorithms GMLVQ, used in the original
space. In addition, since the privileged information is used
to manipulate metric in the original input space X, we
also employed simple k-Nearest Neighbor (k-NN) metric
based classifier operating in the modified metric10. The
two proposed metric learning methodologies, metric fusion
(MF, section III-A) and information theoretic approach
(IT, section III-B) were assessed in three experiments.

In all experiments, (hyper-)parameters of metric learn-
ing and classification algorithms were tunned via 5-fold
cross-validation on the training set. In MF approach,
parameter γ was tuned over the values 0.2, 0.3, ..., 1. In
both classification scenarios (GMLVQ and k-NN), the
metric tensor M∗ in X∗ was set to the precision matrix11

of the privileged training points x∗
1, x

∗
2, ..., x

∗
r (Mahalanobis

distance in X∗). The same applies to the initial metric
tensor M in the original space X. In IT12 approach, lower
and upper bounds for the privileged and original spaces
were chosen over the values of {2, 3, 5, 7, 10} for (a, a∗)
and of {80, 85, 90, 95} for (b, b∗). Furthermore, the slack
parameter ν was tuned over the values {0.01, 0.1, 1}.

For GMLVQ, the number of prototypes per class was
tunned over the set {1, 2, 3, 4, 5}. The class prototypes
were initialized as means of random subsets of train-
ing samples selected from the corresponding class. Rele-
vance matrices were normalized after each training step
to

∑

i Λii = 1 (see section II-C). Initial learning rates
for prototypes ǫw and relevance metric ǫΩ were chosen
through cross-validation13. They decrease monotonically
with training epoch index e [30]:

ǫg(e) =
ǫg

1 + τ(e − 1)
, g ∈ {Ω, w},

with τ > 0 set to 10−5. For the k-NN classification
algorithm, k was cross validated over the range 1...814.

The ‘optimal’ metric tensor U in X, resulting from the
above metric learning algorithms, is then incorporated in
the GMLVQ classification process via one of the two sce-
narios: transformed basis (TB, section IV-A) and extended
model (Ext, section IV-B). Note that when using k-NN
only TB approach is applicable. We summarize the models
constructed within our framework in Table I. The models
are build along two degrees of freedom, namely metric
learning and incorporation of the learnt metric.

A. Initial Controlled Experiments

In this section we report on experiments performed
using three classification datasets from the UCI database
[31], namely Iris, Pima, and Abalone sets. Here we have
a control over what features constitute the ‘original’ and

10We are thankful to the anonymous reviewer for this suggestion.
11The inverse of the covariance matrix.
12We modified the ITML Matlab code available from

http://www.cs.utexas.edu/users/pjain/itml/. The parameters
were tuned via cross-validation.

13We imposed ǫw > ǫΩ, implying slower rate of changes to the
metric, when compared with prototype modification.

14larger values of k did not bring performance improvements

TABLE I
Summary of models constructed within our framework.

Metric Modification Metric incorporation

Transformed
Basis (TB)

Extended
Model (Ext)

Metric Fusion (MF) MF-TB MF-Ext

Information Thoeretic (IT) IT-TB IT-Ext

TABLE II
Cross-validated values of (hyper-)parameters for the Iris,

Pima, and Abalone data sets obtained for GMLVQ and k-NN
classifications.

Algorithm Hyper-
parameter

Iris Pima Abalone

GMLVQ Prototypes
per class

1 3 1

(a∗, b∗, a, b) (10,90,5,95) (5,90,5,90) (2,85,5,90)

ν 1 0.01 1

γ 0.7 0.2 0.2

k-NN k 3 4 4

(a∗, b∗, a, b) (10,90,5,95) (5,90,5,90) (5,90,5,90)

ν 1 0.01 1

γ 0.7 0.2 0.2

‘privileged’ spaces X and X∗, respectively. In order to
demonstrate the potential of methods able to incorporate
the privileged information, we used the least informative
features (from the point of view of classification) as the
original features, the rest as the privileged ones. We also
studied the effect of downsizing the amount of privileged
information in the training set.

1) Data Sets: The Iris data set contains 150 items, has
four input features and three classes. The 8-dimensional
Pima data set contains 768 data items classified into two
classes. Finally, the 8-dimensional Abalone data set has
4177 data items classified into three classes.

As mentioned above, in order to create the experi-
mental testbed, input features were first categorized into
‘privileged’ and ‘original’. This categorization is driven by
feature relevance for the underlying classification. Diago-
nal elements in the GMLVQ relevance matrix effectively
order the input features with respect to their relevance for
classification (higher value means higher relevance). For
each data set, we first ran the GMLVQ algorithm on the
training set15 and then took the lower half of input features
as the ‘original’ ones, the second half as the privileged
features.

2) Experimental Settings and Results: Cross-validated
values of (hyper-)parameters of the studied methods are
presented Table II. We randomly selected 75% of data
items of each class for training and use the remaining
data for testing. Mean misclassification rates (± Std. dev)
are reported across 10 runs (10 random re-samplings of
the training/test sets). Table III presents results for the
case where each training point has both original and
privileged information. Our findings confirm that all our

15random selection of 75% points from the original data set

http://www.cs.utexas.edu/users/pjain/itml/
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TABLE III
Mean misclassification rates for GMLVQ and k-NN

classifications, along with standard deviations (±) across
10 training/test re-sampling, obtained on Iris, Pima, and

Abalone data sets. Each training point has both the
original and privileged information. The best results are

marked with bold font.

Algorithm Metric
learn-
ing

Iris Pima Abalone

GMLVQ N/A 0.22±(0.05)
0.35±(0.01)

0.45±(0.009)

IT-TB 0.16±(0.03)
0.30±(0.007)

0.42±(0.01)

IT-Ext 0.17±(0.03)
0.30±(0.006)

0.43±(0.01)

MF-TB 0.18±(0.02)
0.33±(0.01)

0.43±(0.05)

MF-Ext 0.18±(0.1)
0.31±(0.008)

0.44±(0.01)

k-NN N/A 0.45±(0.02)
0.37±(0.05)

0.50±(0.02)

IT-TB 0.39±(0.03)
0.35±(0.04)

0.48±(0.01)

MF-TB 0.41±(0.01)
0.35±(0.02)

0.47±(0.02)

metric learning methods are able to successfully incorpo-
rate privileged information during the classifier building
stage, even though in the test phase (reported results) the
privileged information is not available. For the GMLVQ
classification, the IT approach achieves the best overall
performance for both metric incorporation methods (TB
and Ext). On average, it outperforms (relatively) the
baseline GMLVQ (trained on X only) by 25%, 14%, and
5% on Iris, Pima, and Abalone data sets, respectively. For
the k-NN classification, on average (across the three data
sets) the IT-TB and MF-TB outperformed (relatively)
the baseline k-NN (trained on X only) with 7% and 6%
, respectively. Compared with k-NN, GMLVQ is more
successful because it not only incorporates the privileged
information in terms of learnt metric on X, but also re-
positions the class prototypes ‘optimally’ with respect to
the modified metric.

3) Studying the Effect of Downsizing Privileged Infor-
mation in Space X∗: Obtaining privileged data may be
costly. Therefore it is quite natural to expect that in
real applications the number of data items in X∗ will
be relatively small, compared to the number of available
data in X. Thus, in the next experiment (conducted
using the GMLVQ in Transformed Basis scenario only
(best performing)) we removed privileged information for
randomly chosen 40% of the training points. Results are
reported in Table IV. Naturally, the performance levels
of GMLVQ algorithm decrease - the performance of IT-
TB and MF-TB relatively decreased by 10% and 6% (in
the three data sets), respectively. The IT-TB still retains
the best performance. We found (not reported here) that
GMLVQ based methods were more robust to reducing
the privileged information than the k-NN ones, with k-

TABLE IV
Mean misclassification rates for GMLVQ classification

(using the Transformed Basis scenario only), along with
standard deviations (±) across 10 training/test re-sampling,
obtained on Iris, Pima, and Abalone data sets. Only 60% of

training points have privileged information. The best
results are marked with bold font.

Algorithm Iris Pima Abalone

GMLVQ 0.22±(0.05) 0.35±(0.02) 0.45±(0.009)

IT-TB + GMLVQ 0.201±(0.03) 0.34±(0.01) 0.43±(0.01)

MF-TB + GMLVQ 0.204±(0.2) 0.35±(0.01) 0.45±(0.03)

NN performance deteriorating rapidly as the amount of
privileged information was reduced.

B. Comparison with SVM and SVM+

In this section we compare the approaches developed
here with the recently introduced SVM-based technique
for incorporation of privileged information [1] (see section
II-A). We use one of the three scenarios of incorporat-
ing privileged information addressed in [1], namely, the
privileged information as a holistic description. Images
of digits (original space) are enhanced with poetic image
description (represented as privileged information). We
followed the same experimental settings used by [1].

1) Data Set: This experiment uses the MNIST hand
writing database16. It consists of 60,000 training examples
and 10,000 test samples, each of which is a 28×28 pixel
gray scale image. As in [1], we used the subset of the
MNIST data set corresponding to digits ’5’ and ’8’ with
the images rescaled to 10×10 pixels. Training inputs (in
space X) consist of the first 50 samples of digits ’5’ and
’8’ from the MNIST training data (making 100 training
points). Testing data has 1,866 samples of digits ’5’ and ’8’
from the MNIST test data. Poetic descriptions describing
images, with the help of language experts, were designed
and used by [1] as privileged information. Poetic de-
scriptions were translated by experts into 21-dimensional
feature vectors 17 and considered as the privileged data (in
space X∗). As in [1], we used training sets of increasing
size 40, 50, ..., 90 (each training set containing the same
number of digits ’5’ and ’8’). We selected 12 different ran-
dom samples from each training data set and we reported
the average of test errors.

2) Experimental Settings and Results : Cross-validated
values of (hyper-)parameters of the studied methods are
presented Table V. Results are shown in Figure 1. As
in the previous experiment, GMLVQ with incorporated
privileged information outperforms the standard GMLVQ.
Analogously for the k-NN classifier, even though the k-NN
results are again inferior to the GMLVQ ones. The best
performing algorithm (IT-TB in GMLVQ) was compared
against the existing SVM+ based models (see Figure 2).

16The MNIST dataset can be downloaded from
http://yann.lecun.com/exdb/mnist/

17 The reader is referred to http://www.nec-labs.com/research/machine/ml website/departmen
a detailed description of the dataset exists.

http://yann.lecun.com/exdb/mnist/
http://www.nec-labs.com/research/machine/ml_website/department/software/learning-with-teacher/
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TABLE V
Cross-validated values of (hyper-)parameters for the

MNIST data set (images ’5’ and ’8’) obtained for GMLVQ
and k-NN classifications.

GMLVQ Prototypes
per class

(a∗, b∗, a, b) ν γ

1 (5,80,5,95) 0.01 0.5

k-NN k (a∗, b∗, a, b) ν γ

4 (5,80,5,95) 0.01 0.2
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Fig. 1. Number of misclassified points obtained by GMLVQ (left
figure) and k-NN (right figure) classifications (error bars report
standard deviation across 12 training re-sampling) conducted on the
MNIST data set (images ’5’ and ’8’).
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Fig. 2. Number of misclassified points obtained by the IT-TB in
GMLVQ and the previously introduced SVM+ based models for
LUPI conducted on the MNIST data set (images ’5’ and ’8’).

In particular, IT-TB in GMLVQ achieves relative perfor-
mance improvement of 14%, 6%, and 2% over the SVM,
X∗SVM+, and dSVM+, respectively.

C. Galaxy Morphological Classification using Full Spectra
as Privileged Information

Morphological galaxy classification aims to classify
galaxies based on their structure and appearance. It is the
first step towards a greater understanding of the origin
and formation process of galaxies, as well as the evolution
processes of the Universe [32], [33]. The most common
classification scheme is galaxy separation into three classes
- Elliptical, Spiral, and Irregular. There have been several
approaches to Galaxy morphology classification, e.g. [34],
[35], [36]. Most of these approaches rely heavily on the
galaxy photometric data, ignoring spectroscopic informa-
tion. Huge amount of information about the physical

properties of galaxies comes from their electromagnetic
spectrum [37]. It is therefore of paramount importance to
be able to consider detailed spectral data when training
galaxy classifiers. However, obtaining a full spectrum is
much more costly than measuring coarse spectral features
and basic morphological characteristics. Nevertheless, for
many galaxies full spectra have been measured and should
not be discounted, even though for a new galaxy to be
classified we may not have the privilege to have such an
information. This is exactly the arena of learning with
privileged information - construct a classifier using both
basic and advanced (more costly) spectral information,
while in the ‘test’ phase the classifier will take as inputs
only the basic (‘original’) features.

1) Data Set: Sample of galaxy identifications numbers
(IDs) was extracted from Galaxy Zoo project catalogs
[38], [39]. The Galaxy Zoo project launched in 2007 has
provided visual morphological classifications for around
one million galaxies, extracted from the Sloan Digital Sky
Survey (SDSS) (data release 7) [40]. Astronomers and
general public experts were invited to visually inspect and
classify these galaxies via the main analysis page from the
Galaxy Zoo website18. The project had obtained a huge
number of classifications made by 100,000 participants.
From the Galaxy Zoo catalog we extracted galaxy objects
that had more than 50 votes with 95% agreement among
the votes. The galaxy IDs were then used to extract
features characteraizing the galaxies in the original (bulk
measurement) space X, as well as, if available, in the
privileged space X∗ of full spectra.

Basic Imaging Features (X): It was shown by [41]
that imaging parameters associated with colors, profile-
fitting, adaptive shape, concentration and texture, are
useful in separating the galaxy objects into the basic three
morphological classes. For each galaxy, we extracted 9
essential imaging parameters defined in [41] from the SDSS
DR7 data catalogues19. After detailed discussions with
astronomers, we added 4 additional basic features (e.g.
coarse spectral measures).

Detailed Spectral Features (X∗): Input spectra
parameters for the extracted galaxy objects were ob-
tained from the MPA-JHU DR7 release of spectrum mea-
surements20. Originally, there were 138 spectral features.
Based on consultations with astronomers, we downsized
the amount of features to 40. Out of these we selected only
the most relevant ones (for the purposes of classification)
using diagonal elements in the relevance matrix provided
by GMLVQ. There were 8 spectral features showing high
significance for galaxy classification that were confirmed
as highly important by astronomers.

Overall, our dataset contained 20,000 galaxies charac-
terized by 13 ‘original’ features (in X) and 8 ‘privileged ’
spectral features (in X∗). On the set of this size, we found
it infeasible to run extensive sets of experiments using the
SVM+ based approaches.

18http://data.galaxyzoo.org/
19http://cas.sdss.org/astro/en/tools/crossid/upload.asp
20http://www.mpa-garching.mpg.de/SDSS/DR7/

http://data.galaxyzoo.org/
http://cas.sdss.org/astro/en/tools/crossid/upload.asp
http://www.mpa-garching.mpg.de/SDSS/DR7/
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TABLE VI
Cross-validated values of (hyper-)parameters for the

galaxy data set obtained for GMLVQ and k-NN
classifications.

GMLVQ Prototypes
per class

(a∗, b∗, a, b) ν γ

(20,10,5) (3,90,5,90) 0.1 1

k-NN k (a∗, b∗, a, b) ν γ

6 (3,90,5,90) 0.1 0.8

TABLE VII
Mean misclassification rates, along with standard

deviations (±) across 10 training/test re-sampling, for the
galaxy morphological classification. The best results are

marked with bold font.

Algorithm Metric learning Misclassification

GMLVQ N/A 0.023±(0.001)

IT-TB 0.019±(0.001)

IT-Ext 0.020±(0.002)

MF-TB 0.020±(0.001)

MF-Ext 0.020±(0.003)

k-NN N/A 0.025±(0.004)

IT-TB 0.022±(0.003)

MF-TB 0.023±(0.004)

2) Experimental Setting and Results: On the set of
20,000 galaxies, we conducted 10 experimental runs, in
each run the galaxy set was randomly split into training
set (75%) and test set (25%). Mean misclassification rates
(± Std. dev) are reported across 10 runs (10 random re-
samplings of the training/test sets).

Cross-validated values of (hyper-)parameters21 of the
studied methods are presented Table VI. In general, using
the spectral privileged information in the model building
phase enhances the classification accuracy, even though in
the test phase the models are fed with the original ‘coarse’
features only. For the GMLVQ classification, the average
relative improvement (in both metric incorporation sce-
narios (TB and Ext)) in the classification accuracy over
the GMLVQ baseline is 15% and 13% for IT and MF,
respectively. It is interesting that in this case even the k-
NN base classifier works well. As expected, the inclusion
of full spectral information improves its accuracy (e.g. IT-
TB in k-NN). However, the best (and most stable) results
are obtained by the IT-TB method in GMLVQ.

3) Studying the Effect of Downsizing Privileged Infor-
mation in Space X∗: Extracting galaxy spectral parame-
ters is complex and expensive task. SDSS has photometric
data for around fifty million galaxies [40]. However, the
spectroscopic features are available for only relatively few
galaxy objects. We quantified deterioration of the classifi-
cation accuracy with decreasing number of galaxies having
privileged spectral information. The above experiment
(conducted for the GMLVQ formulations in IT-TB and
MF-TB scenario only) was repeated with 5000, 10,000

21Due to large data set size and imbalanced nature of the 3 classes,
we allowed for larger and different number of prototypes in each class.
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Fig. 3. Mean misclassification rates (error bars report standard
deviation across 10 training/test re-sampling) obtained using varying
amounts of privileged information.

and 15,000 galaxy objects (randomly selected over 10
runs) having the privileged information. The results are
shown in Figure 3. As in the case of UCI datasets (section
VI-A2) the IT model is more robust to limited amounts
of privileged information in the training data.

VII. Discussion

The principal difference between the IT and MF ap-
proaches is in the way the distance information in the
privileged space X∗ is treated. While the MF approach
emphasize the exact values of the distances, the IT ap-
proach works on a qualitative level only (similar/dis-
similar representations in X∗). This makes the IT frame-
work more robust to deficiencies in the privileged informa-
tion. Treating distance information in X∗ as qualitative
only (similar/dis-similar) instead of paying full attention
to precise distances can be beneficial when the link be-
tween the original features and the privileged information
is loose, e.g. poetic descriptions of images of digits (section
VI-B). Figure 1 clearly demonstrates superiority of IT-TB
over MF-TB. Note that If the privileged information is
less credible (e.g. contaminated with noise, or of subjective
character as in the digits experiment), the model can
reduce its influence in the model building phase via the
regularization parameters γ and ν in the (MF and IT)
formulations, respectively.

In the GMLVQ classifications, the overall performance
of the two metric incorporation scenarios considered in
this study - Transformed Basis (TB) and Extended Model
(Ext) - is comparable, with TB being slightly better
most of the time. In the Ext approach, the prototypes
get retrained one more time using GMLVQ, given the
modified metric tensor in X. If we continued updating
both prototypes and metric tensor on X further (as in
GMLVQ), all information from the privileged space X∗

would get eventually lost. On the hand, in the TB scenario
the privileged information is ‘permanently’ coded in X by
changing the distribution of points in X on the basis of
distance relations in X∗. The subsequent runs of GMLVQ
operate on this new layout of training points in X with the
privileged information contribution not lost during further
training.
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Finally, we remark that we also tried to impose on X∗

the metric obtained by running GMLVQ on the privileged
data only, but this did not (at least for the data sets used
here) improve (compared to using precision matrix (Ma-
halanobis distance) on X∗) the classification performance.
The same applies to initialization of metric tensor in the
original input space X. Using metric tensor obtained from
GMLVQ on X was not preferable to simple initialization
of the metric tensor with the precision matrix in X.

VIII. Conclusion

We have introduced a novel framework for learning
with privileged information through metric learning. The
framework can be naturally cast in prototype based classi-
fication with metric adaptation (GMLVQ). The privileged
information is incorporated into the model operating on
the original space X by changing the global metric in
X, based on distance relations revealed by the privileged
information in X∗. Unlike in the existing SVM-based ap-
proaches for learning with privileged information, the priv-
ileged information is used to manipulate the input space
or its metric and thus any classifier (e.g. simple k-NN)
can be subsequently used. This provides more flexibility
for the task of incorporating privileged information during
the training. Moreover, prototype based approaches have
the additional advantages of providing more interpretable
models and natural formulation of multi-class classifiers.

We verified our framework in three experimental set-
tings: (1) controlled experiments using three data sets
from UCI repository, (2) handwritten digit recognition
using poetic descriptions as privileged information [1] and
(3) a real world application of great practical and the-
oretical importance in astronomy - galaxy morphological
classification. Here, the privileged information takes the
form of costly-to-obtain full galaxy spectra.
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