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Abstract. Recently, there has been an outburst of interest in extend-
ing topographic maps of vectorial data to more general data structures,
such as sequences or trees. The representational capabilities and inter-
nal representations of the models are not well understood. We concen-
trate on a generalization of the Self-Organizing Map (SOM) for pro-
cessing sequential data – the Recursive SOM (RecSOM [1]). We argue
that contractive fixed-input dynamics of RecSOM is likely to lead to
Markovian organizations of receptive fields on the map. We show that
Markovian topographic maps of sequential data can be produced us-
ing a simple fixed (non-adaptable) dynamic module externally feeding a
standard topographic model designed to process static vectorial data of
fixed dimensionality (e.g. SOM). We elaborate upon the importance of
non-Markovian organizations in topographic maps of sequential data.

1 Introduction

In its original form the self-organizing map (SOM) [2] is a nonlinear projec-
tion method that maps a high-dimensional metric vector space onto a two-
dimensional regular grid in a topologically ordered fashion. Many modifications
of the standard SOM have been proposed in the literature (e.g. [3]). Formation
of topographic maps via self-organization constitutes an important paradigm in
machine learning with many successful applications e.g. in data and web-mining.
Most approaches to topographic map formation operate on the assumption that
the data points are members of a finite-dimensional vector space of a fixed dimen-
sion. Recently, there has been an outburst of interest in extending topographic
maps to more general data structures, such as sequences or trees.

Several modifications of SOM to sequences and/or tree structures have been
proposed in the literature ([4] and [5] review most of the approaches). Modified
versions of SOM that have enjoyed a great deal of interest equip SOM with ad-

ditional feed-back connections that allow for natural processing of recursive data
types. Typical examples of such models are Temporal Kohonen Map [6], recur-
rent SOM [7], feedback SOM [8], recursive SOM [1], merge SOM [9] and SOM
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Fig. 1. Recursive SOM architecture.The original SOM algorithm is used for both input
vector s(t) and for the context represented as the map activation y(t-1) from the
previous time step. Solid lines represent trainable connections, dashed line represents
one-to-one copy of the activity vector y. The network learns to associate the current
input with previous activity states. This way each neuron responds to a sequence of
inputs.

for structured data [10]. However, at present there is still no general consensus
as to how best to process sequences with SOMs and this topic remains a very
active focus of current neurocomputational research [4, 11, 12].

In this paper, we view such models as non-autonomous dynamical systems
with internal dynamics driven by a stream of external inputs. In the line of our
recent research, we study the organization of the non-autonomous dynamics on
the basis of dynamics of individual fixed-input maps [13]. We concentrate on
the Recursive SOM (RecSOM) [1], because RecSOM transcends the simple local
recurrence of leaky integrators of earlier models and it has been demonstrated
that it can represent much richer dynamical behavior [12]. The principal question
driving this research can be stated as: ‘What can be gained by having a trainable
recurrent part in RecSOM, i.e. how does RecSOM compare with a much simpler
setting of SOM operating on a simple non-trainable iterative function system
with Markovian state-space organization [14]?”

2 Recursive Self-Organizing Map (RecSOM)

The architecture of the RecSOM model [1] is shown in figure 1. Each neuron
i ∈ {1, 2, ..., N} in the map has two weight vectors associated with it:

– wi ∈ R
n – linked with an n-dimensional input s(t) feeding the network at

time t
– ci ∈ R

N – linked with the context

y(t− 1) = (y1(t− 1), y2(t− 1), ..., yN (t− 1))

containing map activations yi(t− 1) from the previous time step.



The output of a unit i at time t is computed as

yi(t) = exp(−di(t)), (1)

where1

di(t) = α · ‖s(t)− wi‖
2 + β · ‖y(t− 1)− ci‖

2. (2)

In eq. (2), α > 0 and β > 0 are model parameters that respectively influence the
effect of the input and the context upon neuron’s profile. Both weight vectors
can be updated using the same form of learning rule [1]:

∆wi = γ · hik · (s(t)− wi), (3)

∆ci = γ · hik · (y(t− 1)− ci), (4)

where k is an index of the best matching unit at time t, k = argmini∈{1,2,...,N} di(t),
and 0 < γ < 1 is the learning rate. Note that the best matching (‘winner’) unit
can be equivalently defined as the unit k of the highest activation yk(t):

k = argmax
i∈{1,2,...,N}

yi(t). (5)

Neighborhood function hik is a Gaussian (of width σ) on the distance d(i, k) of
units i and k in the map:

hik = e−
d(i,k)2

σ2 . (6)

The ‘neighborhood width’ σ decreases in time to allow for forming topographic
representation of input sequences.

Under a fixed input vector s ∈ R
n, the time evolution (2) becomes

di(t+ 1) = α · ‖s − wi‖
2 + β · ‖

(

e−d1(t), e−d2(t), ..., e−dN (t)
)

− ci‖
2. (7)

After applying a one-to-one coordinate transformation yi = e−di , eq. (7)
reads

yi(t+ 1) = e−α‖s−wi‖
2

· e−β‖y(t)−ci‖2 , (8)

or, in the vector form:
y(t+ 1) = Fs(y(t)). (9)

3 IFS sequence representations combined with standard
SOM (IFS+SOM)

Previously, we have shown that a simple affine contractive iterative function sys-
tem (IFS) [15] can be used to transform temporal structure of symbolic sequences
into a spatial structure of points in a metric space [14]. The points represent sub-
sequences in a Markovian manner: Subsequences sharing a common suffix are

1 ‖ · ‖ denotes the Euclidean norm
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Fig. 2. Standard SOM operating on IFS representations of symbolic streams
(IFS+SOM model). Solid lines represent trainable feed-forward connections. No learn-
ing takes place in the dynamic IFS part responsible for processing temporal contexts
in the input stream.

mapped close to each other. Furthermore, the longer is the shared suffix the
closer lie the subsequence representations.

The IFS representing sequences over an alphabet A of A symbols operates
on an m-dimensional unit hypercube [0, 1]m, where2 m = dlog2 Ae. With each
symbol s ∈ A we associate an affine contraction on [0, 1]m,

s(x) = kx + (1− k)ts, ts ∈ {0, 1}m, ts 6= ts′ for s 6= s′, (10)

with contraction coefficient k ∈ (0, 1
2 ]. For a prefix u = u1u2...un of a string v

over A and a point x ∈ [0, 1]m, the point

u(x) = un(un−1(...(u2(u1(x)))...)) = (un ◦ un−1 ◦ ... ◦ u2 ◦ u1)(x) (11)

constitutes a spatial representation of the prefix u under the IFS (10). Finally,
the overall temporal structure of symbols in a (possibly long) sequence v over A
is represented by a collection of the spatial representations u(x) of all its prefixes
u, with a convention that x = { 1

2}
m.

The IFS-based Markovian coding scheme can be used to construct genera-
tive probabilistic models on sequences analogous to the variable memory length
Markov models [14]. Key element of the construction is a quantization of the
spatial IFS representations into clusters that group together subsequences shar-
ing potentially long suffixes (densely populated regions of the suffix-organized
IFS subsequence representations).

The Markovian layout of the IFS representations of symbolic sequences can
also be used for constructing suffix-based topographic maps of symbolic streams
in an unsupervised manner. By applying a standard SOM [16] to the IFS rep-
resentations one may readily obtain topographic maps of Markovian flavour,

2 for x ∈ R, dxe is the smallest integer y, such that y ≥ x



similar to those obtained by RecSOM. The key difference between RecSOM and
IFS+SOM (standard SOM operating on IFS representations) is that the latter
approach assumes a fixed non-trainable dynamic part responsible for processing
temporal contexts in the input stream. The recursion is not a part of the map
itself, but is performed outside the map as a preprocessing step before feeding
the standard SOM (see figure 2).

3.1 Relation between IFS+SOM and recurrent SOM

There is a connection between the IFS+SOM and recurrent SOM (RSOM) [7]
models. Given a sequence s1s2... over a finite alphabet A, the RSOM model
determines the winner neuron at time t by identifying the neuron i with the
minimal norm of

di(t) = ν (tst − wi) + (1− ν) di(t− 1), (12)

where 0 < ν < 1 is a parameter determining the rate of ‘forgetting the past’,
tst is the code of symbol st presented at RSOM input at time t and wi is the
weight vector on connections connecting the inputs with neuron i.

Inputs x(t) feeding standard SOM in the IFS+SOM model evolve with the
IFS dynamics (see (10) and (11))

x(t) = k x(t− 1) + (1− k) tst , (13)

where 0 < k < 1 is the IFS contraction coefficient. Best matching unit in SOM
is determined by finding the neuron i with the minimal norm of

Di(t) = x(t)− wi = k x(t− 1) + (1− k) tst − wi. (14)

But Di(t− 1) = x(t− 1)− wi, and so

Di(t) = k Di(t− 1) + (1− k) (tst − wi), (15)

which, after setting ν = 1− k, leads to

Di(t) = ν (tst − wi) + (1− ν) Di(t− 1). (16)

Provided ν = 1− k, the equations (12) and (16) are equivalent.
The key difference between RSOM and IFS+SOM models lies in the training

process. While in RSOM, the best matching unit i with minimal norm of di(t)
is shifted towards the current input tst , in IFS+SOM the winner unit i with
minimal norm of Di(t) is shifted towards the (Markovian) IFS code x(t) coding
the whole history of recently seen inputs.

4 Experiments

We compare RecSOM with standard SOM operating on Markovian suffix-based
vector representations of fixed dimensionality (IFS+SOM) on a corpus of written



English, the novel ”Brave New World” by Aldous Huxley. This data set was used
in [1].

In the corpus we removed punctuation symbols, upper-case letters were
switched to lower-case and the space between words was transformed into a
symbol ’-’. The complete data set (after filtering) comprised 356606 symbols.
Letters of the Roman alphabet were binary-encoded using 5 bits and presented
to the network one at a time. RecSOM with 400 neurons was trained for two
epochs using the following parameter settings: α = 3, β = 0.7, γ = 0.1 and
σ : 10 → 0.5. Radius σ reached its final value at the end of the first epoch and
then remained constant to allow for fine-tuning of the weights. In the IFS+SOM
model, the IFS coefficient was set to k = 0.3. Other parameters, such as size of
the map, learning rate, and time schedule for reducing the neighborhood width
σ were the same as in RecSOM.

We constructed a map of the neurons’ receptive fields (RFs) (shown in fig-
ure 3). Following [1], RF of a neuron is defined as the common suffix of all
sequences for which that neuron becomes the best-matching unit. It is evident
that the RFs are topographically ordered with respect to the most recent sym-
bols.

For these RFs, we computed the quantizer depth (according to [1]), which
quantifies the amount of memory captured by the map. It is defined as

n̄ =
N
∑

i=1

pini, (17)

where pi is the probability of the RF of neuron i, and ni is its length. The
quantizer depth was n̄ = 1.91.

The RecSOM model can be considered a nonautonomous dynamical system
driven by the external input stream (in this case, sequences over the Roman al-
phabet A). In order to investigate the fixed-input dynamics (9) of the mappings3

Fs, we randomly (with uniform distribution) initialized context activations y(0)
in 10,000 different positions within the state space (0, 1]N . For each initial con-
dition y(0), we checked asymptotic dynamics of the fixed input maps Fs by
monitoring L2-norm of the activation differences (y(t)−y(t− 1)) and recording
the limit set (after 1000 iterations). We observed that all autonomous dynamics
settle down in the respective unique attractive fixed points ys = Fs(ys), s ∈ A,

It is important to appreciate how the character of the RecSOM fixed-input
dynamics (9) for each individual input symbol s ∈ A shapes the overall or-
ganization of the map. For each input symbol s, the autonomous dynamics
y(t) = Fs(y(t− 1)) induces a dynamics of the winner units on the map:

is(t) = argmax
i∈{1,2,...,N}

yi(t). (18)

The dynamics (18) is illustrated in figure 4 (left). For each of the 10,000
initial conditions y(0), we first let the system (9) settle down by preiterating it

3 We slightly abuse the mathematical notation here. As arguments of the bounds, we
write the actual input symbols, rather than their vector encodings s.
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Fig. 3. Receptive fields of RecSOM trained on English text. Dots denote units with
empty RFs.

for 1000 iterations and then mark the map position of the winner units is(t) for
further 100 iterations. If the fixed-input dynamics for s ∈ A is dominated by the
unique attractive fixed point ys, the induced dynamics on the map, (18), settles
down in neuron is, corresponding to the mode of ys:

is = argmax
i∈{1,2,...,N}

ys,i. (19)

The neuron is will be most responsive to input subsequences ending with long
blocks of symbols s. Such an organization follows from the attractive fixed point
behaviour of the individual maps Fs, s ∈ A, and the unimodal character of their
fixed points ys. As soon as symbol s is seen, the mode of the activation profile y

drifts towards the neuron is. The more consecutive symbols s we see, the more
dominant the attractive fixed point of Fs becomes and the closer the winner
position is to is. This mechanism for creating suffix-based RF organization is
reminiscent of the Markovian fractal subsequence representations used in our
IFS+SOM model.

We observed a variety of asymptotic regimes of the fixed-input RecSOM
dynamics (9). For some symbols, the fixed-input dynamics converges to an at-
tractive fixed point; for other symbols (e.g. symbols ’i’, ’t’, ’a’, ’-’), the dynamics
followed a period-two attractor. Fixed input RecSOM dynamics for symbols ’e’
and ’o’ followed a complicated a-periodic trajectory.

Dynamics of the winner units on the map induced by the fixed-input dy-
namics of Fs are shown in figure 4 (left). For symbols s with dynamics y(t) =
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Fig. 4. Dynamics of the winning units on the RecSOM (left) and IFS+SOM (right)
maps induced by the fixed-input dynamics. The maps were trained on a corpus of
written English (”Brave New World” by Aldous Huxley).

Fs(y(t− 1)) dominated by a single fixed point ys, the induced dynamics on the
map settles down in the mode position of ys. However, some autonomous dy-
namics y(t) = Fs(y(t− 1)) of period two (e.g. s ∈ {n, h, r, p, s}) induce a trivial
dynamics on the map driven to a single point (grid position). In those cases, the
points y1, y2 on the periodic orbit (y1 = Fs(y

2), y2 = Fs(y
1)) lie within the

representation region (Voronoi compartment) of the same neuron. Interestingly
enough, the complicated dynamics of Fo and Fe translates into aperiodic oscilla-
tions between just two grid positions. Still, the suffix based organization of RFs
in figure 3 is shaped by the underlying collection of the fixed input dynamics of
Fs (illustrated in figure 4 (left) through the induced dynamics on the map).

The IFS+SOMmap (k = 0.3) is shown in figure 5 (quantizer depth n̄ = 1.69).
The induced dynamics on the map is illustrated in figure 4 (right). The suffix
based organization of RFs is shaped by the underlying collection of autonomous
attractive IFS dynamics.

5 Discussion

Periodic (beyond period 1), or aperiodic attractive dynamics of autonomous
systems y(t) = Fs(y(t − 1)) lead to potentially complicated non-Markovian
organizations of RFs on the map. By calculating the RF of a neuron i as the
common suffix shared by subsequences yielding i as the best matching unit
[1], we always create a suffix based map of RFs. Such RF maps are designed
to illustrate the temporal structure learned by RecSOM. Periodic or aperiodic
dynamics of Fs can result in a ‘broken topography’ of RFs: two sequences with
the same suffix can be mapped into distinct positions on the map, separated
by a region of very different suffix structure. For example, depending on the
context, subsequences ending with ’ee’ can be mapped either near the lower-left,
or near the lower-right corners of the RF map in figure 3. Unlike in contractive
RecSOM or IFS+SOM models, such context-dependent RecSOM maps embody
a potentially unbounded memory structure, because the current position of the
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Fig. 5. Receptive fields of a standard SOM with 20× 20 units trained on IFS outputs,
obtained on the English text. Topographic organization is observed with respect to the
most recent symbols.

winner neuron is determined by the whole series of processed inputs, and not
only by a history of recently seen symbols. Unless we understand the driving
mechanism behind such context-sensitive suffix representations, we cannot fully
appreciate the meaning of the RF structure of a RecSOM map.

One has to ask what is the principal motivation behind building topographic
maps of sequential data? If the motivation is a better understanding of cortical
signal representations (e.g. [17]), then a considerable effort should be devoted
to mathematical analysis of the scope of potential temporal representations and
conditions for their emergence. If, on the other hand, the primary motivation
is data exploration or data preprocessing, then we need to strive for a solid
understanding of the way temporal contexts get represented on the map and in
what way such representations fit the bill of the task we aim to solve.

There will be situations, where finite memory Markovian context represen-
tations are quite suitable. In that case, contractive RecSOM models, and indeed
IFS+SOM models as well, may be appropriate candidates. But then the question
arises of why exactly there needs to be a trainable dynamic part in self-organizing
maps generalized to handle sequential data. For more complicated data sets, like
the English language corpus, RF maps beyond simple Markovian organization
may be preferable. Yet, it is crucial to understand exactly what structures that
are more powerful than Markovian organization of RFs are desired and why. It
is appealing to notice in the RF map of figure 3 the clearly non-Markovian spa-
tial arrangement into distinct regions of RFs ending with the word-separation
symbol ’-’. Because of the special role of ’-’ and its high frequency of occurrence,
it may indeed be desirable to separate endings of words in distinct islands with



more refined structure. However, to go beyond mere commenting on empirical
observations, one needs to address issues such as

– what properties of the input stream are likely to induce periodic (or aperi-
odic) fixed input dynamics leading to context-dependent RF representations
in SOMs with feedback structures,

– what periods for which symbols are preferable,
– what is the learning mechanism (e.g. sequence of bifurcations of the fixed

input dynamics) of creating more complicated context dependent RF maps.

Those are the challenges for our future work.
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