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Abstract. Recently, there has been a considerable research activity in
extending topographic maps of vectorial data to more general data struc-
tures, such as sequences or trees. However, the representational capa-
bilities and internal representations of the models are not well under-
stood. We rigorously analyze a generalization of the Self-Organizing Map
(SOM) for processing sequential data, Recursive SOM (RecSOM [1]), as
a non-autonomous dynamical system consisting of a set of fixed input
maps. We show that contractive fixed input maps are likely to produce
Markovian organizations of receptive fields on the RecSOM map. We de-
rive bounds on parameter β (weighting the importance of importing past
information when processing sequences) under which contractiveness of
the fixed input maps is guaranteed.

1 Introduction

Several modifications of the self-organizing map (SOM) [2] to sequences and/or
tree structures have been proposed in the literature. For comprehensive reviews,
see [3, 4]. Modified versions of SOM that have enjoyed a great deal of interest
equip SOM with additional feed-back connections that allow for natural pro-
cessing of recursive data types. Typical examples of such models are Temporal
Kohonen Map [5], recurrent SOM [6], feedback SOM [7], recursive SOM [1],
merge SOM [8] and SOM for structured data [9]. However, the representational
capabilities and internal representations of the models are not well understood
[3, 10, 11].

In this paper we concentrate on the Recursive SOM (RecSOM) [1], because
RecSOM transcends the simple local recurrence of leaky integrators of earlier
models and it has been demonstrated that it can represent much richer dynamical
behavior [11]. We propose to study the RecSOM model as a non-autonomous
dynamical system with internal dynamics driven by a stream of external inputs.
It is argued that contractive fixed input maps are likely to produce Markovian
organizations of receptive fields on the RecSOM map.



2 Recursive Self-Organizing Map (RecSOM)

In the RecSOM model [1], Each neuron i ∈ {1, 2, ..., N} in the map has two
weight vectors associated with it:

– wi ∈ Rn – linked with an n-dimensional input s(t) feeding the network at
time t

– ci ∈ RN – linked with the context

y(t− 1) = (y1(t− 1), y2(t− 1), ..., yN (t− 1))

containing map activations yi(t− 1) from the previous time step.

The output of a unit i at time t is computed as yi(t) = exp(−di(t)), where1

di(t) = α · ‖s(t)−wi‖2 + β · ‖y(t− 1)− ci‖2. (1)

In eq. (1), α > 0 and β > 0 are model parameters that respectively influence the
effect of the input and the context upon neuron’s profile. Both weight vectors
can be updated using the same form of learning rule [1]:

∆wi = γ · hik · (s(t)−wi), (2)

∆ci = γ · hik · (y(t− 1)− ci), (3)

where k is an index of the best matching unit at time t, k = argmini∈{1,2,...,N} di(t),
and 0 < γ < 1 is the learning rate. Neighborhood function hik is a Gaussian (of
width σ) on the distance d(i, k) of units i and k in the map:

hik = e−
d(i,k)2

σ2 . (4)

The ‘neighborhood width’ σ decreases in time to allow for forming topographic
representation of input sequences.

3 Contractive fixed-input dynamics in RecSOM

Under a fixed input vector s ∈ Rn, the time evolution of (1) becomes

di(t+ 1) = α · ‖s−wi‖2 + β · ‖
(

e−d1(t), e−d2(t), ..., e−dN (t)
)

− ci‖2. (5)

After applying a one-to-one coordinate transformation yi = e−di , eq. (5)
reads

yi(t+ 1) = e−α‖s−wi‖
2 · e−β‖y(t)−ci‖2

, (6)

or, in the vector form:
y(t+ 1) = Fs(y(t)). (7)

1 ‖ · ‖ denotes the Euclidean norm



Given a fixed input s, we aim to study the conditions under which the map
Fs becomes a contraction. Then, by the Banach Fixed Point theorem, the au-
tonomous RecSOM dynamics y(t+1) = Fs(y(t)) will be dominated by a unique
attractive fixed point ys = Fs(ys).

A mapping F : RN → RN is said to be a contraction with contraction
coefficient ρ ∈ [0, 1), if for any y,y′ ∈ RN ,

‖F(y)− F(y′)‖ ≤ ρ · ‖y− y′‖. (8)

F is a contraction if there exists ρ ∈ [0, 1) so that F is a contraction with
contraction coefficient ρ.

We denote the Gaussian kernel of inverse variance η > 0, acting on RN , by
Gη(·, ·), i.e. for any u,v ∈ RN ,

Gη(u,v) = e−η‖u−v‖2

. (9)

Denote by Gα(s) the collection of activations coming from the feed-forward
part of RecSOM,

Gα(s) = (Gα(s,w1), Gα(s,w2), ..., Gα(s,wN )). (10)

Then we have the following theorem:

Theorem 1. Consider an input s ∈ RM . If for some ρ ∈ [0, 1),

β ≤ ρ2 e

2
‖Gα(s)‖−2, (11)

then the mapping Fs (7) is a contraction with contraction coefficient ρ.

Sketch of the proof: The proof is rather lengthy and complicated. Due to space
limitations, we refer the reader to [12]. The proof follows the worst case analysis
of the distances ‖Fs(y) − Fs(y

′)‖ between the Fs-images of y,y′, under the
constraint ‖y− y′‖ = δ:

Dβ(δ) = sup
y,y′;‖y−y′‖=δ

‖Fs(y)− Fs(y
′)‖.

The analysis is quite challenging, because Dβ(δ) can be expressed only im-
plicitly. Nevertheless, one can prove that, for a given β > 0, the function
Dβ : R+ → (0, 1) has the following properties:

1. limδ→0+ Dβ(δ) = 0,
2. Dβ is a continuous monotonically increasing concave function of δ.

3. limδ→0+
dDβ(δ)

dδ
=
√

2β
e
.

Therefore, we have the following upper bound:

Dβ(δ) ≤ δ

√

2β

e
. (12)



Writing (6) as
yi(t+ 1) = Gα(s,wi) ·Gβ(y, ci),

we get that if

δ2 2β

e

N
∑

i=1

G2α(s,wi) ≤ ρ2 δ2, (13)

then Fs will be a contraction with contraction coefficient ρ. Inequality (13) is
equivalent to

2β

e
‖Gα(s)‖2 ≤ ρ2. (14)

Q.E.D.

Corollary 1. Consider a RecSOM fed by a fixed input s. Define

Υ (s) =
e

2
‖Gα(s)‖−2. (15)

Then, if β < Υ (s), Fs is a contractive mapping.

4 Experiments

We illustrate our results on natural language data used to demonstrate RecSOM
in [1]. The data is a corpus of written English, the novel ”Brave New World” by
Aldous Huxley. In the corpus we removed punctuation symbols, upper-case let-
ters were switched to lower-case and the space between words was transformed
into a symbol ’-’. The complete data set (after filtering) comprised 356606 sym-
bols. Letters of the Roman alphabet were binary-encoded using 5 bits and pre-
sented to the network one at a time. RecSOM with 20× 20 = 400 neurons was
trained for two epochs using the following parameter settings: α = 3, β = 0.7,
γ = 0.1 and σ : 10→ 0.5. Radius σ reached its final value at the end of the first
epoch and then remained constant to allow for fine-tuning of the weights.

We constructed a map of the neurons’ receptive fields (RFs) (shown in fig-
ure 1). Following [1], RF of a neuron is defined as the common suffix of all
sequences for which that neuron becomes the best-matching unit. Note that the
RF map contains regions in which RFs are topographically ordered with respect
to the most recent symbols.

Let us consider, how the character of the RecSOM fixed-input dynamics (7)
for each individual input symbol s ∈ A (coded as n-dimensional input vector
s ∈ Rn) shapes the overall organization of the map. In order to investigate
the fixed-input dynamics (7), we initialized context activations y(0) in 10,000
different positions within the state space (0, 1]N . For each initial condition y(0),
we checked asymptotic dynamics of the fixed input maps Fs by monitoring L2-
norm of the activation differences (y(t) − y(t − 1)) and recording the limit set
(after 1000 iterations).
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Fig. 1. Receptive fields of RecSOM trained on English text. Dots denote units with
empty RFs.

Figure 2 illustrates asymptotic regimes of the fixed-input RecSOM dynam-
ics (7) in terms of map activity differences between consecutive time steps. We
observed a variety of behaviors. For some symbols, the activity differences con-
verge to zero (attractive fixed points); for other symbols, the differences level at
nonzero values (periodic attractors of period two, e.g. symbols ’i’, ’t’, ’a’, ’-’).
Fixed input RecSOM dynamics for symbols ’o’ and ’e’ follows a complicated
a-periodic trajectory.

For each input symbol s, the autonomous dynamics y(t) = Fs(y(t − 1))
induces a dynamics of the winner units on the map:

is(t) = argmax
i∈{1,2,...,N}

yi(t) (16)

The dynamics (16) is illustrated in figure 32.
When the fixed-input dynamics for s ∈ A is dominated by a unique attractive

fixed point ys, the induced dynamics on the map, (16), settles down in neuron is,
corresponding to the mode of ys, is = argmaxi∈{1,2,...,N} ys,i. The neuron is will
be most responsive to input subsequences ending with long blocks of symbols s.
Receptive fields of neurons on the map will be organized with respect to closeness
of neurons to the fixed input winner is. Assuming a unimodal character of the
fixed point ys, as soon the symbol s is seen, the mode of the activation profile
y will drift towards the neuron is. The more consecutive symbols s we see, the
more dominant the attractive fixed point of Fs becomes and the closer the winner
position is to is. In this manner, a Markovian suffix-based RF organization is
created.
2 For each of the 10,000 initial conditions y(0), we first let the system (7) settle down
by preiterating it for 1000 iterations and then mark the map position of the winner
units is(t) for further 100 iterations.
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Fig. 2. Fixed-input asymptotic dynamics of RecSOM after training on English text.
Plotted are L2 norms of the differences of map activities between the successive it-
erations. Labels denote the associated input symbols (for clarity, not all labels are
shown).
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Fig. 3. Dynamics of the winning units on the RecSOM map induced by the fixed-input
dynamics. The map was trained on a corpus of written English (”Brave New World”
by Aldous Huxley).

As evident in figure 3, for symbols s with dynamics y(t) = Fs(y(t − 1))
dominated by a single fixed point ys, the induced dynamics on the map settles
down in the mode position of ys. However, some autonomous dynamics y(t) =
Fs(y(t − 1)) of period two (e.g. s ∈ {n, h, r, p, s}) induce a trivial dynamics on
the map driven to a single point (grid position). In those cases, the points y1, y2

on the periodic orbit (y1 = Fs(y
2), y2 = Fs(y

1)) lie within the representation
region (Voronoi compartment) of the same neuron. Interestingly enough, the
complicated dynamics of Fo and Fe translates into aperiodic oscillations between
just two grid positions. Still, the suffix based organization of RFs in figure 1 is
shaped by the underlying collection of the fixed input dynamics of Fs (illustrated
in figure 3 through the induced dynamics on the map).

Theoretical upper bounds on β (eq. (15)) are shown in figure 4. Whenever
for an input symbol s the bound Υ (s) is above β = 0.7 (dashed horizontal line)
used to train RecSOM (e.g. symbols ’j’, ’q’, ’x’), we can be certain that the fixed
input dynamics given by the map Fs will be dominated by an attractive fixed
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Fig. 4. Theoretical bounds on β for RecSOM trained on the English text.

point. For symbols s with Υ (s) < β, there is a possibility of a more complicated
dynamics driven by Fs. Indeed, the theoretical bounds Υ (s) for all symbols s
with asymptotic fixed-input dynamics that goes beyond a single stable sink are
below β = 0.7. Obviously, Υ (s) < β does not necessarily imply more complicated
fixed input dynamics on symbol s.

5 Discussion

Assume that for each input symbol s ∈ A, the fixed-input RecSOM mapping Fs

(7) is a contraction with contraction coefficient ρs. Set ρmax = maxs∈A ρs. For
a sequence s1:n = s1...sn−2sn−1sn over A and y ∈ (0, 1]N , define

Fs1:n(y) = Fsn(Fsn−1
(...(Fs2(Fs1(y)))...))

= (Fsn ◦ Fsn−1
◦ ... ◦ Fs2 ◦ Fs1)(y). (17)

Then, if two prefixes s1:p and s1:r of a sequence s1...sp−2sp−1sp...sr−2sr−1sr...

share a common suffix of length L, we have

‖Fs1:p(y)− Fs1:r(y)‖ ≤ ρLmax

√
N, (18)

where
√
N is the diameter of the RecSOM state space (0, 1]N .

For sufficiently large L, the two activations y1 = Fs1:p(y) and y2 = Fs1:r (y)
will be close enough to have the same location of the mode,3

i∗ = argmax
i∈{1,2,...,N}

y1
i = argmax

i∈{1,2,...,N}

y2
i ,

and the two subsequences s1:p and s1:r yield the same best matching unit i∗
on the map, irrespective of the position of the subsequences in the input stream.

3 or at least mode locations on neighboring grid points of the map



All that matters is that the prefixes share a sufficiently long common suffix.
We say that such an organization of RFs on the map has a Markovian flavour,
because it is shaped solely by the suffix structure of the processed subsequences,
and it does not depend on the temporal context in which they occur in the
input stream. Obviously, one can imagine situations where (1) locations of the
modes of y1 and y2 will be distinct, despite a small distance between y1 and
y2, or where (2) the modes of y1 and y2 coincide, while their distance is quite
large. This is the price to be paid for discontinuity of the best-matching-unit
operation. However, in our extensive experimental studies, we have registered
only a negligible number of such cases.

We suggest the theory of non-autonomous dynamical systems as a possible
framework for studying representations of temporal structures in SOMs endowed
with recursive processing mechanism. Contractive fixed input maps are likely
to produce Markovian organizations of receptive fields on the RecSOM map.
Periodic or aperiodic dynamics of Fs can result in a ‘broken topography’ of RFs
and embody a potentially unbounded memory structure.
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