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Abstract

We have recently shown that when initialized with “small” weights, recur-

rent neural networks (RNNs) with standard sigmoid-type activation functions

are inherently biased towards Markov models, i.e. even prior to any training,

RNN dynamics can be readily used to extract finite memory machines (Ham-

mer & Tiňo, 2002; Tiňo, Čerňanský & Beňušková, 2002; Tiňo, Čerňanský &

Beňušková, 2002a). Following Christiansen and Chater (1999), we refer to this

phenomenon as the architectural bias of RNNs. In this paper we further extend
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our work on the architectural bias in RNNs by performing a rigorous fractal

analysis of recurrent activation patterns. We assume the network is driven by

sequences obtained by traversing an underlying finite-state transition diagram

– a scenario that has been frequently considered in the past e.g. when studying

RNN-based learning and implementation of regular grammars and finite-state

transducers. We obtain lower and upper bounds on various types of fractal

dimensions, such as box-counting and Hausdorff dimensions. It turns out that

not only can the recurrent activations inside RNNs with small initial weights

be explored to build Markovian predictive models, but also the activations

form fractal clusters the dimension of which can be bounded by the scaled

entropy of the underlying driving source. The scaling factors are fixed and are

given by the RNN parameters.

1 Introduction

There is a considerable amount of literature devoted to connectionist process-

ing of sequential symbolic structures (e.g. (Kremer, 2001)). For example,

researchers have been interested in formulating models of human performance

in processing linguistic patterns of various complexity (e.g. (Christiansen &

Chater, 1999)). Recurrent neural networks (RNNs) constitute a well estab-

lished approach for dealing with linguistic data, and the capability of RNNs

of processing finite automata and some context-free and context-sensitive lan-

guages is well known (see e.g. (Bodén & Wiles, 2002; Forcada & Carrasco,

1995; Tiňo et al., 1998)). The underlying dynamics which emerges through

training has been investigated in the work of Blair, Bodén, Pollack and oth-

ers (Blair & Pollack, 1997; Bodén & Blair, 2002; Rodriguez, Wiles & Elman,
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1999). It turns out that even though theoretically RNNs are able to explore

a wide range of possible dynamical regimes, trained RNNs often achieve com-

plicated behavior by combining appropriate fixed point dynamics, including

attractive fixed points as well as saddle points.

It should be mentioned that RNNs can be canonically generalized to so-

called recursive networks for processing tree structures and directed acyclic

graphs, hence providing a very attractive connectionist framework for symbolic

or structural data (Frasconi, Gori & Sperduti, 1998; Hammer, 2002).

For both, recurrent and recursive networks, the interior connectionist rep-

resentation of input data given by the hidden neuron’s activation profile is of

particular interest. The hidden neuron’s activation might allow the detection

of important information about relevant substructures of the inputs for the re-

spective task as has been demonstrated for example for quantitative structure

activity relationship prediction tasks with recursive networks (Micheli et al.,

2002). The hidden neuron’s activations often show considerable profiles such

as clusters and structural differentiation. For RNNs, hidden nodes’ activation

profile allows to infer parts of the underlying dynamical components which

account for the network behavior (Blair & Pollack, 1997).

However, it has been known for some time that when training RNNs to

process symbolic sequences, activations of recurrent units display a consider-

able amount of structural differentiation even prior to learning (Christiansen

& Chater, 1999; Kolen, 1994; Kolen, 1994a; Manolios & Fanelli, 1994). Fol-

lowing Christiansen and Chater (1999), we refer to this phenomenon as the

architectural bias of RNNs. Now the question arises: which parts of structural

differentiation are due to the learning process and hence are likely to encode

information related to the specific learning task, and which parts emerge au-
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tomatically, even without training, due to the architectural bias of RNNs.

We have recently shown, both empirically and theoretically, the meaning

of the architectural bias for RNNs: when initialized with “small” weights,

RNNs with standard sigmoid-type activation functions are inherently biased

towards Markov models, i.e. even prior to any training, RNN dynamics can

be readily used to extract finite memory machines (Hammer & Tiňo, 2002;

Tiňo, Čerňanský & Beňušková, 2002; Tiňo, Čerňanský & Beňušková, 2002a).

In this study we further extend our work by rigorously analyzing the “size”

of recurrent activation patterns in such RNNs. Since the activation patterns

are of fractal nature, their size is expressed through fractal dimensions (e.g.

(Falconer, 1990)). The dimensionality of hidden neuron’s activation patterns

provides one characteristic for comparing different networks and the effect of

learning algorithms on the network’s interior connectionistic representation

of data. We concentrate on the case where the RNN is driven by sequences

generated from an underlying finite-state automaton – a scenario frequently

studied in the past in the context of RNN-based learning and implementation

of regular grammars and finite-state transducers (Casey, 1996; Cleeremans,

Servan-Schreiber & McClelland, 1989; Elman, 1990; Forcada & Carrasco, 1995;

Frasconi et al., 1996; Giles et al., 1992; Manolios & Fanelli, 1994; Tiňo & Šajda,

1995; Watrous & Kuhn, 1992). We will derive bounds on the dimensionality of

the recurrent activation patterns which reflect complexity of the input source

and the bias caused by the recurrent architecture initialized with small weights.

The paper has the following organization: After a brief introduction to

fractal dimensions and automata-directed iterated function systems (IFS) in

Sections 2 and 3, respectively, we prove in Section 4 dimension estimates for

invariant sets of general automata-directed IFSs composed of non-similarities.
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In Section 5 we reformulate RNNs driven by sequences over finite alphabets

as IFSs. Section 6 is devoted to dimension estimates of recurrent activations

inside contractive RNNs. The discussion in Section 7 puts our findings into the

context of previous work. We confront the theoretically calculated dimension

bounds with empirical fractal dimension estimates of recurrent activations in

Section 8. Section 9 concludes the paper by summarizing the key messages of

this study.

2 Fractal dimensions

In this section we briefly introduce various notions of “size” for geometrically

complicated objects called fractals. For a more detailed information, we refer

the interested reader to e.g. (Falconer, 1990).

Consider a metric space X. Let K be a totally bounded subset of X. For

each δ > 0, define Nδ(K) to be the smallest number of sets of diameter ≤ δ

that can cover K (δ-fine cover of K). Since K is bounded, Nδ(K) is finite for

each δ > 0. The rate of increase of Nδ(K) as δ → 0 tells us something about

the “size” of K.

Definition 2.1 The upper and lower box-counting dimensions of K are de-

fined as

dim+
B K = lim sup

δ→0

log Nδ(K)

− log δ
and dim−

B K = lim inf
δ→0

log Nδ(K)

− log δ
, (1)

respectively.

Definition 2.2 Let s > 0. For δ > 0, define

Hs
δ(K) = inf

Γδ(K)

∑

B∈Γδ(K)

(diam B)s, (2)

5



where the infimum is taken over the set Γδ(K) of all countable δ-fine covers of

K. Define

Hs(K) = lim
δ→0

Hs
δ(K).

The Hausdorff dimension of the set K is

dimH K = sup{s| Hs(K) = ∞} = inf{s| Hs(K) = 0}. (3)

The Hausdorff dimension is more “subtle” than the box-counting dimen-

sions in the sense that the former can capture details not detectable by the

latter. In a way, box-counting dimensions can be thought of as indicating the

efficiency with which a set may be covered by small sets of equal size. In

contrast, Hausdorff dimension involves coverings by sets of small but perhaps

widely varying size (Falconer, 1990). It is well known that

dimH K ≤ dim−
B K ≤ dim+

B K. (4)

3 Finite automata and automata-directed IFS

We now introduce some terminology related to iterated function systems (IFS)

with an emphasis on IFS driven by sequences obtained by traversing finite

automata. First, we briefly recall basic notions related to sequences over finite

alphabets.

3.1 Symbolic sequences over a finite alphabet

Consider a finite alphabet A = {1, 2, ..., A}. The sets of all finite (non-empty)

and infinite sequences over A are denoted by A+ and Aω, respectively. Se-

quences from Aω are also referred to as ω-words. Denoting by λ the empty

word, we write A∗ = A+ ∪ {λ}. The set of all sequences consisting of a finite,
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or an infinite number of symbols from A is then A∞ = A+ ∪ Aω. The set of

all sequences over A with exactly n symbols (n-blocks) is denoted by An. The

number of symbols in a sequence w is denoted by |w|.

Let w = s1s2... ∈ A∞ and i ≤ j. By wj
i we denote the string sisi+1...sj,

with wi
i = si. For i > j, wj

i = λ. If |w| = n ≥ 1, then w− = wn−1
1 is obtained1

by omitting the last symbol of w.

A partial order ≤ may be defined on A∗ as follows: write w1 ≤ w2 if and

only if w1 is a prefix of w2, i.e. there is some w3 ∈ A∗, such that w2 = w1w3.

Two strings w1, w2 are incomparable, if neither w1 ≤ w2, nor w2 ≤ w1. For

each finite string c ∈ A∗, the cylinder [c] is the set of all infinite strings w ∈ Aω

that begin with c, i.e. [c] = {w ∈ Aω| c ≤ w}.

3.2 Iterated Function Systems

Let X be a complete metric space. A (contractive) iterated function sys-

tem (IFS) (Barnsley, 1988) consists of A contractions fa : X → X, a ∈

{1, 2, ..., A} = A, operating on X. In the basic setting, at each time step all

the maps fa are used to transform X in an iterative manner:

X0 = X, (5)

Xt+1 =
⋃

a∈A

fa(Xt), t ≥ 0. (6)

There is a unique compact invariant set K ⊂ X, K =
⋃

a∈A fa(K), called

the attractor of the IFS. Actually, it can be shown that the sequence {Xt}∞t=0

converges2 to K. For any ω-word w = s1s2... ∈ Aω, the images of X under

1if |w| = 1, then w− = λ.
2under a Hausdorff distance on the power set of X
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compositions of IFS maps,

(fs1
(fs2

(...(fsn
(X))...))) = fwn

1
(X)

converge to an element of K as n → ∞.

More complicated IFS systems can be devised e.g. by constraining the

sequences of maps that can be applied to X in the process of defining the

attractive invariant set K. One possibility is to demand that the words w

corresponding to allowed compositions of IFS maps belong to a language over

A (Prusinkiewicz & Hammel, 1992). A specific example of this are recurrent

IFS (Barnsley, Elton & Hardin, 1989), where the allowed words w are specified

by a topological Markov chain. In this paper we concentrate on IFSs with map

compositions restricted to sequences that can be read-out by traversing labeled

state-transition graphs (see e.g. (Culik & Dube, 1993)).

3.3 IFS associated with state-transition graphs

Consider a labeled directed multigraph G = (V,E, κ), where the elements

v ∈ V and e ∈ E are the vertices (or nodes) and edges of the multigraph G,

respectively. Each edge e ∈ E is labeled by a symbol κ(e) ∈ A from the input

alphabet A = {1, 2, ..., A}, as prescribed by the map κ : E → A. The map κ

can be naturally extended to operate on subsets E ′ of E and sequences γ over

E:

for E ′ ⊆ E, κ(E ′) =
⋃

e∈E′

κ(e), (7)

for γ = e1e2..., κ(γ) = κ(e1)κ(e2)... ∈ A∞. (8)

The set Eu→v ⊆ E contains all edges from u ∈ V to v ∈ V . Eu→ =

⋃

v∈V Eu→v is the set of all edges starting at the vertex u.
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A path in the graph is a sequence γ = e1e2... of edges, such that the terminal

vertex of each edge ei is the initial vertex of the next edge ei+1. The initial

vertex of e1 is the initial vertex ini(γ) of γ. For a finite path γ = e1e2...en of

length n, the terminal vertex of en is the terminal vertex term(γ) of γ. The

sequence of labels read out along the path γ is κ(γ). As in the case of sequences

over A, for i ≤ j ≤ n, γj
i denotes the path eiei+1...ej, and γ− denotes the

path γ without the last edge en, i.e. γ− = γn−1
1 .

We write E
(n)
u→v for the set of all paths of length n with initial vertex u

and terminal vertex v. The set of all paths of length n with initial vertex u is

denoted by E
(n)
u→. Analogously, E

(∗)
u→v denotes the set of all finite paths from u

to v; E
(∗)
u→ and E

(ω)
u→ denote the sets of all finite and infinite paths, respectively,

starting at vertex u.

Definition 3.1 A strictly contracting state-transition graph (SCSTG) is a

labeled directed multigraph G = (V,E, κ) together with a number 0 < ra < 1

for each symbol a from the label alphabet A.

We will assume that the state-transition graph G is both deterministic, i.e.

for each vertex u there are no two distinct paths initiated at u with the same

label read-out, and strongly connected, i.e. there is a path from any vertex to

any other.

Definition 3.2 An iterated function system (IFS) associated with a SCSTG

(V,E, κ, {ra}a∈A) consists of a complete metric space (X, ‖ · ‖)3 and a set of A

contractions fa : X → X, one for each input symbol a ∈ A, such that for all

x, y ∈ X,

‖fa(x) − fa(y)‖ ≤ ra‖x − y‖, a ∈ A. (9)

3the metric is expressed through a norm
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The allowed compositions of maps fa are controlled by the sequences of labels

associated with the paths in G = (V,E, κ). The IFS image of a point x ∈ X

under a (finite) path γ = e1e2...en in G is

γ(x) = (fκ(e1)(fκ(e2)(...(fκ(en)(x))...))) = (fκ(e1) ◦ fκ(e2) ◦ ... ◦ fκ(en))(x). (10)

The contraction factor r(γ) of the path γ is calculated as

r(γ) =
n

∏

i=1

rκ(ei). (11)

For the empty path λ, λ(x) = x and r(λ) = 1. For an infinite path γ = e1e2...,

the corresponding image of a point x ∈ X is

γ(x) = lim
n→∞

(fκ(e1) ◦ fκ(e2) ◦ ... ◦ fκ(en))(x). (12)

The maps γ(·) are extended to subsets X ′ of X as follows: γ(X ′) =

{γ(x)| x ∈ X ′}. As the length of paths γ in G increases, the points γ(x)

tend to closely approximate the attractive set of the IFS. The attractor has

now a more intricate structure than in the case of the basic “unrestricted” IFS.

There is a list of invariant compact sets Ku ⊆ X, one for each vertex u ∈ V

(Edgar & Golds, 1999), such that

Ku =
⋃

v∈V

⋃

e∈Eu→v

fκ(e)(Kv). (13)

Each set Ku contains (possibly non-linearly) compressed copies of the sets Kv.

We denote the union of the sets Ku by K,

K =
⋃

u∈V

Ku. (14)

4 Dimension estimates for Ku

In this section we develop a theory of dimension estimates for the invariant

sets Ku of IFSs driven by sequences obtained by traversing deterministic finite
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automata. In particular, we ask whether upper and lower bounds on Lipschitz

coefficients of contractive IFS maps fa translate into bounds on dimensions of

Ku. In answering this question, we extend the results of Falconer (1990), who

considered the original IFS setting (IFSs driven by Aω), and Edgar & Golds

(1999), who studied graph-directed IFSs (GDIFS). In GDIFS one associates

each edge in the underlying graph with a distinct IFS map, so the calculations

are somewhat more straightforward. However, many of the ideas applied in

proofs in (Edgar & Golds, 1999) were transferable to proofs in this section.

4.1 Upper bounds

Definition 4.1 Let (V,E, κ, {ra}a∈A) be a SCSTG. For each s > 0, denote

by M(s) a square matrix (rows and columns are indexed by vertices4 V ) with

entries

Muv(s) =
∑

e∈Eu→v

(

rκ(e)

)s
. (15)

The unique5 number s1 such that the spectral radius of M(s1) is equal to 1 is

called the dimension of the SCSTG (V,E, κ, {ra}a∈A).

Theorem 4.2 Let G = (V,E, κ) be a labeled directed multigraph and (X, {fa}a∈A)

an IFS associated with the SCSTG (G, {ra}a∈A). Let s1 be the dimension

of the SCSTG (G, {ra}a∈A). Then for all u ∈ V , dim+
B Ku ≤ s1, and also

dim+
B K ≤ s1.

4we slightly abuse mathematical notation by identifying the vertices of G

with integers 1, 2, ..., |V |.
5Uniqueness follows from the Perron-Frobenius theory (see e.g. (Minc,

1988)).
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Proof: By the Perron-Frobenius theory of nonnegative irreducible6 ma-

trices (Minc, 1988), the spectral radius (equal to 1) of the matrix M(s1) is ac-

tually an eigenvalue of M(s1) with the associated positive eigenvector {λu}u∈V

satisfying

λu =
∑

v∈V

λv

∑

e∈Eu→v

(

rκ(e)

)s1 ,
∑

u∈V

λu = 1, λu > 0. (16)

Given a vertex u ∈ V , it is possible to define a measure µ on the set of

cylinders

Cu =
{

[w]| w ∈ κ
(

E(∗)
u→

)}

(17)

by postulating:

for w = κ(γ), γ ∈ E(∗)
u→v; µ([w]) = λv · r(γ)s1 . (18)

Indeed, for γ ∈ E
(∗)
u→v, w = κ(γ), we have

µ([w]) =
∑

e∈Ev→

µ([wκ(e)]).

The measure µ extends to Borel measures on E
(ω)
u→ (Edgar & Golds, 1999).

Consider a vertex u ∈ V . Fix a positive number δ. We define a (cross-cut)

set

Tδ = {γ| γ ∈ E(∗)
u→, r(γ) < δ ≤ r(γ−)}. (19)

Note that Tδ is a finite set such that for every infinite path γ′ ∈ E
(ω)
u→ there

is exactly one prefix length n such that (γ′)n
1 ∈ Tδ. The sets Tδ and κ(Tδ)

partition the sets E
(ω)
u→ and κ(E

(ω)
u→), respectively. The collection

Cu = {γ(Kterm(γ))| γ ∈ Tδ} (20)

6Matrix M(s1) is irreducible because the underlying graph (V,E, κ) is

strongly connected.
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covers the set Ku with sets of diameter less than η = δ · diam(X).

In order to estimate Nη(Ku), which is upper bounded by the cardinality

card(Tδ) of Tδ, we write

λu = µ(κ(E(ω)
u→)) =

∑

γ∈Tδ

λterm(γ) · (r(γ))s1 . (21)

By (19), we have for each γ = e1e2...en ∈ Tδ,

r(γ) = r(γ−) · r(en) ≥ δ · rmin

and so from (21) we obtain

λmax ≥ λu ≥ card(Tδ) · λmin · (δrmin)s1 , (22)

where card(Tδ) is the cardinality of Tδ and

λmax = max
v∈V

λv, λmin = min
v∈V

λv and rmin = min
a∈A

ra. (23)

Hence,

Nη(Ku) ≤ card(Tδ) ≤
λmax

λmin

(δrmin)−s1 =
λmax

λmin

(

rmin

diam(X)

)−s1

η−s1 .

It follows that

log Nη(Ku) ≤ −s1 log η + Const, (24)

where Const is a constant term with respect to δ. Dividing (24) by − log η > 0,

and letting the diameter η of the covering sets diminish, we obtain

dim+
B Ku = lim sup

η→0

log Nη(Ku)

− log η
≤ s1. (25)

If we denote the number of vertices in V by card(V ), then the number of

sets with diameter less than η needed to cover the set K can be upper bounded

by

Nη(K) ≤ card(V ) · max
u∈V

Nη(Ku)

≤ card(V )
λmax

λmin

(

rmin

diam(X)

)−s1

η−s1
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and we again obtain

log Nη(K) ≤ −s1 log η + Const′ (26)

where Const′ is a constant term with respect to δ. Repeating the above argu-

ment leads to dim+
B K ≤ s1. ¤

We can derive a less tight bound, that is closely related to the theories of

symbolic dynamics and formal languages over the alphabet A.

The adjacency matrix G of a labeled directed multigraph G = (V,E, κ) is

defined element-wise as follows7:

Guv = card(Eu→v). (27)

Theorem 4.3 Let G = (V,E, κ) be a labeled directed multigraph and (X, {fa}a∈A)

an IFS associated with the SCSTG (G, {ra}a∈A). Let rmax = maxa∈A ra. Then

for all u ∈ V ,

dim+
B Ku ≤ s1 ≤

log ρ(G)

− log rmax

,

where ρ(G) is the maximum eigenvalue of G.

Proof: Consider a SCSTG (G, ra = rmax, a ∈ A) with a fixed contraction

rate rmax for all symbols in A. The matrix (15) for this SCSTG has the

form N(s) = rs
maxG. The spectral radius of N(s), which coincides with the

maximum eigenvalue of N(s), is ρ(N(s)) = rs
max · ρ(G), where ρ(G) is the

spectral radius (maximum eigenvalue) of G. The dimension smax associated

with such a SCSTG is the solution of ρ(N(s)) = 1. In particular, rs
max ·ρ(G) =

7Although we do not allow s = 0 in the definition of M(s), G can be

formally thought of as a matrix M(s) computed with s set to 0.
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1, and so

smax =
log ρ(G)

− log rmax

. (28)

Next we show that smax ≥ s1.

Let M(s1) be the matrix (15) of spectral radius 1 for the original SCSTG

(G, {ra}a∈A).

Define ∆ = smax − s1. Note that N(smax) = r∆
max · N(s1).

Since for all a ∈ A, rmax ≥ ra, we have 0 < M(s1) ≤ N(s1), where M ≤ N

for two positive matrices M,N of the same size means that ≤ applies element-

wise, i.e. 0 ≤ Muv ≤ Nuv. Hence, ρ(M(s1)) ≤ ρ(N(s1)).

Observe that

ρ(N(smax)) = 1 = ρ
(

r∆
max · N(s1)

)

= r∆
max · ρ (N(s1)) .

But ρ(N(s1)) ≥ ρ(M(s1)) = 1, so r∆
max ≤ 1 must hold. Since rmax < 1, we

have that ∆ ≥ 0, which means smax ≥ s1. ¤

4.2 Lower bounds

Imagine that besides the Lipschitz bounds (9) for the IFS maps {fa}a∈A, we

also have lower bounds: for all x, y ∈ X,

‖fa(x) − fa(y)‖ ≥ r′a‖x − y‖, r′a > 0, a ∈ A. (29)

We will show, that under certain conditions, the bounds (29) induce lower

bounds on the Hausdorff dimension of the sets Ku. Roughly speaking, to

estimate lower bounds on the dimension of Ku’s, we need to make sure that

our lower bounds on covering set size are not invalidated by trivial overlaps

between the IFS basis sets.
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Definition 4.4 Let G = (V,E, κ) be a labeled directed multigraph. We say

that an IFS (X, {fa}a∈A) associated with the SCSTG (G, {ra}a∈A) falls into

the disjoint case if, for any u, v, v′ ∈ V , e ∈ Eu→v, e′ ∈ Eu→v′, e 6= e′, we

have8 fκ(e)(Kv) ∩ fκ(e′)(Kv′) = ∅.

Theorem 4.5 Consider a labeled directed multigraph G = (V,E, κ) and an

IFS (X, {fa}a∈A) associated with the SCSTG (G, {ra}a∈A). Suppose the IFS

falls into the disjoint case. Let s2 be the dimension of the SCSTG (G, {r′a}a∈A).

Then for each vertex u ∈ V, dimH Ku ≥ s2.

Proof: First, define a metric on the power set of X as

d(B1, B2) = inf
x∈B1

inf
y∈B2

‖x − y‖, B1, B2 ⊆ X.

Because the IFS falls into the disjoint case and the sets Ku, u ∈ V , are compact,

there is some ζ > 0 such that for all u, v, v′ ∈ V , e ∈ Eu→v, e′ ∈ Eu→v′ , e 6= e′,

we have

d
(

fκ(e)(Kv), fκ(e′)(Kv′)
)

> ζ. (30)

Fix a vertex u ∈ V and consider two paths γ1,γ2 from E
(∗)
u→ such that the

corresponding label sequences κ(γ1) and κ(γ2) are incomparable. Let w be the

longest common prefix of κ(γ1), κ(γ2) and let γ be the initial subpath of γ1

that supports the label sequence w, i.e. γ = (γ1)
|w|
1 . We have |w| < |κ(γ1)|,

and so w ≤ κ(γ1)
−, which means r′(γ) ≥ r′(γ−

1 ). The paths γ1 and γ2 can be

written as γ1 = γeγ′
1 and γ2 = γe′γ′

2, where the edges e and e′ are distinct and

κ(e) 6= κ(e′) (G is deterministic). The paths γ′
1, γ′

2 may happen to be empty.

In any case,

γ′
1

(

Kterm(γ1)

)

⊆ Kterm(e), γ′
2

(

Kterm(γ2)

)

⊆ Kterm(e′)

8By determinicity of G, κ(e) 6= κ(e′).
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and we have

d
(

eγ′
1(Kterm(γ1)), e

′γ′
2(Kterm(γ2))

)

≥ d
(

e(Kterm(e)), e
′(Kterm(e′))

)

> ζ.

This leads to

d(γ1(Kterm(γ1)), γ2(Kterm(γ2))) = (31)

d(weγ′
1(Kterm(γ1)), we′γ′

2(Kterm(γ2))) ≥ (32)

r′(γ) · d(eγ′
1(Kterm(γ1)), e

′γ′
2(Kterm(γ2))) > (33)

r′(γ) · ζ ≥ r′(γ−
1 ) · ζ (34)

Now, as in the upper bound case (Section 4.1), we construct a matrix

M′(s),

M ′
uv(s) =

∑

e∈Eu→v

(

r′κ(e)

)s
, . (35)

Let s2 be the unique number such that the spectral radius of M′(s2) is equal to

1. Again, 1 is an eigenvalue of M′(s2) with the associated eigenvector {λ′
u}u∈V

satisfying

λ′
u =

∑

v∈V

λ′
v

∑

e∈Eu→v

(

r′κ(e)

)s2 ,
∑

u∈V

λ′
u = 1, λ′

u > 0. (36)

As before, we define a measure µ′ on the set of cylinders Cu (see (17)) as

follows:

for w = κ(γ), γ ∈ E(∗)
u→v; µ′([w]) = λ′

v · r′(γ)s2 . (37)

The measure µ′ extends to Borel measures on E
(ω)
u→.

Fix a (Borel) set B ⊂ Ku and define

δ =
diam(B)

ζ
. (38)

The corresponding cross-cut set is

T ′
δ = {γ| γ ∈ E(∗)

u→, r′(γ) < δ ≤ r′(γ−)}. (39)

17



¿From (38) and the definition of T ′
δ, we have

for each γ ∈ T ′
δ; diam(B) = ζ · δ ≤ ζ · r′(γ−). (40)

The label strings κ(γ) associated with the paths γ in T ′
δ are incomparable,

implying that there is at most one path γ ∈ T ′
δ such that γ(Kterm(γ))∩B 6= ∅.

To see this, note that by (31)–(34) and (40), for any two paths γ1, γ2 ∈ T ′
δ, we

have

d
(

γ1(Kterm(γ1)), γ2(Kterm(γ2))
)

> r′(γ−
1 ) · ζ ≥ diam(B).

Denote by B̃ the set of all ω-sequences associated with infinite paths start-

ing in the vertex u that map X into a point in B, i.e.

B̃ = {κ(γ)| γ ∈ E(ω)
u→, γ(X) ∈ B}. (41)

Since the cross-cut set T ′
δ partitions the set E

(ω)
u→, there exists some γB ∈ T ′

δ

such that γB(Kterm(γB)) meets B ⊆ Ku. In fact, as argued above, it is the only

such path from T ′
δ, and so B̃ ⊆ [κ(γB)]. In terms of measure (see Eq. (37)),

µ′(B̃) ≤ µ′([κ(γB)]) ≤ λ′
max · r′(γB)s2 , (42)

where λ′
max = maxv∈V λ′

v. ¿From the definition of T ′
δ we have

diam(B) = ζ · δ > ζ · r′(γB).

Using this inequality in (42) we obtain

µ′(B̃) ≤ λ′
max

(

diam(B)

ζ

)s2

. (43)

Now, for any countable cover Cu of Ku by Borel sets we have

∑

B∈Cu

(diam(B))s2 ≥ ζs2

λ′
max

∑

B∈Cu

µ′(B̃) =
ζs2

λ′
max

∑

B∈Cu

ν(B) ≥ ζs2

λ′
max

ν(Ku), (44)
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where ν is the pushed forward measure on Ku induced by the measure µ′. Note

that this is a correct construction, since the IFS falls into the disjoint case.

Consulting the Definition 2.2 and noting that it is always the case that

Hs2(Ku) ≥
ζs2

λ′
max

ν(Ku) > 0,

we conclude that dimH Ku ≥ s2. ¤

As in the case of upper bounds, we transform the results of the previous

theorem into a weaker, but more accessible lower bound.

Theorem 4.6 Under the assumptions of Theorem 4.5, for each vertex u ∈ V,

dimH Ku ≥ s2 ≥
log ρ(G)

− log rmin

,

where rmin = mina∈A ra.

Proof: As in the proof of Theorem 4.3, consider a SCSTG (G, ra =

rmin, a ∈ A). The matrix (15) for this SCSTG is N(s) = rs
minG with ρ(N(s)) =

rs
min · ρ(G). The dimension smin associated with such a SCSTG is

smin =
log ρ(G)

− log rmin

. (45)

Define ∆ = smin − s2. We have N(smin) = r∆
min · N(s2). Since rmin ≤ ra,

for all a ∈ A, it holds 0 < N(s2) ≤ M(s2), and so ρ(N(s2)) ≤ ρ(M(s2)).

Note that

ρ(N(smin)) = 1 = r∆
min · ρ (N(s2))

and ρ(N(s2)) ≤ ρ(M(s2)) = 1. It follows that r∆
min ≥ 1 must hold. Since

rmin < 1, we have ∆ ≤ 0, which means that smin ≤ s2. ¤
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4.3 Discussion of the quantities involved in the bounds

The numbers s1 and s2 are well-know quantities in the literature on fractal sets

generated by constructions employing maps with different contraction rates

(see e.g. (Fernau & Staiger, 1994; Fernau & Staiger, 2001; Edgar & Golds,

1999)). Since there is no closed-form analytical solution for s1 as introduced in

Definition 4.1, the dimensions s1, s2 are defined only implicitly. Loosely speak-

ing, spectral radius of M(s) is related to the variation of the “cover function”

Hs(K) (see Definition 2.2) and the only way of getting a finite change-over

point s in Eq. (3) is to set the spectral radius to 1.

The situation changes when we confine ourselves to a constant contraction

rate across all IFS maps. As seen in the proof of Theorem 4.3, in this case

there is a closed-form solution for s. The solution is equal to the scaled spectral

radius of the adjacency matrix, which determines the growth rate of allowed

label strings as the sequence length increases. The major difficulty with having

different contraction rates in the IFS maps is that the areas on the fractal

support that need to be covered by sets of decreasing diameters cannot be

simply estimated by counting the number of different label sequences of certain

length that can be obtained by traversing the underlying multigraph.

5 Recurrent networks as IFS

In this paper we concentrate on first-order (discrete-time) recurrent neural

networks RNNs of N recurrent neurons driven with dynamics

xn(t) = g

(

D
∑

j=1

vnjij(t) +
N

∑

j=1

wnjxj(t − 1) + dn

)

, (46)
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where xj(t) and ij(t) are elements, at time t, of the state and input vectors,

x(t) = (x1(t), ..., xN(t))T and i(t) = (i1(t), ..., iD(t))T , respectively, wnj and vnj

are recurrent and input connection weights, respectively, dn’s constitute the

bias vector d = (d1, ..., dN )T , and g(·) is an injective non-constant differentiable

activation function of bounded derivative from R to a bounded interval Ω ⊂ R

of length |Ω|. Denoting by V and W the N × D and N × N weight matrices

(vnj) and (wnj), respectively, we rewrite (46) in matrix form

x(t) = G(Vi(t) + Wx(t − 1) + d), (47)

where G : R
N → ΩN is the element-wise application of g.

Assume RNN is processing strings over the finite alphabet A = {1, 2, ..., A}.

Symbols a ∈ A are presented at the network input as unique D-dimensional

codes ca ∈ R
D, one for each symbol a ∈ A. RNN can be viewed as a non-linear

IFS consisting of a collection of A maps {fa}A
a=1 acting on ΩN ,

fa(x) = (G ◦ Ta)(x), (48)

where

Ta(x) = Wx + da (49)

and

da = Vca + d. (50)

For a set B ⊆ R
N , we denote by [B]i the slice of B defined as

[B]i = {xi| x = (x1, ..., xN )T ∈ B}, i = 1, 2, ..., N. (51)

When symbol a ∈ A is at the network input, the range of possible net-in

activations on recurrent units is the set

Ra =
⋃

1≤i≤N

[Ta(Ω
N)]i. (52)
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Recall that singular values α1, ..., αN of the matrix W are positive square

roots of the eigenvalues of WWT . The singular values are lengths of the

(mutually perpendicular) principal semiaxes of the image of the unit ball under

the linear map defined by the matrix W. We assume that W is non-singular

and adopt the convention that α1 ≥ α2 ≥ ... ≥ αN > 0. Denote by αmax(W)

and αmin(W) the largest and the smallest singular values of W, respectively,

i.e. αmax(W) = α1 and αmax(W) = αN . The next lemma gives us conditions

under which the maps fa are contractive.

Lemma 5.1 If

rmax
a = αmax(W) · sup

z∈Ra

|g′(z)| < 1, (53)

then the map fa, a ∈ A (Eq. (48)), is contractive.

Proof: The result follows from two facts:

1. A map f from a metric space (U, ‖.‖U) to a metric space (V, ‖.‖V ) is

contractive, if it is Lipschitz continuous, i.e. for all x,y ∈ U , ‖f(x) −

f(y)‖V ≤ rf‖x − y‖U , and the Lipschitz constant rf is smaller than 1.

2. The Lipschitz constant r of a composition (f1 ◦ f2) of two Lipschitz

continuous maps f1 and f2 with Lipschitz constants r1 and r2 is equal to

r = r1 · r2.

Note that αmax(W) is a Lipschitz constant of the affine maps Ta and that

supz∈Ra
|g′(z)| is a Lipschitz constant of the map G with domain Ta(Ω

N). ¤

By arguments similar to those in the proof of Lemma 5.1, we get

Lemma 5.2 For

rmin
a = αmin(W) · inf

z∈Ra

|g′(z)|, (54)
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it holds: ‖fa(x) − fa(y)‖ ≥ rmin
a ‖x − y‖, for all x,y ∈ ΩN .

6 RNNs driven by finite automata

Major research effort has been devoted to the study of learning and implemen-

tation of regular grammars and finite-state transducers using RNNs (Casey,

1996; Cleeremans, Servan-Schreiber & McClelland, 1989; Elman, 1990; For-

cada & Carrasco, 1995; Frasconi et al., 1996; Giles et al., 1992; Manolios &

Fanelli, 1994; Tiňo & Šajda, 1995; Watrous & Kuhn, 1992). In most cases, the

input sequences presented at the input of RNNs were obtained by traversing

the underlying finite state automaton/machine. Of particular interest to us

are approaches that did not reset the RNN state after presentation of each in-

put string, but learned the appropriate resetting behavior during the training

process e.g. (Forcada & Carrasco, 1995; Tiňo & Šajda, 1995). In such cases

RNNs are fed by a concatenation of input strings over some input alphabet

A′, separated by a special end-of-string symbol # /∈ A′.

We can think of such sequences as finite substrings of infinite sequences gen-

erated by traversing the underlying state-transition graph extended by adding

edges labeled by # that terminate in the initial state. The added edges start

at all the states – in case of transducers, or at the final states – in case of

acceptors.

Let G = (V,E, κ) represent such an extended state-transition graph. Let

A = A′ ∪ {#}. If for all a ∈ A, rmax
a < 1 (see Lemma 5.1), the recurrent

network can then be viewed as an IFS associated with a SCSTG (G, {rmax
a }a∈A)

(Definition 3.2) operating on the RNN state space ΩN .

When driving RNNs with symbolic sequences generated by traversing a
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strongly connected state-transition graph G, by action of the IFS {fa}a∈A we

get a set of recurrent activations x(t) that tend to group in well-separated

clusters (Kolen, 1994; Kolen, 1994a; Manolios & Fanelli, 1994). In case of

contractive RNNs (that are capable of emulating finite-memory machines, see

(Hammer & Tiňo, 2002; Tiňo, Čerňanský & Beňušková, 2002; Tiňo, Čerňanský

& Beňušková, 2002a)), the activations x(t) approximate the invariant attractor

sets Ku ⊆ ΩN , u ∈ V . In this situation, we can get size estimates for the

activation clusters.

Define (see Eq. (52))

ℓ = sup
z∈

⋃

a
Ra

|g′(z)| = max
a∈A

sup
z∈Ra

|g′(z)| (55)

q = min
a,a′∈A, a 6=a′

‖V(ca − ca′)‖. (56)

Theorem 6.1 Let RNN (47) be driven with sequences generated by travers-

ing a strongly connected state-transition graph G = (V,E, κ) with adjacency

matrix G. Suppose αmax(W) < ℓ−1. Let s1 be the dimension of the SCSTG

(G, {rmax
a }a∈A). Then the (upper box-counting) fractal dimensions of attrac-

tors Ku, u ∈ V , approximated by the RNN activation vectors x(t), are upper-

bounded by

∀u ∈ V ; dim+
B Ku ≤ s1 ≤

log ρ(G)

− log rmax

(57)

and also

dim+
B K ≤ s1 ≤

log ρ(G)

− log rmax

,

where rmax = maxa∈A rmax
a .

Proof: Since αmax(W) < ℓ−1, by (55) and Lemma 5.1, each IFS map fa,

a ∈ A, is a contraction with contraction coefficient rmax
a .
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One is now tempted to invoke Theorems 4.2 and 4.3. Note however that

in the theory developed in Sections 3 and 4, for allowed paths γ in G, the

compositions of IFS maps γ(·) are applied in the reversed manner9 (see Eq.

(10)), i.e. if κ(γ) = w = s1s2...sn ∈ A+, γ(x) = (fs1
◦fs2

◦...◦fsn
)(x). Actually,

this does not pose any difficulty, since we can work with a new state-transition

graph GR = (V,ER, κR) associated with G = (V,E, κ). GR is completely the

same as G up to orientation of the edges. For every edge e ∈ Eu→v with label

κ(e) there is an associated edge eR ∈ ER
v→u labeled by κR(eR) = κ(e).

The matrices M(s) (15) corresponding to IFSs based on G are just trans-

posed versions of the matrices MR(s) corresponding to IFSs based on GR.

However, spectral radius is invariant with respect to the transpose operation,

so the results of Section 4 can be directly employed. ¤

We now turn to lower bounds.

Theorem 6.2 Consider a RNN (47) driven with sequences generated by travers-

ing a strongly connected state-transition graph G = (V,E, κ) with adjacency

matrix G. Suppose

αmax(W) < min

{

1

ℓ
,

q√
N |Ω|

}

. (58)

Let s2 be the dimension of the SCSTG (G, {rmin
a }a∈A). Then the (Hausdorff)

dimensions of attractors Ku, u ∈ V , approximated by the RNN activation

vectors x(t), are lower-bounded by

∀u ∈ V ; dimH Ku ≥ s2 ≥
log ρ(G)

− log rmin

, (59)

9This approach, usual in the IFS literature, is convenient because of the

convergence properties of γ(X), γ ∈ Aω.
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where rmin = mina∈A rmin
a .

Proof: Note that diam(ΩN) =
√

N · |Ω|. Furthermore, by (58), we have

q > αmax(W) ·
√

N · |Ω| = αmax(W) · diam(ΩN).

It follows that

q = min
a 6=a′

‖V(ca − ca′)‖ = min
a 6=a′

‖da − da′‖ > αmax(W) diam(ΩN)

and so

for all a, a′ ∈ A, a 6= a′; Ta(Ω
N) ∩ Ta′(ΩN) = ∅.

Since G is injective, we also have

∀ a, a′ ∈ A, a 6= a′; (G ◦ Ta)(Ω
N) ∩ (G ◦ Ta′)(ΩN) = ∅,

which, by (48), implies fa(Ω
N) ∩ fa′(ΩN) = ∅, for all a, a′ ∈ A, a 6= a′. Hence,

the IFS {fa}a∈A falls into the disjoint case. We can now invoke Theorems 4.5

and 4.6. ¤

Using (4), we summarize the bounds in the following corollary.

Corollary 6.3 Under the assumptions of Theorems 6.1 and 6.2, for all u ∈ V ,

log ρ(G)

− log rmin

≤ s2 ≤ dimH Ku ≤ dim−
BKu ≤ dim+

BKu ≤ s1 ≤ log ρ(G)

− log rmax

. (60)

7 Discussion

Recently, we have extended the work of Kolen and others (e.g. (Christiansen

& Chater, 1999; Kolen, 1994; Kolen, 1994a; Manolios & Fanelli, 1994)) by

pointing out that in dynamical tasks of symbolic nature, when initialized with
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“small” weights, recurrent neural networks (RNN), with e.g. sigmoid activa-

tion functions, form contractive IFS. In particular, the dynamical systems (48)

are driven by a single attractive fixed point, one for each a ∈ A (Tiňo, Horne

& Giles, 2001; Tiňo et al., 1998). Actually, this type of simple dynamics is

a reason for starting to train recurrent networks from small weights. Unless

one has a strong prior knowledge about the network dynamics (Giles & Om-

lin, 1993), the sequence of bifurcations leading to a desired network behavior

may be hard to achieve when starting from an arbitrarily complicated network

dynamics (Doya, 1992).

The tendency of RNNs to form clusters in the state space before training

was first reported by Servan-Schreiber, Cleeremans and McClelland (1989),

later by Kolen (1994; 1994a) and Christiansen & Chater (1999). We have

shown that RNNs randomly initiated with small weights are inherently biased

towards Markov models, i.e. even prior to any training, RNN dynamics can

be readily used to extract finite memory machines (Hammer & Tiňo, 2002;

Tiňo, Čerňanský & Beňušková, 2002; Tiňo, Čerňanský & Beňušková, 2002a).

In other words, even prior to training, the recurrent activation clusters are

perfectly reasonable and are biased towards finite-memory computations.

This paper further extends our work by showing that in such cases, a rigor-

ous analysis of fractal encodings in the RNN state space can be performed. We

have derived (lower and upper) bounds on several types of fractal dimensions,

such as Hausdorff and (upper and lower) box-counting dimensions of activa-

tion patterns occurring in the RNN state space when the network is driven

by an underlying finite-state automaton, as has been the case in many studies

reported in the literature (Casey, 1996; Cleeremans, Servan-Schreiber & Mc-

Clelland, 1989; Elman, 1990; Forcada & Carrasco, 1995; Frasconi et al., 1996;
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Giles et al., 1992; Manolios & Fanelli, 1994; Tiňo & Šajda, 1995; Watrous &

Kuhn, 1992).

Our results have a nice information theoretic interpretation. The entropy

of a language L ⊆ A∗ is defined as the rate of exponential increase in the

number of distinct words belonging to L, as the word length increases. With

respect to the scenario we have in mind, i.e. RNN driven by traversing a finite-

state automaton, a more appropriate context is that of regular ω-languages.

Roughly speaking, a regular ω-language is a set L ⊆ Aω of infinite strings over

A that, when parsing a (traditional) finite-state automaton, end up visiting

the set of final states infinitely often10 (e.g. (Thomas, 1990)). The entropy of

a regular ω-language L is equal to the entropy of the set of all finite prefixes

of the words belonging to L and this is equal to log ρ(G), where G is the

adjacency matrix of the underlying finite state automaton (Fernau & Staiger,

2001). Hence, the architectural bias phenomenon has an additional flavor: not

only can the recurrent activations inside RNNs with small weights be explored

to build Markovian predictive models, but also the activations form fractal

clusters the dimension of which can be upper- (and under some conditions

lower-) bounded by the scaled entropy of the underlying driving source. The

scaling factors are fixed and are given by the RNN parameters.

Our work is related to valuations of languages, e.g. (Fernau & Staiger,

1994). Briefly, a valuation of a symbol a ∈ A can be thought of as a “contrac-

tion ratio” ra of the associated IFS map fa. Valuations of finite words over A

are then obtained by postulating that in general the valuation β is a monoid

morphism mapping (A∗, +, λ) to ((0,∞), ., 1), where + and . denote the oper-

10This is by no means the only acceptance criterion that has been investi-

gated. For a survey see (Thomas, 1990).
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ations of word concatenation and real number multiplication, respectively (see

Eq. (11)). It should be stressed that, strictly speaking, not all the maps fa

need to be contractions. There can be words with valuation ≥ 1. It is impor-

tant, however, to have a control over recursive structures. For example, in our

setting of sequences drawn by traversing finite-state diagrams, it is desirable

that valuations of cycles be < 1. Actually, in this paper we could have softened

in this manner our demand on contractiveness of each IFS map. However, this

would unnecessarily complicate the presentation. In addition, we are dealing

with the architectural bias in RNNs where all the maps fa are contractive any-

way. Our Hausdorff dimension estimates are related to β-entropy of languages.

However, valuations in principle assume that maps fa are similarities. In this

paper we deal with a more general case of non-similarities, since the RNN

maps fa are non-linear. In addition, the theory of valuations operates with

contraction ratios only, but in order to obtain lower bounds on the Hausdorff

dimension of the IFS attractor one has to consider other details of the IFS

maps.

Results in this paper extend the work of Blair, Bodén, Pollack and oth-

ers (e.g. (Blair & Pollack, 1997; Bodén & Blair, 2002; Rodriguez, Wiles &

Elman, 1999)) analyzing fixed point representations of context-free languages

in trained RNNs. They observed that the networks often developed an intri-

cate combination of attractive and saddle-type fixed points. Compared with

Cantor-set-like representations emerging from attractive-point-only dynamics

(the case studied here), the inclusion of saddle points can lead to better gen-

eralization on longer strings. Our theory describes the complexity of recurrent

patterns in the early stages of RNN training, before bifurcating into dynamics

enriched with saddle points.
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Finally, our fractal dimension estimates can prove helpful in neural ap-

proaches to the (highly non-trivial) inverse problem of fractal image compres-

sion through IFSs (e.g. (Melnik & Pollack; 1998; Stucki & Pollack, 1992)):

Given an image I, identify an IFS that generates I. The inverse fractal prob-

lem is an area of active research with many alternative approaches proposed

in the literature. However, a general algorithm for solving the inverse fractal

problem is still missing (Melnik & Pollack; 1998). As the neural implementa-

tions of IFS maps are contractions and the feeding input label sequences are

generated by Bernoulli sources, the fractal dimension estimates derived in this

paper can be used e.g. to assess in an evolutionary setting the fitness of neural

candidates for generating the target image with a known pre-computed frac-

tal dimension. Such assessment will be most appropriate in the early stages

of population evolution and is potentially much cheaper (see Section 8) than

having to produce at each step and for each candidate iteratively generated

images and then compute their Hausdorff distances to the target image.

8 Experiments

Even though our main result is of theoretical nature – the size of recurrent

activations in the early stages of RNN training can be upper- (and sometimes

lower-) bounded by the scaled information theoretic complexity of the under-

lying input driving source and the scaling factors are determined purely by the

network parameters – one can ask a more practical question about tightness of

the derived bounds11. In general, wider differences between contraction ratios

of the IFS maps will result in weaker bounds.

11thanks to an anonymous reviewer for raising this question
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We ran an experiment with randomly initialized RNNs having N = 5

recurrent neurons and standard logistic sigmoid activation functions g(u) =

1/(1 + exp(−u)). The weights W = (wnj) were sampled from the uniform

distribution over a symmetric interval [−wmax, wmax], with wmax ∈ [0.05, 0.35].

We assumed that the networks were input-driven by sequences from a fair

Bernoulli source over A = 4 symbols. In other words, the underlying au-

tomaton has a single state with A symbol loops. The topological entropy of

such a source is log A. For each weight range wmax ∈ {0.05, 0.06, 0.07, ..., 0.35}

we generated 1000 networks and approximated the upper and lower bounds

on fractal dimensions presented in Corollary 6.3. In particular two types of

approximations were made: (1) we assumed that the principal semiaxes of

WB0 (B0 is an N -dimensional ball centered at the origin) are aligned with the

neuron-wise coordinate system in R
N and (2) we did not check whether the

IFSs fall into the disjoint case. Both simplifications, while potentially over-

estimating the bounds, considerably speed-up the computations. The results

are shown in Figure 1(a). The means of the bounds across 1000 networks are

plotted as plain solid lines; the dashed lines indicate the spread of one standard

deviation.

To verify the theoretical bounds, we generated from the Bernoulli source

a long sequence ω of 10000 symbols. Next we constructed for each weight

range wmax ∈ {0.1, 0.2, 0.3} 10 randomly initialized RNNs and drove each

network with ω. We collected the 10000 recurrent activations from every

RNN and estimated their box-counting fractal dimension using the FD3 sys-

tem (version 4) (Sarraille &, Myers, 1994). The mean dimension estimates

are shown in Figure 1(a) as squares connected by a solid line; the error bars

correspond to the spread of ± one standard deviation. For comparison, we
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Figure 1: (a) Mean lower and upper bounds on fractal dimensions of RNNs

(plain solid lines) estimated for weight ranges in [0.05, 0.35] across 1000 RNN

realizations. The dashed lines indicate the spread of one standard deviation.

Solid line with squares shows the mean empirical dimension estimates from

10000 recurrent activations obtained by driving each network with an exter-

nal input sequence. (b) Theoretical bounds (circles) and empirical dimension

estimates (squares) for a single RNN randomly initialized with weight range

wmax ∈ {0.1, 0.15, 0.2, 0.25, 0.3}.

show in figure 1(b) the theoretical bounds (circles) and empirical dimension

estimates (squares) for a single RNN randomly initialized with weight range

wmax ∈ {0.1, 0.15, 0.2, 0.25, 0.3}.

The empirical box-counting estimates based on recurrent activation pat-

terns inside RNNs fall between the theoretical bounds computed based on

networks’ parameters. Tightness of the computed bounds depends on the

range of contraction ratios of the individual IFS maps within a RNN and on

the degree to which the simplifying assumption of axes-aligned principal semi-

axes of WB0 holds. It turns that the danger of overestimating the theoretical
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lower bounds because of not checking the disjoint case condition never materi-

alized. The lower bounds are based on the minimal contraction rate across the

IFS maps in a RNN and so the potential overestimation is balanced by higher

contraction rates in the rest of the IFS maps. Also, even though the disjoint

case condition may not be fully satisfied, deterioration of the bounds follows a

“graceful degradation” pattern as the level of overlap between the IFS images

fa(Ω
N) increases.

The framework presented in this paper is general and can be readily applied

to any RNN with dynamics (46) and injective non-constant differentiable ac-

tivation functions of bounded derivative, mapping R into a bounded interval.

Many extensions and/or refinements are possible. For example, the theory can

be easily extended to second-order RNNs and can be made more specific for

the case of unary (one-of-A) encodings ca of input symbols a ∈ A.

9 Conclusion

It has been reported that recurrent neural networks (RNNs) form reasonably

looking activation clusters even prior to any training (Christiansen & Chater,

1999; Kolen, 1994; Kolen, 1994a; Servan-Schreiber, Cleeremans &McClelland,

1989). We have recently shown that RNNs randomly initialized with small

weights are inherently biased towards Markov models, i.e. even without any

training, RNN dynamics can be readily used to extract finite memory machines

(Hammer & Tiňo, 2002; Tiňo, Čerňanský & Beňušková, 2002; Tiňo, Čerňanský

& Beňušková, 2002a).

In this paper we have shown that in such cases a rigorous analysis of fractal

encodings in the RNN state space can be performed. We have derived (lower
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and upper) bounds on the Hausdorff and box-counting dimensions of activa-

tion patterns occurring in the RNN state space when the network is driven

by an underlying finite-state automaton, as has been the case in many studies

reported in the literature (Casey, 1996; Cleeremans, Servan-Schreiber & Mc-

Clelland, 1989; Elman, 1990; Forcada & Carrasco, 1995; Frasconi et al., 1996;

Giles et al., 1992; Manolios & Fanelli, 1994; Tiňo & Šajda, 1995; Watrous &

Kuhn, 1992). It turns out that the recurrent activations form fractal clusters

the dimension of which can be bounded by the scaled entropy of the under-

lying driving source. The scaling factors are fixed and are given by the RNN

parameters.
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