
ar
X

iv
:2

10
2.

00
66

7v
1

 [
cs

.L
G

]
 1

 F
eb

 2
02

1

Probabilistic Learning Vector Quantization on Manifold of Symmetric Positive Definite

Matrices

Fengzhen Tanga,b,∗, Haifeng Fenga,b,c, Peter Tinod, Bailu Sie, Daxiong Jif

aState Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, 110016, China
bInstitutes for Robotics and Intelligent Manufacturing, Chinese Academy of Sciences, Shenyang, 110169, China

cUniversity of Chinese Academy of Sciences, Beijing, 100049, China
dSchool of computer Science, University of Birmingham, Birmingham, B15 2TT, UK

eSchool of Systems Science, Beijing Normal University, Beijing,100875, China
fInstitute of Marine Electronics and Intelligent Systems, Ocean College, Zhejiang University, The Key Laboratory of Ocean Observation-Imaging Testbed of

Zhejiang Province, The Engineering Research Center of Oceanic Sensing Technology and Equipment, Ministry of Education, Zhoushan, 316021, China

Abstract

In this paper, we develop a new classification method for manifold-valued data in the framework of probabilistic learning vector

quantization. In many classification scenarios, the data can be naturally represented by symmetric positive definite matrices, which

are inherently points that live on a curved Riemannian manifold. Due to the non-Euclidean geometry of Riemannian manifolds,

traditional Euclidean machine learning algorithms yield poor results on such data. In this paper, we generalize the probabilistic

learning vector quantization algorithm for data points living on the manifold of symmetric positive definite matrices equipped with

Riemannian natural metric (affine-invariant metric). By exploiting the induced Riemannian distance, we derive the probabilistic

learning Riemannian space quantization algorithm, obtaining the learning rule through Riemannian gradient descent. Empirical

investigations on synthetic data, image data , and motor imagery EEG data demonstrate the superior performance of the proposed

method.

Keywords: Probabilistic learning vector quantization, learning vector quantization, symmetric positive definite matrices,

Riemannian geodesic distances, Riemannian manifold

1. Introduction

Symmetric positive definite (SPD) matrices are widely used

data structures in many disciplines, e.g. in medical imag-

ing (Penne et al., 2006) and computer vision as covariance re-

gion descriptors (Tuzel et al., 2006; Jayasumana et al., 2015),

as well as in brain-computer interface (BCI) (Congedo et al.,

2017), etc. Endowed with an appropriate metric, SPD matrices

form a curved Riemannian manifold. Consequently, many pop-

ular machine learning algorithms such as linear discriminant

analysis (LDA), learning vector quantization (LVQ), or support

vector machines (SVM) cannot be directly applied. One can

decide to ignore the nonlinear geometry of the manifold and

apply Euclidean machine learning methods directly. However,

this approach usually results in poor accuracy (Arsigny et al.,

2006). A more plausible way of dealing with the nonlinear

nature of the SPD manifold relies on first order local approx-

imations of the manifold by tangent spaces. For example,

(Barachant et al., 2012) proposed a tangent space linear dis-

criminate analysis (TSLDA) method which projects SPD matri-

ces into the tangent space at their Riemannian geometric mean

∗Corresponding author

Email addresses: tangfengzhen@sia.cn (Fengzhen Tang),

fenghaifeng@sia.cn (Haifeng Feng), P.Tino@cs.bham.ac.uk

(Peter Tino), bailusi@bnu.edu.cn (Bailu Si),

jidaxiong@zju.edu.cn (Daxiong Ji)

and then applies standard Euclidean LDA in the tangent space.

This idea was further extended in (Xie et al., 2017), where

sub-manifold learning for dimension reduction is used before

the tangent space approximation. However, the first-order ap-

proximations can lead to undesirable distortion, especially in

regions far from the tangent space origin (Tuzel et al., 2008;

Jayasumana et al., 2015). The mean of the SPD matrices is a

frequently used candidate for the tangent space origin, however,

no theoretical proof exists to guarantee the mean yields the best

tangent space approximation for the data (Tuzel et al., 2008).

To avoid the above approximation, Gaussian radial ba-

sis function kernel with geodesic distance is proposed in

(Jayasumana et al., 2015), such that classical kernel methods,

e.g. kernel SVM and kernel LDA, can be used. However, most

of these kernel classifiers are intrinsically binary. The one-vs-

all or one-vs-one voting strategy has to be used when multiple

classes are involved in the learning problem, making the task

very complicated. Moreover, as the kernel method maps the

data into high dimensional Reproducing Kernel Hilbert space

(RKHS), implicitly (Burges, 1998; Jayasumana et al., 2015),

the learned classifier is not straightforward to interpret.

In Euclidean spaces, learning vector quantization (LVQ), first

introduced in (Kohonen, 1986), has enjoyed great popularity

because of its simplicity, intuitive nature, and natural accom-

modation of multi-class classification problems. It is a proto-

type and distance based supervised classification algorithm that

Preprint submitted to Neural Networks February 2, 2021

http://arxiv.org/abs/2102.00667v1

has been used in a variety of applications such as image and sig-

nal processing, the biomedical field and medicine, and industry

(Nova and Estévez, 2014). Unlike deep networks, the LVQ sys-

tem is straightforward to interpret. The classifier constructed by

LVQ is parametrized by a set of labeled prototypes living in the

same space as the training data. The classification of an un-

known instance takes place as an inference of the class of the

closest prototype in terms of the involved metric. The learning

rules of LVQ are typically based on intuitive Hebbian learning,

making the implementation of the method very simple.

In this paper, we generalize the successful robust soft learn-

ing vector quantization method (Seo and Obermayer, 2003) to

the manifold of symmetric positive definite matrices. The

proposed probabilistic learning Riemannian space quantization

(PLRSQ) inherits the advantages of LVQ methods, i.e. simple,

intuitive, life-long learning, and natural multi-class classifier.

The classification method is derived in the probabilistic frame-

work, can produce confidence (probability) for its prediction,

and thus can be easily extended to classification with rejection

(Fischer et al., 2014; Ni et al., 2019) which can be of great use

in medical analysis and BCI application. Moreover, the pro-

posed method is implemented by Riemannian stochastic gradi-

ent descent algorithm avoiding the problems caused by approx-

imating the data with its projection onto the tangent space at a

particular point on the manifold.

The paper has the following structure: In Section 2 we briefly

review existing learning algorithms dealing with SPD matri-

ces. In Section 3, we concisely introduce LVQ and its variant –

probabilistic LVQ. In Section 4 we introduce relevant concepts

of the Riemannian manifold of SPD matrices. Our proposed

probabilistic learning Riemannian space quantization (PLRSQ)

method is described in details in Section 5. Experimental re-

sults are given in Section 6. Main findings and conclusions are

presented in Section 7.

2. Related Work

In this paper, we focus on the Riemannian manifold of SPD

matrices. The design of non-linear method on SPD matrices

has strong roots in the field of diffusion tensor imaging (DTI)

(Fletcher and Joshi, 2004; Penne et al., 2006; Fletcher et al.,

2004). SPD matrices have extensive applications in com-

puter vision (Jayasumana et al., 2015), e.g. covariance region

descriptors are widely used in object detection (Tuzel et al.,

2008), texture classification (Tuzel et al., 2006), face recogni-

tion, and object categorization (Wang et al., 2012). Recently,

SPD matrices become popular in the field of brain-computer

interface (BCI) for the design of electroencephalogram (EEG)

decoder (Ang et al., 2008; Congedo et al., 2017).

The properties and the calculation of the geometric mean of

SPD matrices have been studied in (Moakher, 2008), which

subsequently facilitates many learning algorithms for SPD

manifold-valued data. Among them, minimum distance to Rie-

mannian mean (MDRM) (Barachant et al., 2012) classification

algorithm is one of the most straightforward ones. It is an exten-

sion of the minimum distance to mean (MDM) classification al-

gorithm using Riemannian geometric distance and Riemannian

geometric mean. MDRM learns a cluster center (i. e. Rieman-

nian geometric mean) for each class of instances and predicts

the class label of an unknown instance by finding the center

with shortest Riemnnian geometric distance to the instance.

Principal geodesic analysis (PGA) presented in

(Fletcher and Joshi, 2004; Fletcher et al., 2004) projects

the data into the tangent space at the Riemannian geometric

mean of the SPD matrices, and subsequently apply Euclidean

principal component analysis (PCA). By the same way of

tangent space projection, Tangent space linear discriminate

analysis (TSLDA) (Barachant et al., 2012), which is an

extension of Euclidean linear discriminate analysis to the Rie-

mannian manifold of SPD matrices is developed. In (Xie et al.,

2017), tangent space of sub-manifold with linear discriminate

analysis or support vector machines is proposed. This method

first learns an optimal map from the original Riemannian space

of SPD matrices to the Riemannian sub-manifold through

jointly diagonalizing the Riemannian geometric means of the

two class data. The optimal map transforms the original SPD

matrices into lower dimensional SPD matrices where tangent

space projection is performed and then Euclidean LDA or

SVM is applied. In (Barachant et al., 2013), a Riemmanian

based kernel is constructed using scalar product defined in the

tangent plane at a reference point (usually geometric mean) in

the manifold. These aforementioned methods all suffer from

the drawback of approximating the manifold by tangent spaces

at a reference point in the manifold, and most of the methods

are restricted to the binary classification.

In (Jayasumana et al., 2015), log-Euclidean Gaussian kernel

on the Riemannian manifold of SPD matrices is proposed, us-

ing the log-Euclidean geodesic distance. These kernel methods

are free of tangent space approximation, but the computation of

kernel matrix is quite heavy (scales quadratically with the num-

ber of training examples), especially when the size of training

points is large. Moreover, the learned model of kernel methods

is difficult to interpret.

Our proposed probabilistic learning Riemannian space quan-

tization (PLRSQ) method is different from the existing methods

targeted for the SPD matrix-valued data. In particular, our pro-

posed PLRSQ method is implemented by Riemannian stochas-

tic gradient descent algorithm. Unlike TSLDA, it does not need

to approximate the data by projections to the tangent space at

a particular point on the manifold. Note that the Riemannian

stochastic gradient descent algorithm also introduces projec-

tions of SPD matrices to the tangent spaces, but only at a lo-

cal scale. Though the PLRSQ method shares some properties

with MDRM, it is potentially far more powerful than MDRM

in that, if needed, PLRSQ can learn multiple representatives for

each class, as opposed to only one center per class in MDRM.

Even with one prototype per class, the PLRSQ method shows

superior performance to MDRM, since MDRM finds the class

representatives in an unsupervised manner as class conditional

means of the training data. Our method is more computation-

ally efficient than the kernel methods with geodesic distances

as the training time of our proposed method scales linearly

with the number of training examples. Moreover, the learned

model of our method is easy to understand since explicit “class

2

representatives” (prototypes) are obtained during the course of

training. If desired, interpretability of our method could be en-

hanced by explicit incorporation of a representability term in

the cost function as in (Hammer et al., 2014).

3. Robust Soft Leaning Vector Quantization

Our approach is developed within the framework of learning

vector quantization (LVQ) (Kohonen, 1986). In this section, we

will briefly introduce LVQ.

Consider a training dataset (xi, yi) ∈ R
n × {1, ...,C}, i =

1, ..,m, where n is the dimension of the inputs, C is the num-

ber of different classes and m is the number of training exam-

ples. A typical LVQ classifier consists M (M ≥ C) prototypes

wi ∈ R
n, which are labeled by c(wi) ∈ {1, ...,C}. The set of

labeled prototype vectors is denoted as T = {(wi, ci)}
M
i=1

in this

paper. The classification is implemented as a winner-takes-all

scheme. For a data point x ∈ Rn, the output class is determined

by the class label of its closest prototype: i.e. ŷ(x) := c(wi) such

that i = arg min j d(x,w j), where d(·, ·) is a distance measure in

R
n.

There are many variants of LVQ algorithm. A detailed re-

view of LVQ method was given in (Nova and Estévez, 2014).

Here we will describe the robust soft learning vector quan-

tization (RSLVQ) based on likelihood ratio maximization

(Seo and Obermayer, 2003; Seo et al., 2003). An alternative

generalization of LVQ was termed generalized learning vector

quantization (GLVQ), which was based on margin maximiza-

tion (Sato and Yamada, 1996). Compared to GLVQ, RSLVQ

derived in a probabilistic approach, is more flexible in the case

of overlapping classes (Nova and Estévez, 2014).

RSLVQ algorithm learns the prototype locations based on

a statistic modeling of the given data distribution, i. e. the

probability density of the data is described by a mixture model.

It is assume that each component j of the mixture generates

data belonging to and only to one of the C classes denoted as

c j. The probability density p(x) of the data points x is modeled

as follows:

p(x|T) =

C
∑

y=1

∑

{ j:c j=y}

p(x| j)P(j) (1)

Here, P(j) is the probability that data points are generated by

a particular component j of the mixture. p(x| j) is the condi-

tional probability that this component j generates a particular

data point x. The conditional probability p(x| j) is a function

of prototypes w j, which is usually interpreted as the represen-

tative feature vector for all data points generated by compo-

nent j. A possible choice for p(x| j) is the normalized exponen-

tial form p(x| j) = K(j) exp f (x,w j). In (Seo and Obermayer,

2003), a Gaussian mixture is assumed, i. e. K(j) = (2πσ2
j
)−n/2

and f (x,w j) = −d(x,w j)/2σ
2
j
, where d(·, ·) is the squared Eu-

clidean distance, and every component is assumed to have equal

variance σ2
j
= σ2 and equal prior probability P(j) = 1/m for all

j. RSLVQ learns prototypes by maximizing the likelihood ratio

L =

m
∏

i=1

p(xi, yi|T)

p(xi|T)

via stochastic gradient ascent algorithm. p(x, y|T) =
∑

{ j:c j=y} p(x| j)P(j) is the probability density that a data point

x is generated by the mixture model for the correct class. The

learning rule of prototypes in the presence of one example (x, y)

is obtained by computing the derivative of the log likelihood ra-

tio with respect to w j (see (Seo and Obermayer, 2003)):

∆w j =
α

σ2

{

(Py(j|x) − P(j|x))(x − w j) if c j = y

−P(j|x)(x − w j) if c j , y
(2)

where 0 < α < 1 is the learning rate, Py(l|x) and P(l|x) are

assignment probabilities

Py(l|x) =
exp f (x,w j)

∑

{ j:c j=y} exp f (x,w j)
(3)

P(l|x) =
exp f (x,w j)

∑M
j=1 exp f (x,w j)

(4)

The learning rule reflects the fact that prototypes with the same

label as that of the data point are attracted to the data point,

while prototypes with different labels from the data point are

repelled.

We note that the log-likelihood ratio used in RSLVQ can

be extended to a more natural cross-entropy cost function em-

ployed in Probabilistic LVQ (PLVQ) (Villmann et al., 2018). In

fact, PLVQ coincides with RSLVQ if the only stochastic com-

ponent in the joint distribution p(x, y) over Rn × {1, 2, ...,C} is

the marginal over the inputs p(x) and the input-conditional class

distributions p(y|x) are delta-functions (see (Villmann et al.,

2018)). The framework of PLVQ is preferable in cases of gen-

uine class uncertainty in (at least some regions of) the input

space, leading to more representative class prototypes. Even

though we derive our method as an extension of RSLVQ to Rie-

mannian manifolds, the core ideas of our method can be applied

to PLVQ as well.

The above described RSLVQ is designed for classification of

vector-valued data, with the assumption of Gaussian mixture

model which relies on the Euclidean distance between the input

pattern x and the prototype w, i. e. f (x,w) =
−‖x−w‖2

2σ2 . In

the following sections, we generalize this method to deal with

data points that live in the Riemannian manifold of symmetric

positive definite matrices, where the function f (·, ·) depends on

the Riemannian geodesic distance between the input pattern and

the prototype.

4. Riemannian Manifold of SPD Matrices

Each n × n real symmetric positive definite (SPD) matrix has

the property: v
T Xv ≥ 0 for all nonzero v ∈ R

n. The space

S
+(n) of all n × n SPD matrices is not a vector space, since an

3

SPD matrix when multiplied by a negative scalar is no longer

SPD. In fact, S+(n) forms a convex cone in the n2-dimensional

Euclidean space. Hence, Euclidean metric is no longer suitable

to describe its geometry. A Riemannian metric can be intro-

duced to S
+(n), making S

+(n) a curved Riemannian manifold

(Fletcher and Joshi, 2004; Penne et al., 2006; Arsigny et al.,

2006; Jayasumana et al., 2015). Two popular Riemannian met-

rics have been proposed on S
+(n), namely affine-invariant Rie-

mannian metric (Penne et al., 2006) and Log-Euclidean metric

(Arsigny et al., 2006). The affine-invariant Riemannian metric

is also called the Riemannian natural metric and is the main

focus of this paper.

Let TXS
+(n) denote the tangent space to S

+(n) at point X ∈

S
+(n). The affine-invariant Riemannian metric or Riemannian

natural metric is defined as follows:

〈V1,V2〉X = Tr(V1X−1V2X−1) (5)

where V1, V2 ∈ TXS
+(n) and Tr is the trace operator. Note

that the tangent space TXS
+(n) is the space S(n) of symmet-

ric matrices. With the introduction of the Riemannian metric,

many geometric notions can be defined, for instance, the length

of a curve on the manifold. Formally, a curve on S
+(n) is a

differentiable path connecting two points X1,X2 ∈ S
+(n), i.

e. γ(t) : [0, 1] → S
+(n) with γ(0) = X1, γ(1) = X2, and

γ̇(t) ∈ Tγ(t)S
+(n). The length of the curve is defined as follows:

L(γ(t)) =

∫ 1

0

‖ γ̇(t) ‖γ(t) dt (6)

where ‖ · ‖X is the norm induced by the inner product 〈·, ·〉X.

A naturally parameterized curve (i.e. parametrized by arc

length) that minimizes the distance between two points on the

manifold is called geodesic curve. A geodesic curve at the point

X in the direction of V ∈ TXS
+(n) on S

+(n) has an analytic

expression :

γ(t) = X1/2 exp(tX−1/2VX−1/2)X1/2 (7)

where exp is the exponential of matrix. For a sym-

metric matrix V ∈ S(n), the matrix exponential exp(V)

can be computed via eigenvalue decomposition: exp(V) =

U diag(exp(λ1), ..., exp(λn)) UT , where λ1, ..., λn are eigenval-

ues of V, U is the matrix of eigenvectors of V.

The geodesic distance between two points on the manifold is

the length of the geodesic curve connecting them. On S
+(n), it

reads (Moakher, 2008):

δ(X1,X2) =‖ log(X−1
1 X2) ‖F=















n
∑

i=1

log2 λi















1/2

(8)

where log denotes the principal logarithm of matrix, ‖ · ‖F
represents the Frobenius norm, and λi, i = 1, ..., n are the

real eigenvalues of X−1
1

X2. Analogously to exp, we have

log(X) = U diag(log(λ1), ..., log(λn)) UT . An important prop-

erty of this geodesic distance is that it is affine-invariant, i.e.

δ(WT X1W,WT X2W) = δ(X1,X2),∀ W ∈ Gl(n) where Gl(n)

represents the general linear group, consisting of all nonsingu-

lar real matrices of rank n.

Denote the Riemannian gradient of a smooth real-valued

function f : S+(n) 7→ R at a point X ∈ S
+(n) by ∇X f . Given

a smooth curve γ : R → S
+(n) on S

+(n), the composite func-

tion f ◦ γ : t 7→ f (γ(t)) is a smooth function from R to R with

a well-defined classical derivative. The Riemannian gradient

∇X f is the unique tangent vector in TXS
+(n) satisfying

〈γ̇(0),∇X f 〉X =
d

dt
f (γ(t))|t=0, (9)

for all curves γ such that γ(0) = X. Thus, the computation of

Riemannian gradient can be performed through the calculation

of the classical derivative of the composite function f ◦ γ.

In a sufficiently small neighborhood B of X in S
+(n), it is

possible for each point Xi ∈ B to identify the tangent vector

Vi ∈ TXS
+(n), such that Vi = γ̇(0) and γ(t) the geodesic curve

between X and Xi. The Riemannian logarithm map operator

LogX : B → TXS
+(n) maps B on the manifold to the tangent

space at X, i. e. LogX(Xi) = Vi. The Riemannian exponential

map ExpX : TXS
+(n) → B is the inverse of Log, ExpX(Vi) =

γ(1) = Xi. In particular,

ExpX(Vi) = X1/2 exp(X−1/2ViX
−1/2) X1/2 (10)

LogX(Xi) = X1/2 log(X−1/2XiX
−1/2)X1/2. (11)

The logarithm map provides a way to obtain the tangent vec-

tor given two points in the manifold while the exponential map

provides a way to access to the corresponding point on the man-

ifold, given a tangent vector. With the definition of Riemannian

exponential map and logarithm map, we can transit between the

manifold and the tangent space and perform Riemannian gradi-

ent descent algorithms on the manifold.

5. Probabilistic Learning Vector Quantization on the Rie-

mannian Manifold of SPD Matrices

In this section we present a generalization of the probabilis-

tic learning vector quantization to the Riemannian space of

SPD matrices. Consider a C-class labeled data set {(Xi, yi)}
m
i=1

,

Xi ∈ S
+(n), yi ∈ {1, ...,C}. The classifier consists of a set

of M < m labeled prototypes living on S
+(n) , denoted by

W = {(W j, c j)}
M
j=1

.

Since the concept of Gaussian distributions and mixture of

Gaussian distributions can be generalized to the manifold of

symmetric positive-definite matrices (Said et al., 2017), follow-

ing (Seo and Obermayer, 2003), we assume that the marginal

probability density p(X) on S
+(n) that generated the data can

be approximated by a Gaussian-like mixture model, with one

component p(X| j) per prototype W j (there can be several pro-

totypes per class):

p(X|W) =

C
∑

y=1

∑

{ j:c j=y}

p(X| j) P(j). (12)

where the conditional probability p(X| j) is a Gaussian-like

function of the prototype W j,

p(X| j) ∝ e f (X,W j) (13)

4

with f (X,W j) =
−δ2(X,W j)

2σ2 and σ2 > 0 being a scale constant.

Let us consider a data point X and its true class label y. The

probability density that a data point X is generated by the mix-

ture model for the correct class, i.e. the class denoted by y is

given as follows:

p(X, y|W) =
∑

{ j:c j=y}

p(X| j)P(j) (14)

Following (Seo and Obermayer, 2003), we can maximize the

likelihood ratio to obtain the learning rule of prototypes:

Lr =

m
∏

i=1

p(Xi, y|W)

p(Xi|W)
(15)

Note that, according to Bayes’ theorem:

p(y|X;W) =
p(X, y|W)

p(X|W)
=

∑

{ j:c j=y} P(j)e f (X,W j)

∑M
i=1 P(i)e f (X,Wi)

(16)

where p(y|X;W) represents the conditional probability of as-

signing an label y to the input X. Thus the likelihood ratio given

by Eq. (15) is the same as the likelihood function:

L =

m
∏

i=1

p(yi|Xi;W) (17)

The learning rule of the prototypes can be obtained by maxi-

mization of the log likelihood, which is equivalent to minimiza-

tion of the negative log likelihood, via stochastic Riemannian

gradient descent (Bonnabel, 2013). The objective function, i. e.

the negative log likelihood, is given as follows:

E = − log L

= −

m
∑

i=1

log

∑

{ j:c j=yi}
P(j)e f (Xi ,W j)

∑M
j=1 P(j)e f (Xi,W j)

=

m
∑

i=1



















− log
∑

{ j:c j=yi}

P(j)e f (Xi ,W j)

+ log

M
∑

j=1

P(j)e f (Xi ,W j)



















(18)

According to Eq. (9), the Riemannian gradient of the objec-

tive function can be computed by the classical derivative of the

objective function along the geodesic curve on the manifold.

Given an example X with label y, let γl(t) be a geodesic curve

emitting from the l-th prototype Wl, l ∈ {1, ...,M}, in the direc-

tion of Vl ∈ TWl
S
+(n), according to the definition of geodesic

curves given by Eq. (7),

γl(t) =W
1/2

l
exp(tW

−1/2

l
VlW

−1/2

l
)W

1/2

l
.

If cl = y, the objective function for this example along the curve

γl(t) reads:

ξ(W1, ..., γl(t), ...,WM)

= − log



















∑

{ j:c j=y, j,l}

P(j)e f (X,W j) + P(l)e f (X,γl(t))



















+ log

















M
∑

j=1, j,l

P(j)e f (X,W j) + P(l)e f (X,γl(t))

















Then, we can compute the Riemannian gradient of the objective

function ξ at point Wl denoted as ∇Wl
ξ as follows:

〈Vl,∇Wl
ξ〉Wl

=
d

dt
ξ(W1, ..., γl(t), ...,WM)

∣

∣

∣

∣

∣

t=0

= −
P(l)e f (X,γl(t))(− 1

2σ2)
dδ2(X,γl(t))

dt
∑

{ j:c j=y, j,l} P(j)e f (X,W j) + P(l)e f (X,γl(t))

∣

∣

∣

∣

∣

t=0

+
P(l)e f (X,γl(t))(− 1

2σ2)
dδ2(X,γl(t))

dt
∑M

j=1, j,l P(j)e f (X,W j) + P(l)e f (X,γl(t))

∣

∣

∣

∣

∣

t=0

Denote by P(l|X, y) and P(l|X) the posterior probabilities that

the data point X is assigned to the component l of the mixture

among the prototypes belonging to class y and among all pro-

totypes, respectively:

P(l|X, y) =
P(l)e f (X,Wl)

∑

{ j:c j=y} P(j)e f (X,W j)

P(l|X) =
P(l)e f (X,Wl)

∑M
j=1 P(j)e f (X,W j)

Then we can simplify the calculation of 〈Vl,∇Wl
ξ〉Wl

as fol-

lows:

〈Vl,∇Wl
ξ〉Wl

=
1

2σ2
(P(l|X, y) − P(l|X))

dδ2 (X, γl(t))

dt

∣

∣

∣

∣

∣

t=0

(19)

Note that P(l|X, y) describes the posterior probability that the

data point X is assigned to the component l of the mixture, given

that the data point was generated by the correct class y. Accord-

ing to Bayes’ rule, P(l|X, y) = P(l, y|X)/P(y|X), where P(y|X)

is given in (16). Since the prototype Wl here also belongs to

class y, if Wl is picked, class y will be automatically picked.

Therefore we have P(l, y|X) = P(l|X). Consequently, we can

get above expression for P(l|X, y).

If cl , y, the objective function is given as follows:

ξ(W1, ..., γl(t), ...,WM)

= − log
∑

{ j:c j=y}

P(j)e f (X,W j)

+ log

















M
∑

j=1, j,l

P(j)e f (X,W j) + P(l)e f (X,γl(t))

















5

and Riemannian gradient ∇Wl
ξ is computed as follows:

〈Vl,∇Wl
ξ〉Wl

=
d

dt
ξ(W1, ..., γl(t), ...,WM)

∣

∣

∣

∣

∣

t=0

=
P(l)e f (X,γl(t))(− 1

2σ2)
dδ2(X,γl(t))

dt
∑M

j=1, j,l P(j)e f (X,W j) + P(l)e f (X,γl(t))

∣

∣

∣

∣

∣

t=0

= −
1

2σ2
P(l|X)

dδ2 (X, γl(t))

dt

∣

∣

∣

∣

∣

t=0

(20)

Denote the Riemannian gradient of the squared Riemannian

distance at the point Wl by ∇Wl
δ2

l
. We have:

〈Vl,∇Wl
δ2

l 〉Wl
=

dδ2 (X, γl(t))

dt

∣

∣

∣

∣

∣

t=0

(21)

The Riemannian gradients of the objective function ∇Wl
ξ are

then

∇Wl
ξ =
∇Wl
δ2

l

2σ2

{

(P(l|X, y) − P(l|X)) , if cl = y

−P(l|X), if cl , y
(22)

The Riemannian gradient ∇Wl
δ2

l
is given as follows:

∇Wl
δ2

l = −2LogWl
(X) (23)

with LogWl
(·) defined by Eq. (11). Detailed calculation of the

Riemannian Gradient ∇Wl
δ2

l
is given in the Appendix A. Sub-

stituting (23) into (22), we can obtain:

∇Wl
ξ =

1

σ2
·

{

− (P(l|X, y) − P(l|X)) LogWl
(X), cl = y

P(l|X)LogWl
(X), cl , y

and through moving along Riemannian gradient in the tangent

space and mapping back onto the manifold (through Rieman-

nian exponential map), we obtain the prototype learning rule:

Wnew
l = ExpWl

[

α

σ2
LogWl

(X)·

{

(P(l|X, y) − P(l|X)) if cl = y

(−P(l|X)) if cl , y

]

(24)

where 0 < α < 1 is the learning rate. Apparently, the factor

P(l|X, y) − P(l|X) is always positive. In fact,

P(l|X, y) − P(l|X) =
P(l)e f (X,Wl)

∑

{ j:c j,y} P(j)e f (X,W j)

(

∑

{ j:c j=y} P(j)e f (X,W j)
) (

∑M
j=1 P(j)e f (X,W j)

)

Consequently, analogous to the LVQ in Euclidean spaces,

wrong prototypes are pushed away from X, while correct proto-

types are dragged closer to X, to the extend to which prototype

Wl “stand out” for X, among the correct prototypes. Since we

have a probabilistic formulation, all prototypes are moved, in-

stead of the closest ones to X only, but to the extent they are

“relevant to” X.

The proposed probabilistic learning Riemannian space quan-

tization algorithm is then summarized by Algorithm 1.

Algorithm 1 Probabilistic learning Riemannian space quanti-

zation algorithm (PLRSQ)

Input: m training examples (X1, y1), ..., (Xm, ym), where Xi ∈

S
+(n) and yi ∈ {1, ...,C}, a positive scalar σ2, a small learn-

ing rate α

Output: M labeled prototypes (W1, c1), ..., (WM , cM), where

Wi ∈ S
+(n)) and ci ∈ {1, ...,C}

1: Initialize Wi by the Riemannian mean of examples labeled

by ci plus small random perturbation.

2: while a stopping criterion is not reached do

3: Randomly select a training example (Xi, yi)

4: for l = 1, ...,M do

5: Compute

P(l|Xi, yi) =
e−δ

2(Xi ,Wl)/2σ
2

∑

{ j:c j=yi}
eδ

2(Xi ,W j)/2σ2

and

P(l|Xi) =
e−δ

2(Xi ,Wl)/2σ
2

∑M
j=1 e−δ

2(Xi ,W j)/2σ2

6: end for

7: for l = 1, ...,M do

8: if cl = yi then

9: Vl =
α
σ2 (P(l|Xi, yi) − P(l|Xi))) LogWl

(Xi)

10: else

11: Vl = −
α
σ2 p(l|Xi)LogWl

(Xi)

12: end if

13: Wl ← ExpWl
(Vl)

14: end for

15: end while

6. Experiments

In this section, we verify our proposed probabilistic learn-

ing Riemannian space quantization on both synthetic and real

world data sets. Our proposed probabilistic learning Rieman-

nian Space quantization (PLRSVQ) with (PLRSVQ-AN) and

without (PLRSVQ-Const) annealing in variance were exam-

ined. For PLRSVQ-Const, σ2
= σ2

opt was used, while for

PLRSVQ-AN, following (Seo and Obermayer, 2003), an an-

nealing schedule for the scale (temperature) parameter σ2 was

used: σ2(t) = σ2(t − 1) · β(t), β(t) = (β(t − 1))1.1, where

β(0) = 0.99 and σ2(0) = σ2
opt is a tunable hyper-parameter.

The annealing was terminated when σ2(t) < σ2
opt − 0.4

(Seo and Obermayer, 2003). The learning rates are continu-

ously reduced (Schneider et al., 2009) as α(t) =
nξ

100
· 0.01t/T ,

where n is the rank of the SPD matrices, ξ represents the num-

ber of prototypes per class, T denotes the number of sweeps

through the training data, and t = 1, ..., T . Since the classifica-

tion data sets used in this study are balanced, we set the class

priors to P(l) = 1
M
, l = 1, ...,M.

6.1. Artificial Data sets

We first generated synthetic data set to verify our proposed

approach. The instances are generating in polar coordinates ac-

6

cording to the following equations:

X =

n
∑

j

λ ju ju
T
j (25)

where λ j represents the j-th eigenvalue of X and u j is the cor-

responding eigenvectors. Here, we choose n = 10.

We designed four sets of eigenvalues. The first set of eigen-

values is from a linearly decreasing function:

η̃1(j) = 13 − j, j = 1, ..., n,

The second set of eigenvalues follows an exponentially decreas-

ing function:

η̃2(j) = 1 + 100 exp(−0.5 j), j = 1, ..., n,

The third set of eigenvalues is also follows from a linearly de-

creasing function but with different slope:

η̃3(j) = 13 − 0.5 j, j = 1, ..., n,

The fourth set of eigenvalues follows from a reciprocal func-

tion:

η̃4(t) =
1

j
, j = 1, ..., n,

For all four sets of eigenvalues, the mean of the eigenvalues is

normalized to 1, i. e.

ηi(t) = nη̃i(t)/

n
∑

q=1

η̃i(q)

where i = 1, ..., 4.

The four sets of eigenvalues are plotted in Fig. 1.

1 2 3 4 5 6 7 8 9 10
j

0

1

2

3

4
1
2
3
4

Figure 1: Plot of the four sets of eigenvalues.

We designed two sets of eigenvectors (basis). To that end,

we generated two n × n random real matrices (each element

generated i.i.d. fromN(0, 1). Then, for each matrix, the Gram-

Schmidt orthogonalization was used to obtain the orthogonal

basis - the set of eigenvectors. We denote the two sets of eigen-

vectors as {vi
1
, ..., vi

n}, i = 1, 2 respectively.

Two synthetic datasets were generated, named as SynI, SynII

respectively. For SynI, the first two sets of eigenvalues and the

two sets of eigenvectors are combined to produce four classes of

instances. The first two classes share the first set of eigenvalues,

but each with different sets of eigenvectors. The remaining two

classes share the second set of eigenvalues, and also each with

different sets of eigenvectors. When instances were generated,

random noise were injected in both its eigenvalues and eigen-

vectors. The eigenvalues λ j, j = 1, ..., n of the instance were

created according to uniform distribution U(ξ1(j)− ǫ, ξ1(j)+ ǫ)

or U(η2(j)− ǫ, η2(j)+ ǫ), depending on its class label. Here we

chose ǫ = 0.1. The eigenvectors u j, j = 1, ..., n of the instance

were the orthogonalized version of v
1
j
+ ǫ or v

2
j
+ ǫ through

Gram-Schmidt orthogonalization depending on its label, where

ǫ followsN(0, ν2I). Here we chose ν = 0.3. Once, the eigenval-

ues and eigenvectors of the instance were obtained, the instance

can be acquired by Eq. (25).

The SynII is also of four classes and was generated using

the four sets of eigenvalues and first set of eigenvectors. In-

stances of each class has its own set of eigenvalues but share

the common eigenvectors. Each instance was created following

the same procedure of SynI.

The synthetic datasets are summarized in Table 1. For both

the SynI and SynII, a training set, a validation set, and a test

set were generated independently. All three sets contained 250

instances per class. The generating process of each dataset was

repeated for 30 times, the following results are the average re-

sults over the 30 runs.

Table 1: Descriptions of synthetic datasets. l and k denotes the number of sets

of eigenvalues and eigenvectors that are used to generate the data, respectively.

C denotes the number of classes, n denotes the rank of the SPD matrices, #Train

represents the number of training instances,#Validation denotes the number of

validation instances, while #Test is the number of test instances.

Name l k C n #Train #Validation #Test

SynI 2 2 4 10 250 ∗ 4 250 ∗ 4 250 ∗ 4

SynII 4 1 4 10 250 ∗ 4 250 ∗ 4 250 ∗ 4

6.1.1. Hyper-parameter Sensitivity Analysis

To understand the stability of the PLRSQ method with re-

spect to the hyperparameter σ2
opt, we show in Fig. 2, the av-

eraged classification rates with standard derivations across 30

runs on test sets, as a function of σ2
opt. One prototype per class

was used. The models were trained for 100 epochs. From Fig. 2

we can see that the proposed PLRSQ method is sensitive to the

parameter of σ2. With well tuned σ2, both PLRSQ-AN and

PLRSQ-Const can outperform the MDRM algorithm, while

PLRSQ-AN shows slightly better performance than PLRSQ-

Const. This also suggests that the PLRSQ algorithm is differ-

ent from MDRM even with one prototype per class. Instead

of learning class centers like MDRM does, PLRSQ learns the

decision boundary.

7

0.45 2 4 6 10 50
2
opt

0.955

0.96

0.965

0.97

0.975

0.98

0.985

A
cc

ur
ac

y

PLRSQ-Const
PLRSQ-AN
MDRM

(a) SynI dataset

0.45 1.5 3 4.5 6 9
2
opt

0.86

0.87

0.88

0.89

0.9

0.91

0.92

0.93

A
cc

ur
ac

y

PLRSQ-Const
PLRSQ-AN
MDRM

(b) SynII dataset

Figure 2: The averaged performance over 30 runs together with the standard

derivation as a function of σ2
opt on the synthetic data set

Table 2: Averaged accuracy over 30 trials together with standard derivations

under different learning rates

Learning rate nξ \ 50 nξ \ 100 nξ \ 200

SynI 97.50 ± 0.46 97.43 ± 0.43 97.41 ± 0.47

SynII 89.78 ± 0.86 89.49 ± 0.92 88.78 ± 1.00

6.1.2. Investigation on the Impact of Learning Rate

As mentioned in the beginning of this section, we used the

decaying learning rate α(t) =
nξ

100
· 0.01t/T . It is worth noting

that the logarithm and exponential maps are only accurate in a

sufficiently small neighborhood on the manifold. To see the im-

pact of the initial learning rate on our algorithm, we increased

and decreased α(0) to
nξ

50
and

nξ

200
. The results1 are given in

Table 2. To remove the impact of σ2, we set σ2
= 1.5 (this

value yielded acceptable performance for both synthetic data

sets). Again, one prototype per class was used. The model was

trained for 100 epochs. Averaged performance over 30 trials to-

gether with standard derivation is reported. Table 2 reveals that

these changes in the learning rate did not lead to any dramatic

difference.

As we decreased the learning rate, the performance on the

SynII data set slightly degenerated. This could be because

we kept training the model for 100 epochs though we used a

smaller learning rate. We then increased the number of training

1We thank one of the anonymous reviewers for the suggestion.

epochs to 150 for learning rate α(t) =
nξ

200
· 0.01t/T , the per-

formance of our method on the SynII data set increased to an

average accuracy of 89.23 (± 0.98). Our method will eventually

converge as long as the learning rate (in annealing schedule) is

small. However, if we used a smaller learning rate, we need to

train the model longer to obtain the same performance. Thus,

a balance between the choice of the learning rate and the train-

ing time need to be considered. Our future work will consider

self-adapted learning rate.

6.1.3. Investigation on Convergence

To see the convergence property of the PLRSQ method, we

show in Fig. 3, the evolution of cost function, training error,

and test error during the training course of the models. The

models were trained for 100 epochs. We selected σ2
opt = 8

for both PLRSQ-Const and PLRSQ-AN on dataset SynI, while

σ2
opt = 0.5 for PLRSQ-Const and σ2

opt = 0.45 for PLRSQ-AN

on dataset SynII, as models with these values produced best

classification rates on test sets.

0 10 20 30 40 50 60 70 80 90 100
t

0

200

400

600

800

1000

C
os

t

PLRSQ-Const
PLRSQ-AN

(a) Cost on SynI

0 10 20 30 40 50 60 70 80 90 100
t

0

2000

4000

6000

8000

10000

12000

14000

C
os

t

PLRSQ-Const
PLRSQ-AN

(b) Cost on SynII

0 10 20 30 40 50 60 70 80 90 100
t

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

T
ra

in
 E

rr
or

PLRSQ-Const
PLRSQ-AN

(c) Training error on SynI

0 10 20 30 40 50 60 70 80 90 100
t

0

0.1

0.2

0.3

0.4

0.5

T
ra

in
 E

rr
or

PLRSQ-Const
PLRSQ-AN

(d) Training error on SynII

0 10 20 30 40 50 60 70 80 90 100
t

0.02

0.03

0.04

0.05

0.06

0.07

0.08

T
es

t E
rr

or

PLRSQ-Const
PLRSQ-AN

(e) Test error on SynI

0 10 20 30 40 50 60 70 80 90 100
t

0

0.1

0.2

0.3

0.4

0.5

T
es

t E
rr

or

PLRSQ-Const
PLRSQ-AN

(f) Test error on SynII

Figure 3: Performance change during training course on data sets SynI and

SynII .

As given by Fig. 3 (a), (c) and (e), for data set SynI,

the PLRSQ-Const and PLRSQ-AN show similar behavior dur-

ing the training course. The costs of both PLRSQ-Const and

8

0 10 20 30 40 50 60 70 80 90 100
t

0

0.1

0.2

0.3

0.4

0.5

2

(a) Changes of σ2

0 10 20 30 40 50 60 70 80 90 100
t

0.15

0.2

0.25

0.3

0.35

0.4

0.45

2

(b) Slower changes of σ2

0 10 20 30 40 50 60 70 80 90 100
t

0

200

400

600

800

1000

C
os

t

(c) Costs with slower changes of σ2

0 10 20 30 40 50 60 70 80 90 100
t

0.05

0.1

0.15

0.2

0.25

0.3

0.35

T
es

t E
rr

or

(d) Test error with slower changes of σ2

Figure 4: Performance change during training course on SynII with slower

changes of σ2

PLRSQ-AN decrease monotonically. The PLRSQ-AN con-

verges to slightly smaller value compared to PLRSQ-Const.

The training error of both PLRSQ-Const and PLRSQ-AN

slightly fluctuate and eventually converge to a similar stable

value. The same trend is found for test error. However, for

data set SynII, the behavior of PLRSQ-Const and PLRSQ-AN

is completely different. The PLRSQ-Const shows nice mono-

tonic convergence learning curve, but the PLRSQ-AN gives

non-monotonic learning curve. However, the PLRSQ-AN con-

verge to smaller values compared to PLRSQ-Const for cost,

training error, and test error on data set SynII. Overall, the

PLRSQ-AN algorithm shows better performance compared to

PLRSQ-Const, but may deliver non-monotonic learning curve

on some data set.

The non-monotonic learning curve appears to be caused by

the heuristic annealing schedule ofσ2. The time evolution ofσ2

during training is shown in Figure 4a. It initially changes very

fast. When using a slower decay schedule by fixing β to 0.99

(see Figure 4b), we can obtain a naturally converging learning

curve (Figures 4c and 4d). This is in agreement with the find-

ings in Schneider et al. (2010) that heuristic annealing schedule

of σ2 may lead to non-monotonic learning curves in RSLVQ. In

our future work, we will consider a systematic treatment of σ2,

instead of the current heuristic schedule.

6.1.4. Performance Comparison

We compared the final performance of our proposed method

with the MDRM method. We trained the PLRSQ algorithms on

the training set, and test the algorithms using validation set and

test set, respectively. The hyperparameter σ2
opt were selected

from 0.45 to 50 based on the validation set performance. The

number of prototypes per class and training epochs were se-

lected from {1, 2, 3}, and {20, 50, 100}, respectively, also based

on the validation set performance. The test performance with

optimal hyper-parameters was reported. As the MDRM method

consists no tuning parameters, to provide a fair comparison, we

trained MDRM with both training and validation sets and tested

it using test set.

Table 3: Comparison of accuracy between our method and MDRM on synthetic

data sets. Averaged accuracy over 30 runs along with standard deviation is

given.

Method SynI SynII

MDRM 0.9737 ± 0.0053 0.9074 ± 0.0089

PLRSQ-Const 0.9765 ± 0.0052 0.9051 ± 0.0107

PLRSQ-AN 0.9770 ± 0.0055 0.9211 ± 0.0073

The test set classification performance (averaged accuracy

over 30 runs with standard deviation) on synthetic datasets

SynI and SynII is presented in Table 3. The optimal param-

eters (i.e. σopt, number of prototypes per class, and train-

ing epochs) are listed in the Table B.7 in Appendix B. For

data set SynI, PLRSQ with (PLRSQ-An) and without (PLRSQ-

Const) annealing in variance preforms significantly better than

the MDRM method (p = 2.35 × 10−6 and p = 4.21 × 10−5 via

non-parametric Wilcoxon signed-rank test (Wilcoxon, 1945),

respectively). The performance of PLRSQ with annealing in

variance on data set SynI shows slightly better performance

than that without annealing in variance (p = 0.24). For data

set SynII, PLRSQ with annealing in variance preforms signifi-

cantly better than the MDRM method (p = 1.71×10−6) and the

PLRSQ without annealing in variance (p = 3.48×10−6), while

there is no significant difference between the MDRM method

and PLRSQ without annealing in variance (p = 0.48).

Since PLRSQ with annealing in variance shows better gen-

eralization performance, we used this version of PLRSQ in the

following experiments.

6.1.5. Nonlinear Riemannian Structure Verification

To see the impact of the nonlinear Riemannian struc-

ture, we compared the proposed PLRSQ method with the

baseline robust soft learning vector quantization (RSLVQ)

(Seo and Obermayer, 2003) method that utilizes Euclidean dis-

tance to measure the distance between the manifold-valued in-

stance and the corresponding prototype, totally ignoring the

nonlinear structure. The updated prototypes were restricted

to be positive definite as follows: If, following the eigen-

decomposition of W, negative eigenvalues were set to 0, we

would obtain the projection (in the L2 sense) of W onto the

space of symmetric positive semi-definite matrices. We impose

a small threshold τ > 0 and replace all negative eigenvalues

of W, as well as the eigenvalues smaller than τ, by τ. In this

way the prototypes are projected onto the space of SPD matri-

ces. Hence, the method can be viewed as a kind of projected

gradient descent. In the experiments we used τ = 10−4.

Following PLRSQ, the annealing in variance was used in

RSLVQ and the corresponding hyper-parameters were tuned

using validation data sets. Selected parameters were given in

Table B.7.

9

It may be also interesting to compare our method with

generalized matrix learning vector quantization (GMLVQ)

(Hammer and Villmann, 2002) or generalized tangent learn-

ing vector quantization2 (Saralajew and Villmann, 2016). Such

methods automatically learn adaptive Mahalobis distances be-

tween data points and class prototypes, providing optimal class

discrimination. Learning of the metric is purely driven by the

classification task. The learnt metric usually points to a low-

dimensional discriminatory subspace. The data manifold itself

is accounted for only implicitly and exclusively through the

data sample. In cases of high-dimensional data, the manifold

structure cannot be accounted for easily when the samples are

relatively small. In our case, we know the Riemannian manifold

structure of SPD matrices and take the full use of it when for-

mulating PLRSQ. Of course, one can argue that from the per-

formance perspective, a good out-of-sample performance may

be satisfactory, even though the learnt metric is driven by con-

siderations other than accounting for the data manifold accu-

rately. We thus provide a performance comparison between our

method and GMLVQ/RSLVQ to assess the usefulness of explic-

itly taking the Riemannian manifold structure of SPD matrices

into an account (see Table 4). The number of prototypes per

class and training epochs in GMLVQ were also selected from

{1, 2, 3} and {20, 30, 100}, respectively, based on the validation

set performance. Selected parameters were given in Table B.7.

GMLVQ cannot be directly used for data points of SPD matri-

ces, as it can not preserve the positive definiteness of the con-

sidered SPD matrices. We therefore again apply the projection

procedure described above for RSLVQ to the updated proto-

types. The results are given in Table 4.

Table 4: Performance comparison between probabilistic learning vector quan-

tization using Riemannian geodesic distance (PLRSQ), Euclidean distance

(RSLVQ), and Mahalobis distance (GMLVQ) in the space of SPD matrices on

synthetic data sets.

Method SynI SynII

RSLVQ 0.9407 ± 0.0083 0.7752 ± 0.0125

GMLVQ 0.9361 ± 0.0078 0.8191 ± 0.0155

PLRSQ 0.9770 ± 0.0055 0.9211 ± 0.0073

Table 4 suggests that the method using Riemannian geodesic

distance (PLRSQ) can significantly outperform RSLVQ and

GMLVQ on both synthetic data sets in terms of classification

accuracy. Exploiting the nonlinear Riemannian structure of the

data manifold through Riemannian geodesic distance can in-

deed lead to improved classification performance.

6.2. Image Classification

The ETH-80 dataset contains 8 categories with 10 objects

each and 41 images per object. Following (Jayasumana et al.,

2015), we used 21 randomly chosen images from each ob-

ject to train the classifier and the rest to evaluate the out-of-

sample classification accuracy. For each image, we used a sin-

gle 5 × 5 covariance descriptor calculated from the features

2We are thankful to one of the anonymous reviewers for this suggestion.

[x, y, I, |Ix|, |Iy|], where x, y are pixel locations and I, Ix, and Iy

are corresponding intensity and derivatives (Jayasumana et al.,

2015). The split of training and test set was randomly and inde-

pendently repeated 20 times. The models were trained for 100

epochs.

0.45 1.5 3 4.5 6 9
2
opt

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

3C
4C
5C
6C
7C
8C

(a) Classification Performance of the proposed method for

different σ2
opt with 2 prototype per class. Different marked

curves correspond to tasks of identifying different number

of categories, e. g. the curve 3C denotes as that of identi-

fying 3 categories of the images.

1 2 3 4 5 6
Number of Prototypes per Class

0.7

0.75

0.8

0.85

0.9

0.95

1

A
cc

ur
ac

y

3C
4C
5C
6C
7C
8C

(b) Classification accuracy as a function of the number of

prototypes per class for identifying different number of

categories in the ETH80 dataset.

Figure 5: Classification performance on ETH80 dataset under different settings.

To understand the stability the PLRSQ method with respect

to the hyperparameter σ2
opt in classification tasks with increas-

ing number of classes, we show in Fig. 5a the mean classifica-

tion rates with standard deviations across 20 splits, as a function

σ2
opt. Two prototypes per class was used. The six curves corre-

spond to performances on tasks with 3, 4, ...,8 classes. The

classes were ordered as follows: apple, car, cow, cup, dog,

horse, pear and tomato. Fig. 5b presents classification rates of

PLRSQ as a function of the number of prototypes per class. The

value of σ2
opt was set through 5-fold cross-validation using val-

ues ranging from 0.45 to 50. Both figures indicate a decreasing

performance trend as more categories are involved in the classi-

fication task. Interestingly, identifying 6 categories (denoted as

6C in the Fig. 5a and Fig. 5b) yielded worse performance than

identifying 7 or 8 categories. One possible reason is that dog,

horse, and cow are rather difficult to distinguish. However,the

last two classes pear and tomato are more easily distinguishable

10

from the other classes. This is collaborated by the performance

drop of MDRM on 6 categories (see Table 5).

Table 5 compares the performance of PLRSQ and MDRM

with Affine-Invariant metric with that of k-means(KM) and

kernel k-means (KKM) on Riemannian manifolds with Log-

Euclidean metric on the ETH80 data set (results taken from

Jayasumana et al. (2015), only mean classification rates were

reported). For PLRSQ and MDRM we provide the mean per-

formances and standard deviations across the 20 data splits.

Compared with all three methods, PLRSQ achieved a superior

performance.

Table 5: Comparison of our proposed method with k-means(KM) and kernel

k-means (KKM) on Riemannian manifolds with Log-Euclidean metric.

C KM KKM MDRM PLRSQ

3 75.00 94.83 88.76 ± 0.75 98.95 ± 0.55

4 73.00 87.50 83.61 ± 0.60 98.10 ± 0.53

5 74.60 85.90 68.85 ± 0.77 94.27 ± 0.74

6 66.50 74.50 60.03 ± 0.65 86.59 ± 1.41

7 59.64 73.14 63.46 ± 0.49 88.56 ± 1.04

8 58.31 71.44 63.16 ± 0.60 89.09 ± 0.95

Admittedly, on image classification tasks, deep convolutional

neural networks (CNN) and related approaches can implicitly

learn to handle the underlying structure of the input space and

no doubt can achieve performances that are difficult to beat.

However, they need large samples for robust learning of the

multitude of free parameters. Instead, our proposed PLRSQ

method can learn on comparatively small samples, since the

model capacity can be low and is easily controlled by the num-

ber of prototypes used for each class. To illustrate the robust-

ness of our method in the case of reduced sample sizes, a large

image data set CIFAR-10 (Krizhevsky, 2009) containing 50000

training and 10000 test images organized in 10 classes was

downsampled in a controlled manner. In particular, we ran-

domly drew 200, 500, 1000, 5000, 10000, and 20000 images

from the training set (in a stratified manner) to train our method,

as well as the VGG net (Simonyan and Zisserman, 2015), a rep-

resentative deep CNN method. The methods were then ver-

ified on the hold-out set of 10000 test images. The random

downsampling of training images was repeated 5 times. We re-

port the average performance together with standard derivation

across the 5 runs.

As for the VGG network, the 11 layer structure was used

(detailed configuration is given by A in Table 1 in (Krizhevsky,

2009)). Each network was trained for 100 epochs. Each VGG

network was trained for 100 epochs. Random initialization, as

well as using VGG pretrained on the ImageNet dataset were

considered. Note that the pretraining gives VGG an advan-

tage since pre-training involved presentation of many other

training instances and thus useful hints of prior knowledge

that PLRSQ cannot have. Nevertheless, we included the pre-

trained VGG to judge to what extent can pretraining on the

ImageNet data help the more complex VGG model cope with

limited sample sizes. For random initialization, the learning

rate was annealed according to the exponential decay sched-

ule, i.e. α(t) = 0.01 ∗ 0.99t. For pre-trained VGG, a smaller

learning rate α(t) = 0.001 ∗ 0.99t was found to be preferable

since the network needed to perform fine tuning to the new

data set only. As for our method, the number of prototypes

per class and the hyperparameter σ2
opt were chosen from 1 to

5, and 0.45 to 5 , respectively, via 5-fold cross validation on

training set. Following (Vemulapalli and Jacobs, 2015), each

image is represented by 9 × 9 covariance descriptor calculated

from the features [x, y,R,G, B, |Ix|, |Iy|, |Ixx|, |Iyy|], where x, y are

pixel locations and I, Ix, and Iy are corresponding intensity and

derivatives, Ixx and Iyy are corresponding second order partial

derivative 3.

The mean test accuracy curves (together with ± standard de-

viation bars) are shown as functions of the number of training

examples in Fig. 6. When the training sample is small, our

method performed better than the randomly initialized VGG

net, but, as expected, our method consistently performed worse

than the pre-trained VGG net.

Moreover, compared with the VGG net, our method is much

more computationally efficient. The VGG net considered in this

paper has 133 million free parameters, while our method oper-

ates with at most 4051 parameters (max 5 prototypes per class).

Training times per epoch of the VGG net and our model (in

the most complex case of 5 prototypes per class) are presented

in Figure. 7. The VGG net was implemented in Python, our

method was coded in Matlab. The two methods were run using

the same computer without GPU. The test time of the VGG net

on the entire set of 10000 instances was roughly 26.3 seconds,

while the test time of our method (5 prototypes per class) was

less than half that (approximately 10.5 seconds).

The training time of our method depends linearly on the num-

ber of training instances. For each training instance, the method

needs to compute its Riemannian distance to all prototypes. The

calculation of the Riemannian distance involves eigenvalue de-

composition. The time complexity of eigenvalue decomposi-

tion for an n × n matrix is (at most) O(n3). Thus, the time

complexity of our algorithm is O(Mmn3), where M represents

the number of prototypes, m denotes the number of training in-

stances, and n is the rank of training instances (SPD matrices).

6.3. Motor Imagery Classification

We also tested PLRSQ on the task of motor imagery clas-

sification used in the BCI competition IV (Tangermann et al.,

2012). In particular, we used data set 2a since this was the only

dataset with non-binary motor imagery tasks. We represented

the electroencephalogram (EEG) recording during each motor

imagery task through the sample covariance matrix, summa-

rizing spatial information in the signal with temporal content

integrated out Congedo et al. (2017).

The data set 2a in the BCI competition IV consists of EEG

signals from 9 healthy subjects who were performing four dif-

ferent motor imagery tasks, i.e. imagination of the movement

of the left hand, right hand, both feet and tongue. The signals

3We have tried using 5 × 5 covariance descriptor. The performance of our

method gives better performance when using 9 × 9 covariance descriptor.

11

200 500 1000 5000 10000 20000
Number of Training Examples

20

30

40

50

60

70

80

90

T
es

t A
cc

ur
ac

y

PLRSQ
VGG
Pre-trained VGG

Figure 6: Out-of-sample accuracy as a function of the number of training exam-

ples for the PLRSQ method and both randomly initialized and pretrained VGG.

200 500 1000 5000 10000 20000
Number of Training Examples

0

500

1000

1500

2000

2500

3000

T
ra

in
in

g
T

im
e

pe
r

E
pc

oc
h

PLRSQ
VGG

Figure 7: Training time per epoch changes as a function of the number of train-

ing examples.

were recorded by placing 22 electrodes distributed over sensori-

motor area of the subject at a sampling rate of 250 Hz. For each

subject, two sessions were recorded on two different days, each

containing 288 trials with 72 trials per class (one day consti-

tuted the training data, the other out-of-sample test set). At each

trial, a cue was given in the form of an arrow pointing either

to the left, right, down or up, corresponding to one of the four

classes, to prompt the subject to perform the corresponding mo-

tor imagery task. The motor imagination lasted 4 seconds from

the presence of cue till the end of motor imagery task. The time

interval of the processed data was restricted to the time segment

comprised between 0.5 and 2.5 s starting from the cue instruct-

ing the user to perform the mental task. EEG signals from each

trial were bandpass filtered by a 5-th order Butterworth filter

in the 10-30 Hz frequency band. The filtered signal were zero

mean. Then pre-processed EEG signals were transformed into

spatial covariance matrices (the hypothesis is that for the given

tasks, the spatial covariance matrix provides sufficient discrimi-

native information about the brain states). Suppose the i-th trial

of pre-processed EEG signal is given as follows:

Ei = [e(ti), ..., e(ti + l − 1)] ∈ Rn×l (26)

where n and l denote the number of channels and sampled

points, respectively. Each trial of EEG signal is represented

by the sample covariance matrix computed as follows:

Xi =
1

l − 1
EiE

T
i (27)

Thus, elements of the IV 2a data set live in S
+(22).

We compared our method with the-state-of-the-art methods

in the literature for motor imagery EEG decoding as listed in

Table 6. The methods labeled by 1st, 2nd, and 3rd are the first

three winning methods in BCI competition IV on the data set

2a (Tangermann et al., 2012). These approaches are based on

the common spatial patterns (CSP) method (Moritz and Martin,

2008), or its variant–the filter bank common spatial pattern

(Ang et al., 2008). Common spatial patterns is a widely used

feature extraction method in motor imagery based EEG clas-

sification. It is based on the assumption that neural activa-

tion are spatially distributed in cortex areas and changes in

the variance of EEG data in specific frequency bands indi-

cate the intention of the user. Given EEG data of two dif-

ferent classes, the CSP algorithm computes the spatial filters

that maximize the variance ratio of the data conditioned on

two classes. Wavelet-spatial Convolutional Network (WaSF

ConvNet) Zhao et al. (2019) is a deep learning approach that

learns joint space-time-frequency features through using Mor-

let wavelet-like kernels and spatial kernels. Since deep net-

works contain many free parameters, the data was enlarged

by cropped training. Furthermore, subject-to-subject weight

transfer was used. Tangent Space Linear Discriminate Anal-

ysis (TSLDA) (Barachant et al., 2012), as mentioned in the

introduction, map SPD matrices onto the tangent space at

their Riemannian geometric mean and then apply standard

linear discriminate analysis in the tangent space. Tangent

Space of Sub-manifold with Linear Discriminate Analysis

(TSSM+LDA)(Xie et al., 2017) learns an optimal map from

the original Riemannian space of SPD matrices to the Rieman-

nian sub-manifold through jointly diagonalizing the Rieman-

nian means of the two class data. The optimal map transforms

the original SPD matrices into lower dimensional SPD matrices

where tangent space linear discriminate analysis is then applied.

Table 6 presents performances of the competing approaches

on 9 subjects (S1–S9) in terms of kappa values - a widely

used performance metric in motor imagery classification tasks

(Zhao et al., 2019). For four balanced classes, κ = (Pa −

1/4)/(1 − 1/4), where Pa is the classification accuracy. For

our method, the heperparameters σ2
opt (ranged from 0.45 to

50), number of prototypes per class (1–4), number of training

epochs (20, 50, 100) were selected using 5-fold cross validation

on the training folds.

The PLRSQ method is among the three methods that can

beat the other methods on 2 out of 9 subjects. It outperforms

the MDRM and TSLDA methods on 7 and 6 subjects, respec-

tively. PLRSQ also shows superior performance to the deep

WaSF ConvNet method on 6 subjects. One possible reason

may be the relatively small size of the subject-specific training

sample. Our method obtained comparable performance to the

TSSM+LDA method, which takes advantage of sub-manifold

12

Table 6: Performance comparison between our method and the state-of-the-art methods in terms of kappa value on BCI competition IV dataset 2a.

Method mean kappa S1 S2 S3 S4 S5 S6 S7 S8 S9

TSSM+LDA 0.59 0.77 0.33 0.77 0.51 0.35 0.36 0.71 0.72 0.83

PLRSQ 0.59 0.75 0.34 0.80 0.58 0.38 0.37 0.70 0.64 0.75

WaSF ConvNet 0.58 0.63 0.32 0.75 0.44 0.60 0.38 0.69 0.71 0.73

1st 0.57 0.68 0.42 0.75 0.48 0.40 0.27 0.77 0.75 0.61

TSLDA 0.57 0.74 0.38 0.72 0.50 0.26 0.34 0.69 0.71 0.76

MDRM 0.52 0.75 0.37 0.66 0.53 0.29 0.27 0.56 0.58 0.68

2nd 0.52 0.69 0.34 0.71 0.44 0.16 0.21 0.66 0.73 0.69

3rd 0.31 0.38 0.18 0.48 0.33 0.07 0.14 0. 29 0. 49 0.44

learning. This suggests that dimension reduction of the co-

variance matrices may lead to improved classification perfor-

mance. Our future work will incorporate Riemannian mani-

fold dimension reduction in our probabilistic learning Rieman-

nian space quantization framework. However, we note that

the TSSM+LDA method was specifically designed for motor

imagery based EEG classification tasks, whereas our PLRSQ

method is general for tasks involving SPD matrices.

7. Conclusion

In many real machine learning applications, the input fea-

tures are represented by symmetric positive-definite (SPD) ma-

trices living on curved Riemannian manifolds, rather than vec-

tors living in flat Euclidean spaces. In such cases, traditional

learning algorithms may fail to account for the natural structure

of the data space and consequently yield inferior performance.

In this paper, we have proposed a novel approach for the classi-

fication of SPD matrices. It is a generalization of probabilistic

learning quantization to the Riemannian manifold of SPD ma-

trices equipped with affine-invariant metric. By defining the

conditional probability of assigning a label to a given SPD ma-

trix using the notion of Riemannian geodesic distance, we ob-

tained prototype update rules via minimizing the negative log

likelihood using stochastic Riemannian gradient descent algo-

rithm.

Our proposed probabilistic learning Riemannian space quan-

tization (PLRSQ) has inherited the intuitive and simple nature

of learning vector quantization methods. Furthermore, it can

naturally deal with multi-class classification of SPD matrices.

More importantly, the approach is an online learning algorithm,

which is able to perform life-long learning and the test is very

fast, as it only needs to compare the test instance to several pro-

totypes. Empirical experiments, conducted on two real world

data sets, suggest a promising potential of our method.

The proposed PLRSQ method is derived on the Rieman-

nian manifold equipped with affine-invariant metric, empiri-

cally showing better performance than the K-means and kernel

K-means methods derived on Riemannian manifold with Log-

Euclidean metric. An interesting research question is whether

the probabilistic learning vector quantization framework or the

affine-invariant metric can outperform the alternative Rieman-

nian K-means or kernel K-means methods. Our future work

will derive probabilistic learning vector quantization on the Rie-

mannian manifold equipped with Log-Euclidean metric, pro-

viding a direct comparison to Riemannian K-means or kernel

K-means methods with Log-Euclidean metric.

Our proposed PLRSQ is sensitive to the variance parameter

σ2. The σ2 parameter was set manually in this paper. One

of our future work will be devoted to automatically adapt the

variance during the training course.

Appendix A. Calculation of Riemannian gradient of

squared Riemannian distance

The Riemannian gradient of the squared Riemannian dis-

tance δ2(Xi,Wl) defined by Eq.(8) can be computed through:

〈Vl,∇Wl
δ2

l 〉Wl
=

d

dt
δ2(Xi, γl(t))

∣

∣

∣

∣

∣

t=0

(A.1)

with the Riemannian inner product 〈·, ·〉Wl
defined by Eq.(5),

and geodesic curve γl(t) defined by Eq. (7).

The time derivative of the squared Riemannian distance

along the geodesic curve is given as follows (Moakher, 2008;

Fletcher and Joshi, 2004):

d

dt
δ2(X, γl(t))

∣

∣

∣

∣

∣

t=0

= 2Tr
[

Vl log(X−1Wl)W
−1
l

]

.

Since log(X−1) = − log(X), we have

d

dt
δ2(X, γl(t))

∣

∣

∣

∣

∣

t=0

= −2Tr
[

Vl log(W−1
l X)W−1

l

]

.

Since W−1
l

Wl = I, where I represents the identity matrix, we

can then rewrite the above result as the inner product:

d

dt
δ2(X, γl(t))

∣

∣

∣

∣

∣

t=0

= −2Tr(VlW
−1
l Wl log(W−1

l X)W−1
l)

= 〈Vl,−2Wl log(W−1
l X)〉Wl

and from (A.1) we deduce

∇Wl
δ2

l = −2Wl log(W−1
l X).

13

For any A ∈ Gl(n), it holds log(A−1BA) = A−1(log B)A (Curtis,

1979). Furthermore, since Wl ∈ S
+(n), W−1

l
= W

−1/2

l
W
−1/2

l
,

the above equation can be rewritten as follows:

∇Wl
δ2

l = −2Wl log(W
−1/2

l
W
−1/2

l
XiW

−1/2

l
W

1/2

l
)

= −2W
1/2

l
log(W

−1/2

l
XW

−1/2

l
)W

1/2

l

= −2LogWl
(X) (A.2)

Appendix B. Optimal Parameters

The optimal parameters used in the synthetic experiments are

listed in Table B.7, the optimal parameters used in ETH80 are

given by Table B.8, while those used in the motor imagery clas-

sification are given in Table B.9.

Table B.7: Selected number of prototypes per class, training epochs, and σ2
opt

on synthetic data sets

Method Parameters Syn I SynII

PLRSQ-Const

prototype 2.57 ± 0.57 2.57 ± 0.62

#epochs 88.33 ± 21.51 80.67± 25.38

σ2
opt 8.00 ± 7.24 0.53 ± 0.16

PLRSQ-AN

prototype 2.43 ± 0.63 1.57 ± 0.73

#epochs 95.00 ± 15.26 75.00 ± 15.43

σ2
opt 8.82 ± 8.15 0.45 ± 0.01

RSLVQ

prototype 2.87 ± 0.35 1.87 ± 0.89

#epochs 64.00 ± 31.91 55.67 ± 34.20

σ2
opt 1.98 ± 0.62 1.39 ± 0.81

GMLVQ

prototype 2.40 ± 0.62 2.70 ± 0.60

#epochs 57.67 ± 32.87 31.67 ± 18.95

Table B.8: Selected number of prototypes per class and σ2
opt on the ETH80 data

set

No. of Categories # prototype σ2
opt

3 4.00 ± 1.30 0.49 ± 0.02

4 4.75 ± 1.21 0.50 ± 0.01

5 4.95 ± 1.15 0.50 ± 0.01

6 5.75 ± 0.44 0.50 ± 0.00

7 5.75 ± 0.55 0.50 ± 0.00

8 5.85 ± 0.49 0.5 ± 0.00

Table B.9: Selected σ2
opt , number of prototypes per class, and training epochs

on motor imagery classification data sets

Data set # prototype #epochs σ2
opt

S1 1 20 3.5

S2 4 20 1

S3 4 20 1

S4 2 100 8

S5 1 20 4

S6 1 20 3.5

S7 2 50 5.5

S8 2 20 2.5

S9 1 100 5

Acknowledgements

This work is supported by the National Natural Science

Foundation of China (Grant No. 61803369, 51679213),

the Natural Science Foundation of Liaoning Provience of

China (Grant No. 20180520025),the National Key Re-

search and Development Program of China (Grant No.

2019YFC1408501),the Basic Public Welfare Research Plan of

Zhejiang Province (LGF20E090004), and the EC Horizon 2020

ITN SUNDIAL (SUrvey Network for Deep Imaging Analysis

and Learning), Project ID: 721463.

References

K. K. Ang, Z. Y. Chin, H. Zhang, and C. Guan. Filter Bank Common Spatial

Pattern (FBCSP) in Brain-Computer Interface. In 2008 IEEE International

Joint Conference on Neural Networks (IEEE World Congress on Computa-

tional Intelligence), pages 2390–2397, June 2008.

V. Arsigny, P. Fillard, X. Pennec, and N. Ayache. Log-euclidean metrics for fast

and simple calculus on diffusion tensors. Magnetic Resonance in Medicine,

56:411–421, 2006.

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten. Multiclass brain-

computer interface classification by riemannian geometry. IEEE Transac-

tions on Biomedical Engineering, 59(4):920–928, 2012.

A. Barachant, S. Bonnet, M. Congedo, and C. Jutten. Classification of co-

variance matrices using a Riemannian-based kernel for BCI applications.

Neurocomputing, 112(10):172–178, 2013.

S. Bonnabel. Stochastic gradient descent on riemannian manifolds. IEEE

Transactions on Automatic Control, 58(9):2217–2229, 2013.

C. J. C. Burges. A tutorial on support vector machines for pattern recognition.

Data Mining and Knowledge Discovery, 2:121–167, 1998.

M. Congedo, A. Barachant, and R. Bhatia. Riemannian geometry for EEG-

based brain-computer interfaces; a primer and a review. Brain-Computer

Interfaces, 4(3):155–174, 2017.

M. L. Curtis. Matrix Groups. Springer-Verlag, New York-Heidelberg, 1979.

L. Fischer, D. Nebel, T. Villmann, B. Hammer, , and H. Wersing. Rejection

strategies for learning vector quantization – a comparison of probabilistic

and deterministic approaches. In T. Villmann, F.-M. Schleif, M. Kaden,

and M. Lange, editors, Advances in Self-Organizing Maps and Learning

Vector Quantization, pages 109–118, Cham, 2014. Springer International

Publishing.

P. T. Fletcher and S. Joshi. Principal geodesic analysis on symmetric spaces:

Statistics of diffusion tensors. In M. Sonka, I. A. Kakadiaris, and J. Ky-

bic, editors, Computer Vision and Mathematical Methods in Medical

and Biomedical Image Analysis, pages 87–98, Berlin, Heidelberg, 2004.

Springer Berlin Heidelberg.

P. T. Fletcher, C. Lu, S. M. Pizer, and S. Joshi. Principal geodesic analysis

for the study of nonlinear statistics of shape. IEEE Trans Med Imaging,

23(8):995–1005, 2004.

14

B. Hammer and T. Villmann. Generalized relevance learning vector quantiza-

tion. Neural Networks, 15(8–9):1059–1068, 2002.

B. Hammer, M. Nebel, D.and Riedel, and T. Villmann. Generative versus dis-

criminative prototype based classification. In T. Villmann, F.-M. Schleif,

M. Kaden, and M. Lange, editors, Advances in Self-Organizing Maps and

Learning Vector Quantization, pages 123–132, Cham, 2014. Springer Inter-

national Publishing.

S. Jayasumana, R. Hartley, M. Salzmann, H. Li, and M. Harandi. Kernel Meth-

ods on Riemannian Manifolds with Gaussian RBF Kernels. IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, 37(12):2464–2477,

2015.

T. Kohonen. Learning vector quantization for pattern recognition. Technical

report tkkf-a601, Helsinki Univeristy of Technology, Espoo, Finland., 1986.

A. Krizhevsky. Learning multiple layers of features from tiny images. Master’s

thesis, Department of Computer Science,University of Toronto, 2009.

M. Moakher. A differential geometric approach to the geometric mean of sym-

metric positive-definite matrices. Siam Journal on Matrix Analysis & Appli-

cations, 26(3):735–747, 2008.

G. W. Moritz and B. Martin. Multiclass common spatial patterns and informa-

tion theoretic feature extraction. IEEE Transactions on Biomedical Engi-

neering, 55(8):1991–2000, 2008.

C. Ni, N. Charoenphakdee, J. Honda, and M. Sugiyama. On possibility and

impossibility of multiclass classification with rejection. preprint, 2019.

arXiv:1901.10655v1.

D. Nova and P. A. Estévez. A review of learning vector quantization classifiers.

Neural Computing & Applications, 25(3-4):511–524, 2014.

X. Penne, P. Fillard, and N. Ayache. A riemannian framework for tensor com-

puting. International Journal of Computer Vision, 66(1):41–66, 2006.

S. Said, L. Bombrun, Y. Berthoumieu, and J. H. Manton. Riemannian gaussian

distributions on the space of symmetric positive definite matrices. IEEE

Transactions on Information Theory, 63(4):2153–2170, 2017.

S. Saralajew and T. Villmann. Adaptive tangent distances in generalized learn-

ing vector quantization for transformation and distortion invariant classifi-

cation learning. In 2016 International Joint Conference on Neural Networks

(IJCNN), pages 2672–2679, 2016.

A. Sato and K. Yamada. Generalized learning vector quantization. In D.S.

Touretzky, M.C. Mozer, and M.E. Hasselmo, editors, Advances in Neural

Information Processing System 8, pages 423–429. MIT Press, 1996.

P. Schneider, P. Biehl, and B. Hammer. Adaptive relevance matrices in learning

vector quantization. Neural Computation, 21(12):3532–3561, 2009.

P. Schneider, M. Biehl, and B. Hammer. Hyperparameter learning in probabilis-

tic prototype-based models. Neurocomputing, 73(7–9):1117–1124, 2010.

S. Seo and K. Obermayer. Soft learning vector quantization. Neural Computa-

tion, 15(7):1589, 2003.

S. Seo, M. Bode, and K. Obermayer. Soft nearest prototype classification. IEEE

Transactions on Neural Networks, 14(2):390, 2003.

K. Simonyan and A. Zisserman. Very deep convolutional networks for large-

scale image recognition. In ICLR, 2015.

M. Tangermann, K. R. Müller, A. Aertsen, and et. al. Review of the BCI Com-

petition IV. Frontiers in Neuroscience, 6(55), 2012.

O. Tuzel, F. Porikli, and P. Meer. Region covariance: A fast descriptor for

detection and classification. In European Conference on Computer Vision,

2006.

O. Tuzel, F. Porikli, and P. Meer. Pedestrian detection via classification on

riemannian manifolds. IEEE Transactions on Pattern Analysis & Machine

Intelligence, 30(10):1713–1727, 2008.

Raviteja Vemulapalli and David W. Jacobs. Riemannian metric learning for

symmetric positive definite matrices, 2015.

A. Villmann, M. Kaden, S. Saralajew, and T. Villmann. Probabilistic learning

vector quantization with cross-entropy for probabilistic class assignments in

classification learning. In Proceedings of the 17th International Conference

on Artificial Intelligence and Soft Computing(ICAISC), 2018.

Ruiping Wang, Huimin Guo, Larry S. Davis, and Qionghai Dai. Covariance

discriminative learning: A natural and efficient approach to image set clas-

sification. In IEEE Computer Society Conference on Computer Vision and

Pattern Recognition, pages 2496–2503, 2012.

F. Wilcoxon. Individual comparisons by ranking methods. Biometrics Bulletin,

1(6):80–83, 1945.

X. Xie, Z. L. Yu, H. Lu, Z. Gu, and Y. Li. Motor imagery classification based

on bilinear sub-manifold learning of symmetric positive-definite matrices.

IEEE Trans Neural Syst Rehabil Eng, 25(6):504–516, 2017.

D. Zhao, F. Tang, B. Si, and X. Feng. Learning joint space–time–frequency

features for EEG decoding on small labeled data. Neural Networks, 114,

2019.

15

	1 Introduction
	2 Related Work
	3 blackRobust Soft Leaning Vector Quantization
	4 Riemannian Manifold of SPD Matrices
	5 Probabilistic Learning Vector Quantization on the Riemannian Manifold of SPD Matrices
	6 Experiments
	6.1 Artificial Data sets
	6.1.1 Hyper-parameter Sensitivity Analysis
	6.1.2 blackInvestigation on the Impact of Learning Rate
	6.1.3 blackInvestigation on Convergence
	6.1.4 Performance Comparison
	6.1.5 Nonlinear Riemannian Structure Verification

	6.2 Image Classification
	6.3 Motor Imagery Classification

	7 Conclusion
	Appendix A Calculation of Riemannian gradient of squared Riemannian distance
	Appendix B Optimal Parameters

