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ABSTRACT

Attention-Deficit Hyperactive Disorder (ADHD) is one of the most common mental health disorders
amongst school-aged children with an estimated prevalence of 5% in the global population (1).
Stimulants, particularly methylphenidate (MPH), are the first-line option in the treatment of ADHD
(2, 3) and are prescribed to an increasing number of children and adolescents in the US and the
UK every year (4, 5), though recent studies suggest that this is tailing off, e.g. Holden et al. (6).

Around 70% of children demonstrate a clinically significant treatment response to stimulant
medication (7, 8, 9, 10). However, it is unclear which patient characteristics may moderate
treatment effectiveness. As such, most existing research has focused on investigating univariate
or multivariate correlations between a set of patient characteristics and the treatment outcome,
with respect to dosage of one or several types of medication. The results of such studies are
often contradictory and inconclusive due to a combination of small sample sizes, low-quality data
or a lack of available information on covariates.
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In this paper, feature extraction techniques such as latent trait analysis were applied to reduce
the dimension of on a large dataset of patient characteristics, including the responses to symptom-
based questionnaires, developmental health factors, demographic variables such as age and
gender, and socioeconomic factors such as parental income. We introduce a Bayesian modeling
approach in a ‘learning in the model space’ framework that combines existing knowledge in the
literature on factors that may potentially affect treatment response, with constraints imposed by a
treatment response model. The model is personalized such that the variability among subjects is
accounted for by a set of subject-specific parameters. For remission classification, this approach
compares favorably with conventional methods such as support vector machines and mixed effect
models on a range of performance measures. For instance, the proposed approach achieved
an area under receiver operator characteristic curve of 82–84%, compared to 75–77% obtained
from conventional regression or machine learning (‘learning in the data space’) methods.

Keywords: attention-deficit hyperactivity disorder, Bayesian inference, machine learning, methylphenidate, mixed effects model,

personalized medicine, prognosis, treatment response

1 INTRODUCTION

The ability to predict treatment response (or non-response) in patients with mental health issues is potentially
beneficial to both clinicians and patients in a number of ways. First, any treatment is accompanied by
the risk of adverse effects—where non-response is a probable outcome then the risks of treatment may
outweigh the benefits. Second, prediction of treatment response may guide both the dose and choice
of medication. For example, where adverse events are dose-dependent then a clinician may chose to
abandon a treatment course if a patient was a probable non-responder. Third, response prediction helps to
calibrate both clinician and patient expectations of treatment outcomes. Finally, identifying non-responders
may prompt a re-appraisal of the diagnosis and formulation of a patient’s problem—misdiagnosis being
one potential cause of non-response. These benefits certainly apply to Attention-Deficit Hyperactive
Disorder (ADHD), which is one of the most common developmental disorders among school-aged children
with an estimated prevalence of 5% in the general population worldwide (1). Stimulants, particularly
methylphenidate (MPH), are the first-line option in the treatment of ADHD (2, 3). Stimulants are prescribed
to an increasing number of children and adolescents in the US and the UK every year (4, 5), though
recent studies suggest that this trend is tailing off e.g. Holden et al. (6). The beneficial effects of stimulant
medication on the core symptoms of ADHD have been demonstrated by numerous clinical trials, reviews
and meta-analyses (11, 12, 13, 14). Nevertheless, adverse effects of the medications are also common
(14). The findings from previous research suggest that around 70% of children demonstrate a clinically
significant treatment response to stimulant medication (7, 8, 9, 10). However, it is unclear which patient
characteristics may moderate treatment effectiveness and whether non-response can be predicted.

To date, achieving accurate predictions of the clinical outcomes for patients with ADHD has proven
elusive—most of the literature has focused on investigating the potential correlations between a set
of patient characteristics and the outcome following treatment with one or more types of medication.
Information relating to patient characteristics has mostly been in the form of subjective questionnaire
ratings, clinical notes and qualitative psychometric data; for example, the ratings from symptom-based
questionnaires such as the Swanson, Nolan and Pelham (SNAP) questionnaire (15, 16, 17, 18), along with
demographic variables such as age, sex and social economic background. The results from such studies are
often contradictory and inconclusive due to small sample sizes and/or limited availability and quality of
data, especially in the temporal (longitudinal) domain.
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Along with more conventional statistical approaches, machine learning has also shown promise in
predicting treatment response or prognosis in healthcare applications. Indeed, recently a random forest
regression analysis was used to predict outcome in a group of patients affected by Obsessive Compulsive
Disorder (OCD) from a relatively small pool of questionnaire items, with a reported error rate of 24.6%
(19). Likewise, there has been a previous attempt to use machine learning techniques to predict treatment
response in ADHD (20); support vector machine classification from this study was reported as 84.6%
accurate (not to be confused with the balanced accuracy measure used in this paper). However, in addition
to demographic and clinical questionnaire-derived data, the study used genetic as well as neuroimaging
and neuropsychological information as inputs. Such data are unlikely to be readily available to clinicians in
routine practice.

In this paper we investigate whether the inclusion of prior knowledge relating to the potential mechanism
behind the presentation of a mental health condition and characteristics of individual patients can add
value in predicting treatment. Thus, we hypothesized that a pragmatic machine learning approach based on
a mechanistic or parametric model (a ‘learning in the model space’ framework) for treatment response
prediction may offer an advantage over more conventional methods (21, 22, 23, 24). This method represents
each newly observed patient through a model; the models are personalized such that individual differences
are accounted for by a set of subject-specific parameters. In the case of ADHD, developing a plausible
mechanistic model is not straightforward—despite decades of research, the underlying mechanism for the
disorder is not well understood. In addition, any mechanistic model would have to be based on data that are
likely to be available in good, but routine, clinical practice.

This paper documents, within the ‘learning in the model space’ framework, a Bayesian linear regression
model for the prediction of treatment response in a cohort of children diagnosed and treated for ADHD in
the UK. The performance of this new approach is then compared with conventional regression and machine
learning methods (‘learning in the data space’) to assess whether or not the new approach offers benefits,
and if so under what circumstances.

2 MATERIAL AND METHODS

2.1 Participants

The children enrolled in the study were drawn from the ADHD Drug Use and Chronic Effects (ADDUCE)
cohort study (25), covered by a data sharing agreement with patient consent. The participants were from the
UK NHS Tayside region who had attended the ADHD treatment clinics held at Dundee and Perth, UK. 262
families of eligible children were contacted, of which 181 (70%) were recruited and data on 173 of them
were obtained for the purpose of this study. In addition, data were available on 94 healthy controls. Out of
the 173 patients (whose baseline data are available), 157 of them started dose optimization studies and
therefore longitudinal (temporal) data are available (See Section 3.1). To be eligible for the ADHD group,
children had to be 6–17 years of age, have a clinical diagnosis of ADHD (see below), have had no previous
medical history of methylphenidate use (medication-naı̈ve) and have parental and child consent/assent to
commence. The criteria for the healthy control group were similar apart from them having no current or
previous psychiatric diagnoses. The recruitment was carried out over a 30-month period from January 2012
to August 2014.

All patients in the ADHD group had already been clinically diagnosed with ADHD; this diagnosis
was based on the clinical judgement of the assessing physician, informed by structured interviews with
parents/carers, information provided by the child’s school, direct observation of the child at the clinic, and
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at times, in their educational setting. Thus, the physician had to be satisfied that the child fulfilled the
diagnostic criteria for a hyperkinetic disorder according to the International Classification of Diseases 10th

edition (ICD-10) (26), or ADHD as defined by the Diagnostic and Statistical Manual 4th edition (DSM-IV)
(27). This means that the child had to demonstrate disabling and pervasive inattentiveness, hyperactivity
and impulsivity across a range of settings. The clinic was designed to implement a ‘dose optimization
titration’ scheme of medication in children diagnosed with ADHD. This involved giving increasing doses
of methylphenidate (as the first line medication) at roughly weekly intervals until remission from symptoms
was achieved or problematic adverse effects were encountered. If remission was not achieved with a first
line medication within recommended dosage limits, or if problematic side-effects were encountered then a
second line drug was initiated, and again, increased in dosage, as before.

2.2 Assessment

A range of baseline social and demographic factors was recorded, including parental marital status, family
composition, and socioeconomic status as indicated by the Scottish Index of Multiple Deprivation (SIMD)
2012 (28) derived from the family home postcode. A history of any previous psychiatric or non-psychiatric
medication exposure was recorded, as were any physical health issues. Verbal and non-verbal intellectual
functioning was estimated from parental reports and any educational issues noted. Problems with anxiety
and low mood were rated using the short form of the Mood and Feelings Questionnaire (MFQ) with
the parents, and where appropriate, the child as informants (29). Dystonia and abnormal movements
were recorded using the Abnormal Involuntary Movement Scale (AIMS) (30, 534–7). Oppositional and
ADHD symptoms and behaviours were rated, according to parental report, using the Swanson, Nolan
and Pelham (SNAP-IV) questionnaire (15). Any substance used by the participants was recorded using
the Substance Use Questionnaire (SUQ). Fine motor issues were recorded using the Developmental
Coordination Disorder Questionnaire 2007 (DCDQ’07). Several sections of the Development and Well-
Being Assessment (DAWBA) were used (31); these were 1) Rapidly Changing Mood (child and parent
versions), 2) Tic disorders, including the Tourette syndrome, 3) Awkward and troublesome behaviour. Tic
severity (where present) was also rated using the Yale Global Tic Severity Scale (YGTSS) (32). Possible
behaviours associated with an underlying Autism Spectrum Disorder (ASD) were evaluated using the Social
Communication Questionnaire (SCQ) (33). The Strengths and Difficulties Questionnaire (SDQ) (34) was
used to rate parental perceived levels of pro-social behaviour, hyperactivity/impulsivity, conduct problems,
emotional symptoms and peer relationship problems. The overall clinical impression was recorded using
the Clinical Global Impression — Severity scale (CGI-S) (30, 218–22) and Children’s Global Assessment
Scale (CGAS) (35).

Responses to medication, in terms of levels of ADHD symptoms, were reported by parents and recorded
using the SNAP-IV questionnaire at each visit. Likewise, any potential adverse effects and co-morbidity
problems were reported using the standard clinic proforma, along with weight, height and blood pressure
of the child at each visit.

2.3 Feature extraction/factor analysis

The aforementioned questionnaires included a large number of items with categorical (binary or ordinal)
response formats. Thus, in order to facilitate model development by reducing the dimensionality of the
data whilst minimising the loss of information, a series of factor (latent trait) analyses were conducted.

The key questionnaires used in the modeling process were the SCQ, the SDQ, and the SNAP-IV (see
the previous section). In particular, the SNAP-IV scores served as the outcome variables, which indicated

This is a provisional file, not the final typeset article 4

In review



Wong et al.

whether symptomatic remission had been achieved, following the dose-optimized titration of medication.
The factor analyses sought to identify the dimensionality underlying the responses to the questionnaires
and, consequently, the standardized factor scores represented the level of trait for each patient in that
underlying dimension or construct.

In order to estimate the dimensionality, the sample of 173 patients and 94 healthy controls was randomly
divided into two roughly equal exploratory and confirmatory datasets. A parallel analysis (36), adapted
for categorical data, was then implemented in the freeware FACTOR (37) using unweighted least squares
(ULS) estimation method. A weighted ‘promax’ rotation was deployed to achieve factor simplicity (38).
The maximum number of plausible factors (latent variables) was assumed to be indicated at the point where
the eigenvalues of the factors in randomly generated data exceeded those observed in the real data. A series
of exploratory factor analyses (EFAs - adapted for categorical dependent variables) were then conducted to
aid interpretation of the factors. Oblique ‘geomin’ rotation was used (39), assuming that, as in almost all
psychological measures, underlying latent traits would be correlated with each other to some extent (40). A
series of confirmatory factor analyses (CFAs) were then conducted using the held-back, confirmatory data
(see Section 3.1 on cross-validation), in order to ensure that the factor structures derived fitted the data
adequately. All EFAs and CFAs were conducted in the Mplus software version 7.1, using robust weighted
least squares with mean and variance adjustment (WLSMV) as the estimation method (41). Remission
was defined by a child having a reported factor score in the hyperactive and inattentive dimensions (both
elicited from factor analysis) equivalent to a mean item score in the SNAP-IV of one or less, which is
conventionally taken to indicate symptomatic remission (42, 43). The resulting symptom score thresholds
are only slightly different for inattentiveness and hyperactivity (−0.97 versus −0.92).

3 MODELING APPROACH

The causal factor model, shown in Fig. 1, was derived using a rapid review approach to appraise and
synthesize the existing evidence (44). This model also took into account the nature of the data available
in the cohort and was modified accordingly. The goal is not for the causal model to be comprehensive or
definitive, but to identify from the literature as many potential factors relating to treatment response as there
are available from the dataset, as well as helping to elicit the Bayesian prior distributions (Section 3.2.1).
Model development was based on a literature review. This involved running searches in the EMBASE,
MEDLINE and PsycINFO databases using the synonyms for ADHD (e.g. hyperkinesis) combined with
terms relating to treatment outcome or response, and the names of the medications (both scientific and
trademarks, full and abbreviated) prescribed in the cohort. The medications include 1) immediate release
methylphenidate (IR-MPH, e.g. Ritalin®), 2) long-acting methylphenidate (XR-MPH, e.g. Concerta XL®,
Equasym XL®, Medikinet XL®), 3) dextroamphetamine (DEX, e.g. Dexedrine®) including its prodrug
lisdexamfetamine dimesylate (e.g. Elvanse®), and 4) atomoxetine (ATOM, e.g. Strattera®). Secondary
sources were followed up. The quality of trial-based studies could be appraised using the CONSORT
checklist (45) and observational studies via the STROBE guidance (46). Two of the authors (HKW and
PAT) then made a judgement, based on the findings reported in the literature and the perceived likelihood
of bias or uncertainty as to what extent variables in the model might be related to treatment response in
ADHD. The model derived was consequently used to populate prior distributions for the patient-specific
model parameters (i.e. the hyperpriors). Where the evidence was uncertain or inconsistent, the variances
(i.e. imprecision) of the hyperpriors were increased.

Not every piece of information mentioned in Section 2.2 was used for the purpose of modeling, because
of insufficient data or multicollinearity between the variables. The causal factor model was then simplified
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based on the breadth of available data from the cohort, leading to a much reduced model as shown in
Fig. 2. Some factors were combined through another layer of feature extraction; for example, the motor
and control latent factors, themselves also obtained from applying feature extraction to the DCDQ’07
questionnaire data (see Section 2.2), were combined with the non-verbal communication factor from
the SCQ questionnaire to obtain a developmental adversity factor. Some factors were not obtained from
standard questionnaires; for example, the perinatal adversity factor (see Fig. 2) was constructed from birth
weight and gestation age; the family size and socioeconomic status factor combined the number of siblings,
parental house ownership (owned, mortgaged or rented) and the SIMD 2012 index (28).

3.1 Data

There were 267 subjects whose baseline characteristics were measured (173 clinically diagnosed with
ADHD and 94 healthy controls) at the first clinical appointment. Of the 173 non-controls, 157 were enrolled
in dose optimization titration studies with parental consent, for whom longitudinal (temporal) data are
available. The 157 patients with longitudinal data were randomized and 10-fold cross-validation partitions
were constructed. Subjects were partitioned into 10 subgroups of roughly equal size in a patient-coherent
fashion, i.e. data from a single patient only appeared in a single fold.

For all models investigated in this paper, a single fold was used as the validation dataset and the remaining
nine folds were combined to serve as the training dataset. This process was iterated until each fold had
served as validation data exactly once.

3.1.1 Baseline characteristics

We labeled the patient subjects by the indexing variable s = 1, 2, . . . , N . A set of L patient-specific
baseline continuous latent factors, encoded in a row vector bs ∈ R1×L was obtained by performing feature
extraction as described in Section 2.3 over the questionnaires detailed in Section 2.2. Referring to Fig. 2,
L = 14 factors were used for the baseline. Data from the controls in addition to the training dataset were
utilized during feature extraction to ensure that the resulting latent factor models can sufficiently encompass
the entire range of characteristics from ADHD patients to normal children. The resulting continuous latent
factors would, in theory, be sufficiently representative of the information conveyed by the categorical
questionnaire response variables.

To ensure that validation data were strictly not used for the model building, feature extraction was first
performed using only training data from each of the folds (plus all the controls). This resulted in 10 sets
of factor scores corresponding to each fold. The factor model structures (e.g. the number of factors per
questionnaire) over the folds did not change across the folds, as statistical fit indices and Chi-square
difference tests did not suggest that any changes were necessary. The factor models were then used to
estimate the baseline factor scores for the validation sets in each of the folds.

Each of the 10 cross-validation runs resulted in a set of corresponding continuous latent factors, which
were used as inputs to subsequent models. The models were trained and validated using the same training-
validation partitioning used in the feature extraction process.

3.1.2 Longitudinal data

Each of the 157 subjects with longitudinal data visited the clinic a varying number of times—from
titration, stabilization to continuing care; the number of doctor’s appointments, As, varies from 1 to
22. At each appointment, the parent or guardian of the patient was asked to fill in an 18-item SNAP-
IV questionnaire, which measures the degree of inattentiveness and hyperactivity. The responses were
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entered into a factor model (identified through feature extraction) to extract a continuous symptom score
for inattentiveness and hyperactivity. We denote the appointment number by the indexing variable a so
that a = 1, 2, . . . , As. Let the independent ‘input’ variables ma,1, ma,2, ma,3, ma,4 be the four types of
medications, respectively, IR-MPH, XR-MPH, DEX and ATOM for subject s at appointment a. Using
datasheets for the medicines used, the dosages of DEX and ATOM were normalized to an equivalent daily
dosage (EDD) of IR-MPH. For all a and s, this results in input and output matrices of the form:

Input: Ms =



m1,1 m1,2 m1,3 m1,4

m2,1 m2,2 m2,3 m2,4
...

...
...

...
ma,1 ma,2 ma,3 ma,4

...
...

...
...

mAs,1 mAs,2 mAs,3 mAs,4


(1)

Output: ys =
[
r1 r2 r3 . . . rAs

]ᵀ
, (2)

where r is the symptom severity measure and can be either the inattentiveness factor score or the
hyperactivity factor score.

The combined EDDs of medications (for the 4 types) prescribed over the appointment number for all
patients are plotted as a boxplot in Fig. 3. One can observe that as forced titration progressed over the
appointments, the overall dosage level increased.

Fig. 4 shows the distribution of inattentiveness and hyperactivity symptom factor scores for the patients
for each appointment. The lower the factor scores, the less severe the symptoms are. In terms of a general
trend, one can clearly see an effective and quick reduction in symptom levels over the first 5 appointments,
as stimulant medication prescription ramps up during forced titration. The symptom scores cease to improve
for appointments 6–8, after which a slight increase can be observed. This hints at adherence or persistence
issues, but the available data do not allow further investigation—as such issues are not consistently reported
by the parent/guardian or recorded in the clinical notes. While the model has no mechanism for modeling
such effects, the adaptive learning nature of the Bayesian algorithm is able to self-correct and compensate
for small deviations, for example, by ‘learning’ to weight down the dose-response parameter for a given
medication when the patient has a low adherence.

3.2 Treatment response model formulation

The treatment outcome is modeled as a linear combination of the baseline variables and the medication
dosage,

ys = Xsωs + ε (3)

where

Xs =

 bs 1
... Ms

...
bs 1

 , (4)
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ε ∼ N
(
0, σε, s

2
)
∈ RAs×1 is an error term and ωs ∈ RP×1 is the subject-specific parameter vector

moderating the effect of the baseline variables bs on the treatment response, i.e. it accounts for how large
an effect each of the various baseline variables or medication types has on treatment outcome. ‘Subject-
specific’ means that the parameter vector was allowed to be different for each subject so that patients with
similar baseline characteristics can still have a different prediction outcome. The number of free parameters
required is P = L+ 4 + 1 = 19 for L = 14 (see Fig. 2).

The baseline variables remain unchanged over different appointments while the medication dosage may
vary according to the titration regime specified by the clinician. Hence, every row of the matrix Xs contains
the same baseline characteristic vector for an individual patient, combined with the medication dosage
vector. The row number in Xs corresponds to the appointment number.

Because the number of visits As of the subjects was usually fewer than the dimension of the parameter
space P , the problem is mathematically underdetermined. Hence, classical least squares regression methods
would fail without an appropriate regularization (47). To this end, we employ a Bayesian formulation. In
particular, the Bayesian linear regression was used to model the temporal evolution of the dose-response
relationship for each patient.

In essence, a Bayesian approach allows prior or expert knowledge to be encoded into the problem
formulation and this enables a probabilistic solution to be found despite the limited data available.

3.2.1 Prior distributions and knowledge

The joint prior probability density function Pr
(
ω, σ2

)
is given in the Appendix by Eqn. (15). In this

exercise, the causal treatment response model based on the literature was used to constrain the prior of ω
and its covariance matrix Λ−10 .

When eliciting the prior, quantitative information from the literature was not used, e.g. setting the mean
of the prior distribution of the parameter vector omega to a specific numerical value. This is because the
demography, sample sizes and effect sizes across literature vary and there is no correct way to normalize
them. Instead, only the sign (direction) of the effect was encoded. For example, there is evidence that
methylphenidate improves treatment response in the literature (a positive dose results in lower symptom
score), therefore a negative value of −1 was specified for the columns of τ0 corresponding to ma,1 . . .ma,4

in Eqn. (1). For positive associations with symptom scores, +1 was used instead. The same magnitude is
used in other factors (i.e. either +1 or −1).

Each cohort study or clinical trial from the rapid review was appraised, respectively, using the STROBE
and the CONSORT checklists by counting the number of pass and fail items out of the total. Evidence from
the literature was marked as good quality when both the checklist score was similar to other studies on
the same topic (within 20% from the best) and effect sizes were statistically significant as reported by the
authors for the sample size used. The diagonals of the covariance matrix Λ−10 were assigned an initial value
of one; for every contradicting evidence (the effect sizes are opposite in direction) satisfying these criteria,
0.5 was added to the corresponding variance in the covariance matrix. A higher value may be specified if
necessary, to ensure that the prior distribution of parameter omega spans both positive and negative sides
sufficiently—within one standard deviation of τ0. On the other hand, if the effect sizes are positive the
variance was reduced by 0.1 for each supporting studies, at the same time ensuring the variance does not
go below 0.5. The (lack of) proposed existence of causal links between the variables in the causal model
(see Fig. 1) ensures the sparsity of the covariance matrix Λ−10 .
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While these numbers may not be completely objective, the amount of data available means that the
sensitivity of the results to the prior is low—sensitivity analysis shows that the effect of scaling the prior
covariance between 50% to 150% of its original values changes the errors by about 5% of the training root
mean squared (rms) error, and 3% for the validation rms error.

3.2.2 Posterior distributions

The posterior distribution is given in the Appendix by Eqn. (16), where the parameters of the distributions
are obtained through Eqn. (17). In the training set, Bayesian learning uses data from all of the appointments
that a subject had, in which case n = As where, as before, As is the total number of visits or appointments
a subject has and data are available for. We introduce the simplified notations after Bayesian update has
been applied to the training set using Eqn. (17), so that

Λ−1As
→ Λ̂−1s , τAs → τ̂s, αAs → α̂s and βAs → β̂s. (5)

This notation will be used in later sections. The reader should be reminded that the parameters are derived
from each subject and hence are different across subjects. Notice that in a prediction exercise (instead
of retrospective regression formulated here), the learning can be applied incrementally for each future
observation with each update using just the new observation.

3.3 Virtual patient profile

When a new patient (denoted by s = ∗) is received, one can measure their baseline variables b∗, but
not their model parameter space ω∗. The goal is to estimate a virtual patient profile that is believed to
best describe the new patient using only the available baseline measurements. To do this one derives the
mathematical mapping functions from the baseline characteristics of a patient to their posterior parameters
b∗ 7→ Pr (ω∗) and Pr

(
σ2
∗
)
, such that a prediction can be made from the baseline variables. These functions

are forged using machine learning on the existing pool of training data. Since Pr (ωs) is parameterized by(
τs,Λ

−1
s

)
and likewise Pr

(
σ2
s

)
by (αs,βs), one has to learn the mappings from the baseline variables

to the parameters. The learnt mathematical mapping functions can then be used to obtain estimates of
(τ̂∗, Λ̂

−1
∗ ) and (α̂∗, β̂∗), which represent the virtual patent profile for the new patient in the model space.

Due to the conjugate nature of the priors, one does not need to derive the hyperparameters α̂∗ and β̂∗
from Eqn. (5) for the purpose of having point estimates for the treatment response prediction. However,
these hyperparameters are necessary in order to derive the posterior distribution of the predicted value—
commonly referred to as the posterior predictive distribution. Knowing the distribution allows us to
approximate the uncertainties of the estimates, e.g. 95% confidence intervals. Two methods were proposed
for learning the mappings from the baseline variables to the virtual patient profile and they are introduced
in the following subsections.

3.3.1 Method 1: Generalized linear regression

To determine the mappings, one finds the functions: a) fτ (b∗) ≈ τ̂∗ and b) fu (b∗) ≈ Λ̂−1∗ where us is a
row vector containing non-zero elements of the upper (or lower) triangular part of Λ̂−1s . Since Λ̂−1 is a
covariance matrix (hence symmetric), knowledge of the lower/upper half of the off-diagonal elements plus
the diagonal elements is sufficient to fully recreate the matrix.

The mappings are learnt from the training data, in which the posterior distributions of τ̂s and Λ̂−1s are
already available through Eqn. (17). Linear regression models of the form Y = P̂B were used to model the
two mappings, where the matrix B has rows of bs vectors—one for each subject in the training set—and
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similarly Y is composed of rows of a) τs for determining fτ or b) us for determining fu. The least squares
solutions for the models are given by the Moore-Penrose pseudo-inverse,

Q̂ = (BᵀB)−1 BᵀY. (6)

For prediction, fτ and fu can both be formulated as f(b∗) = b∗Q̂.

The posterior estimates for the hyperparameters for a new patient are taken as the averaged values of α̂s
and β̂s across all subjects in the training set, resulting in α̂∗ = 5.5 and β̂∗ = 1.7.

3.3.2 Method 2: Gaussian kernel weighted averaging

An alternative method is to find τ̂∗ and Λ̂−1∗ using a weighted average of τ̂s′ and Λ̂−1s′ , with s′ ∈ S∗ being
a subset of subjects in the existing training pool whose baseline variables (bs′) were “similar” to those of
the new patient (b∗). Highly similar subjects will have a higher influence on the value of τ̂∗ and Λ̂−1∗ . The
‘(dis)similarity’ ds is measured using the pairwise euclidean distance between bs and b∗, such that

ds = (b∗ − bs) (b∗ − bs)
ᵀ . (7)

This is then sorted and the 17.5% of subjects in S∗ with the smallest ‘dissimilarity’ values are kept; this
percentage value was chosen as it resulted in the lowest validation error. The weighting ws was taken as
the normalized Gaussian kernel

ws =
exp (−λ · ds)∑

∀s′∈ S∗

exp (−λ · ds′)
(8)

where the parameter value λ = 1.15 was chosen as it again resulted in the lowest validation error. Using
equations (7) and (8), one can estimate τ̂∗ and Λ̂−1∗ as

τ̂∗ =
∑
∀s∈S∗

wsτs, (9a)

Λ̂−1∗ =
∑
∀s∈S∗

wsΛ
−1
s , (9b)

and similarly the estimates of the hyperparameters are calculated using

α̂∗ =
∑
∀s∈S∗

wsαs, (9c)

β̂∗ =
∑
∀s∈S∗

wsβs. (9d)

3.4 Prediction using the posterior predictive distribution

When a new subject visits the clinician, their b∗ vector may be measured and used to approximate τ̂∗,
Λ̂−1∗ , α̂∗ and β̂∗ using either of the methods in the previous subsections. Given a hypothetical medication
input x∗, the treatment response for the new subject can then be predicted through the posterior predictive
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distribution

Pr (y∗) = tν

(
x∗τ̂∗,

β̂∗
α̂∗

(
I + x∗Λ̂∗x

ᵀ
∗

))
(10)

where the number of degrees of freedom for the Student’s t-distribution is given by ν = 2α̂∗.

Equation (10) may be used to predict the treatment response for this new patient over their course of the
treatment directly without learning; that is to treat each appointment as independent and the parameters are
not updated. On the other hand, it is possible to perform incremental Bayesian learning over the course of
treatment, by using Eqn. (17) to update the parameters given the treatment outcome measured for each new
visit and the associated inputs. Through incremental learning, the model corrects for discrepancies between
the true profile and the virtual patient profile of the new patient. As such, one would expect the prediction
to improve as data from more visits to the clinic become available. The implementation of these methods is
discussed in more detail in Section 4.4.

At some point, the profile of the new patient in terms of the treatment outcome, inputs, and baseline
characteristics can be added to the pool of existing patient profiles (training set) to improve the model’s
generalizability for future patients.

3.5 Training and validation

As discussed in Section 3.1, 157 patients with longitudinal data were randomized and 10-fold cross-
validation partitions were constructed resulting in 10 folds of training-validation data partitions.

First, for each fold, the framework detailed in Section 3.2 was followed and Bayesian linear regression
was performed to fit patient-specific parameters to each patient in the training dataset. Second, either of the
methods specified in Section 3.3 was used in order to construct virtual patient profiles for each patient in
the validation set, using the patient-specific parameters. Finally, the procedure outlined in Section 3.4 was
followed in order to obtain a prediction for patients in the validation set; effectively treating each patient as
new.

3.6 Dichotomous remission prediction

Although the model was initially formulated to predict a continuous scale of symptom scores, one can
explore dichotomizing the outcome into patients who have shown reduced symptoms and those who have
not. The justification is that clinicians and doctors are less likely to be interested in a predicted SNAP-IV
score or symptom severity scale as opposed to a simple “yes/no” answer as to whether the patient will be in
remission for a given medication. A simple way to adapt the current model to do this is to apply a threshold
to the continuous symptom score prediction, below which the patient is predicted to be in remission.

Some of the literature loosely defines remission in ADHD as having a large majority of SNAP-IV
responses rated in category 0 (not at all) or 1 (a little) (42, 43). Therefore in this paper, the thresholds were
chosen such that the approximate continuous symptom score corresponds to the raw responses from the
18-item SNAP-IV questionnaire all lying in category 1. The resulting symptom score thresholds are only
slightly different for inattentiveness and hyperactivity (−0.97 versus −0.92, see Section 2.3).

Using these thresholds, it was found that the proportion of visits when measurements were taken indicates
that remission was relatively rare, 160 out of a total of 1147 (13.95%) for the inattentiveness score and
139 (12.1%) for the hyperactivity score. This is expected, as forced titration initially starts with a low
medication dosage and one would not expect an effective reduction in symptom ratings to remission levels
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before the dosage was ramped up in later appointments; in addition, because of medical persistence issues
patients can drop out before the clinicians are able to find an effective dose.

Note that all the methods in this paper were first used to predict the continuous symptom scores by
regressing the baseline variables, medication prescribed to the treatment response at following appointments.
Dichotomized remission prediction only occurs at a later stage. Right censoring (where patients prematurely
drop out of dose optimisation stage without achieving remission) is therefore not an issue; repression
methods can utilize the remaining appointment information to model treatment response regardless of
whether remission was achieved or not.

4 PERFORMANCE METRICS

To facilitate a comparison between the performance of the different approaches, several performance
metrics were used. For the regression tasks, one is interested in the deviation in the predicted symptom
scores against the true symptom scores; whereas for the remission classification tasks, one is interested in
the performance of the classifiers with regard to the probabilities or ratios of true positive, false positive,
true negative and false negative cases.

4.1 Regression task

The root mean squared (rms) error measure is defined as the square of the averaged squared error across
the 10 folds, across subjects and across all appointments for each individual, i.e.√√√√rms =

1

10|S|

10∑
k=1

∑
∀s∈S

As∑
a=1

A−1s |ys − ŷs|2 (11)

where S is the set of all subjects considered (e.g. those in the validation set), |S| denotes the number of
subjects in S; ys, ŷs and As are, respectively, the true outcome symptom score, the fitted or predicted
outcome symptom score, and the total number of appointments for the individual subject s.

4.2 Classification task

4.2.1 Sensitivity and specificity

The sensitivity (SEN, also known as the true positive rate or recall) is defined as NTP/NP where NTP is
the number of true positives—appointments where measurements indicated remission and were correctly
predicted as such; and NP is the actual number of positive cases, i.e. the number of appointments where
the corresponding subjects were indeed in remission. This is reported in addition to the specificity (SPC,
also known as the true negative rate or fall-out), defined as NTN/NN, where NTN is the number of
true negatives—those not in remission and correctly predicted as such; and NN is the actual number of
negative cases (48). Note that if one lets NFP and NFN be the number of false positives and false negatives
respectively, then NP = NTP +NFN and NN = NTN +NFP (48).

Sensitivity characterizes the ability of a classifier to rule out false negative predictions (type-II errors)
given that a condition is true. On the other hand, specificity measures the ability of a classifier to rule
out false positive predictions (type-I errors) given that a condition is false. In this exercise, the sensitivity
measure is more important; due to the rarity of remission, and the goal is to try to predict what level of
medication is required to achieve remission, the ability of a classifier to recall remission cases (ruling out
type-II errors) is more important than ruling out type-I errors.

This is a provisional file, not the final typeset article 12

In review



Wong et al.

4.2.2 PPV and NPV

The positive predictive value (PPV, also known as the precision) is the proportion of true positives
in the predicted positive cases and is the probability of remission given a positive prediction by the
algorithm. As such, the PPV is a measure of the “quality” of a given positive prediction. PPV is given by
NTP/ (NTP +NFP). Conversely, the negative predictive value (NPV) is the proportion of true negatives in
the predicted negative cases, and is the probability of non-remission given a negative prediction. NPV is
given by NTN/ (NTN +NFN) (48).

By the argument outlined above, the PPV is more important for this exercise than the NPV.

4.2.3 Balanced accuracy

The overall accuracy of a dichotomous predictor is defined by

Accuracy = (NTP +NTN)/N,

where N = 1147 is the total number of appointments across all subjects.

However, the overall accuracy measure is known to be problematic when the prevalence of success/failure
is low (49), i.e. the data are imbalanced (see also the end of Section 3.6). Due to this, some of the literature
uses the balance accuracy (BAC) measure, defined as the average of sensitivity and specificity (50). This is
the accuracy measure used throughout this paper. Note that, numerically, the BAC is closely related to the
Youden’s J-statistic (51), also known as ‘informedness’ or ‘DeltaP′’ (52), since it is equal to sensitivity
plus specificity minus one.

4.2.4 ROC and AUC

The receiver operating characteristic (ROC) curve is commonly used in the medical and the machine
learning community to evaluate the performance of binary classifiers (53). It plots the true positive rate
(sensitivity) against the false positive rate (one minus specificity) for a given classifier. A curve is obtained
when its classification performance can be tuned through setting a threshold or changing a parameter,
trading off the true positive rate against the false positive rate. Binary classifiers that can achieve good
compromise between sensitivity and specificity have a large area-under-the-curve (AUC), and this single
metric may be used to compare the performance between the different classifiers (54).

4.3 Trading off sensitivity and specificity

From Section 3.6, the proportion of appointments without remission is (100 − 13.95)% = 86.05%.
Therefore, given this statistic, one would expect that a null model guessing the result randomly would
have a sensitivity of 13.95% and a specificity of 86.05%. Simply using point estimates of the continuous
symptom score from the learning in the model space approach and thresholding them to give dichotomous
predictions of remission results in classifiers with low sensitivity values between 22 % to 28 % and high
specificity values of 94 % to 97 %. Due to the low number of remission cases compared to the non-remission
cases, the classification is biased against predicting the remission cases, leading to low sensitivity (but high
specificity). A classifier can be tuned to improve its sensitivity performance by trading off specificity to a
certain degree. A good compromise would be maximising both sensitivity and specificity equally, which is
in essence maximising the BAC or the Youden’s J-statistic in Section 4.2.3.

The thresholds for remission are defined by the SNAP-IV symptom factor scores as in Section 2.3, and
this defines the ground truth of whether a patient is in remission or not. However, one can take advantage
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of the fact that the predicted continuous symptom scores from the learning in the model space approach
form full posterior distributions with uncertainties associated, and the levels of uncertainty are known (e.g.
see the error bars in Figures 8 and 9). One may define a critical value as the lower bound of the prediction,
above which the probability of the prediction being correct is x%. Instead of the remission thresholds
comparing against the point estimates, they may be compared against the point estimates minus a critical
value. The larger the critical value, the higher the prediction score has to be in order to be classified as not
in remission. This in effect is equivalent to raising the threshold, classifying more and more cases into
remission, which increases the sensitivity and lowers the specificity. The range of ‘thresholds’ or classifier
parameter settings that makes this trade-off can be used to generate a ROC plot (Section 4.2.4). A similar
trade-off can be made with classical machine learning algorithms and will be discussed in Section5.

The training data are used to find an optimal classifier setting in order to achieve the highest BAC, and
the same classifier setting is then used to classify the validation data. This ensures that the validation data
are not used to minimize the validation error.

4.4 Benchmarking and implementation

The Bayesian learning in the model space approach relies on prior knowledge (Section 3.2.1) and virtual
patient profiles in the model space (Section 3.3), as well as iterative learning (Bayesian update) in order to
function. To assess whether these components contribute to the prediction capability of the model, several
implementation strategies are investigated, namely:

1. Appointment-independent prediction (AI): treating each appointment as independent (as the first
appointment) and giving a prediction only using the virtual patient profile;

2. Incremental Bayesian linear regression (BR): The first prediction is performed in exactly the same
manner as the appointment-independent case. Then, Bayesian linear regression using elicited priors
(see Section 3.2.1) is applied progressively. That is, the effect/outcome of medication prescribed in
appointment 1, then observed at appointment 2, is used in the regression model. Then, at appointment 3,
outcomes from appointments 1 and 2 are used. Similarly, at appointment 4, outcomes from appointments
1, 2 and 3 are used, and so on. This means that except for the first prediction, the incremental Bayesian
linear regression learns from scratch the patient-specific parameters (at each appointment) using the
elicited priors. This essentially disregards any information already learnt from the current training set (the
virtual patient profiles), treats the validation set as a new ‘training’ set, and performs basic Bayesian linear
regression fitting. However, instead of all appointment outcomes being available for each new patient, as
is the case during the training phase, one simulates the fact that information is progressively collected
during the course of treatment for new patients. Since the virtual patient profiles are not utilized, this
serves as a benchmark reference to evaluate the effectiveness of the constructed virtual patient profiles
when compared with the next case; this represents a method that can be implemented even when no
training data exist.

3. Incremental Bayesian learning/update (BU): The first appointment is predicted as for the previous
two cases, but then when the true value is observed (in appointment 2), it is fed-back into the Bayesian
learning model, i.e. Eqn. (17). This updated model is then used to generate a prediction. This progressive
updating continues up to the most recent appointment. The crucial difference between this method and
the BR method is that, here, the priors used were derived from the virtual patient profiles, as opposed to
the elicited priors used in the BR method. When compared to the BR case, this highlights whether the
model space offers any utility in aiding the prediction of treatment response.
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The Bayesian approach was implemented ad hoc in MATLAB software with custom routines. The
performance of the prediction was compared across the three different implementations above, using the
validation data.

5 COMPARISON WITH CONVENTIONAL METHODS

To provide context to the results achieved using the learning in the model space approach, the performance
of conventional linear regression methods and machine learning methods was also investigated.

5.1 Mixed effects models

Linear mixed effects models (MEM) are widely used in many fields; for instance, biology (55), ecology
(56), linguistics (57) and social sciences (58). They extend upon classical linear regression techniques to
support data that have some form of grouping. For example, in this paper, each patient had one or more
clinical appointments, and the data from each subject form a group. For each patient s with a number
of appointments (from 1 to As), the severity symptom score vector ys (as in Eqn. (2)) is, for simplicity,
assumed to have a linear relationship with the baseline and treatment effect via the following formulation:

ys = qs + b0 + X̂sωs + ε, (12)

where X̂s is similar in structure to X defined in Eqn. (4) but without the last column of ones; ωs ∈ RP×1
is the subject-specific parameter vector for the fixed effects, qs ∼ N(0, σ2q ) is the random effect affecting
only the intercept b0, and ε ∼ N(0, σ2ε,s) ∈ RAs×1 is an error term assumed to have a normal distribution.
Observe that in this model, the scalar intercept b0 is a fixed component for all of the patients in the population
and the random effect as is a subject-specific scalar and is not grouped under any other parameters.

A linear mixed effects model was constructed within the R software (59), using the package ‘lme4’ (60).
Severity score predictions were produced by performing out-of-sample forecasts, i.e. on the validation
data for each of the folds, using the ‘predict’ function in the R software. To generate a prediction, the
random effects are assumed to be zero and the population intercept was used. The continuous symptom
score regression results for the MEM are prefixed MER.

For a dichotomized clinical remission classification, the symptom score thresholds 0.92 and 0.97 from
Section 2.3 for hyperactivity and inattentiveness were used to generate the ground truths. Following the
rationale in Section 4.3, the symptom scores predicted by the MEM are given thresholds at different levels
to produce a set of classifiers trading off sensitivity against specificity. These threshold-adjusted classifiers
are labeled taMEC. The best (in terms of Youden’s statistic) threshold settings found using the training data
were used for the validation data; the thresholds were 0.05 and -0.20, respectively, for the inattentiveness
and hyperactivity symptom scores. In addition, the ‘melogit’ function in the Stata software (61) was used
to directly estimate a mixed effects logistic regression model—a MEM with a logistic link function that
predicts the probability of the binary remission outcome. In this case, the threshold procedure was applied
to the probabilities rather than the raw symptom scores. The resulting classifier is labeled lrMEC.

5.2 Support vector machines and Gaussian processes

In addition to MEM, machine learning classification approaches using support vector machines (SVM)
and Gaussian processes (GP) were benchmarked. Both the SVM and GP learning methods are kernel
machines and were implemented using linear (dot product kernel: k(xi,xj) = (xi.xj)) and nonlinear
kernels (the Gaussian kernel: k(xi,xj) = exp

[
−γ(‖xi − xj‖)2

]
). Readers are invited to refer to Burges
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(62) for a detailed description of support vector machines and to Rasmussen and Nickisch (63) for a
detailed description of GP learning. Compared to MEM and the learning in the model space approach, the
SVM and GP are non-parametric methods—there are no subject specific parameters to identify; the models
map the subject-specific inputs, such as baseline characteristics and the medication dosage, to the output
symptom scores.

For the SVM, nested cross-validation was employed to optimize the parameters in the model. A broad
log range spanning [10−3 : 102] was arbitrarily chosen as the search range for the regularization parameter
C. Similarly, the gamma parameter of the Gaussian kernel was optimized in the log range spanning
[10−4 : 101]. For the GP, the model parameters were optimized using conjugate gradient descent, avoiding
the need for nested cross-validation. SVM and GP learning approaches were employed as regression
models (support vector regression SVR and Gaussian process regression GPR) for the linear and nonlinear
kernels to predict the clinical scores. Dichotomous remission predictions were obtained by thresholding
the distance from the hyperplane for the SVM, and for thresholding the probabilistic predictions of class
membership for GP. These binary classifiers are respectively labeled as SVC and GPC.

From Section 3.6, the number of remission cases outweighed non-remission cases by a ratio of roughly
1:7. For a classification task, this imbalance of data is problematic for many classification algorithms
(64). To help alleviate this, a downsampling approach was implemented for both linear and nonlinear
kernels of the SVM and GP classifiers dsSVC and dsGPC. During the training phase, the non-responder
class was downsampled randomly to match the number of training instances in the remission class. By
repeating this downsampling procedure, an ensemble of 1000 classifiers was trained. A classification
prediction was generated by majority voting of the ensemble. Additionally, for the SVMs, an alternative
is to learn the regularisation parameters C on a per-class basis. The rationale is that a higher penalty
for errors can be placed on the more abundant class (65); this method is referred to as the weighted
SVM (rwSVC). The per-class C parameters C+ and C− were optimized using the ranges

[
10−3 : 101

]
and

[
10−2 : 102

]
, respectively. Finally, for the Gaussian process classifier, it is possible to calibrate the

probabilistic predictions in order to help account for imbalanced data (66); this approach is referred to as a
re-calibrated GP (rcGPC).

Using MATLAB software, the SVM was implemented using the libsvm toolbox (67), the Gaussian
process learning was implemented using the GPML toolbox (63).

6 RESULTS AND DISCUSSIONS

6.1 Continuous symptom score prediction

The rms errors across all models are reported in Table 1.

6.1.1 Learning in the model space approach

Looking at the learning in the model space approach, one can observe that the virtual patient profile
construction method, labeled Method 2, resulted in lower errors overall compared to Method 1. In Method 1,
the mappings were learnt using simple linear regression from baseline variables to the parameter space. In
addition to this simple linear regression, low degree polynomial (quadratic to quartic) basis functions were
tried; whilst degrees up to a cubic resulted in a slightly lower training error, there was worse generalizability
(i.e. higher validation error). For Method 2, the incremental Bayesian learning (BUR) approach performed
the best overall; its performance advantage over the appointment-independent prediction (AIR) approach
is expected given that it allows the model to adapt to a new patient as the treatment continues. The

This is a provisional file, not the final typeset article 16

In review



Wong et al.

performance advantage over the retrospective Bayesian linear regression (BRR) approach can be attributed
to the fact that the virtual patient profile (Section 3.3) had utilized the prior whilst the Bayesian linear
regression only uses the elicited prior (see Section 3.2.1). This supports the fact that the training population
was able to add valuable information to the prediction task.

We recall that the BUR constructs virtual patient profiles while the BRR only uses the prior knowledge. It
is interesting to note that the BRR outperforms the BUR using Method 1, suggesting that Method 1 was not
an effective method for incorporating information from existing patient models.

Figure 5 shows the rms values averaged across all subjects during the validation phase and sorted by
the clinical appointment (visit) number. Data above 15 visits are not shown as only a single patient had
more than 15 visits. There is a slight downward trend visible with the vBUR; suggesting that incremental
Bayesian learning approach is able to reduce the prediction error as more data are known about a new
patient through repeated appointments. The vBRR also shows a downward trend, but the error is slightly
higher than the vBUR. This is because the vBRR starts with only the elicited prior and performs learning
(fitting) when more data are available, unlike the vBRR which starts off with information from the training
set in the form of a constructed/estimated virtual patient profile.

Figure 8 illustrates some examples of Bayesian linear regression performed during the training phase
and their associated fitting rms errors. It can be seen that Bayesian linear regression fits similarly well
for both the inattentiveness and hyperactivity symptom scores. Switching to a new type of medicine is
usually associated with larger uncertainty (error bars). Looking at subject #74 (Figure 8b) in particular,
it can be seen that, despite having the same input dosage from appointments 6–8, there were variations
in the severity of the ADHD symptoms. It is not possible to know the exact reason for the variation for
this subject during this particular period, without further information—perhaps this was due to adherence
issues (the patient not taking their medication as prescribed), physiological factors, measurement ‘noise’,
or perhaps something else entirely. By design, Bayesian linear regression can only fit the same outcome
given the same input. This does highlight the fact that the current model may not have enough information
in the form of covariates to account for some of these factors.

A subset of results for the validation phase is plotted in Figure 9. For brevity, only prediction outcomes
for hyperactivity symptom scores are shown and retrospective Bayesian linear regression results (BRR) are
omitted. The lack of solid lines connecting the predictions in the topmost subplot serves as a reminder that
the model does not incorporate temporal aspects for the case of appointment-independent (AIR) prediction,
which treats each appointment as the first (new) appointment for a new patient. This is also why the 95%
confidence intervals for AIR are larger (more uncertain) than those for the BUR. Also note that, by design,
the prediction results for the first appointment are identical for both approaches.

The figures illustrate that, during prognosis, incremental learning does not always improve the prediction
error compared to simply predicting at every appointment without updating the model using new
information. However, based on the rms errors in Table 1a, one expects incremental learning to perform
better overall across subjects, especially for subjects with a prediction offset, such as over- or under-
estimates. This is illustrated by the results for subject #148 given in Figure 9b, where the virtual patient
profile for this patient consistently underestimates the actual hyperactivity score. Here, the incremental
Bayesian learning was able to adapt the parameter ω and shifted the prediction upwards, resulting in lower
prediction errors over the subsequent appointments.
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6.1.2 Conventional machine learning approaches

Looking at the results in Table 1b, the conventional approaches yield similar performance, with linear
SVR and GPR methods performing better than their nonlinear counterparts. The mixed effects model has
slightly worse results. Errors of linear SCR and linear GPR are similar to each other, and to those for the
learning in the model space approach BUR with Method 2. We conclude that for the task of predicting
continuous symptom scores with the dataset investigated, the learning in the model space approach performs
comparably with conventional approaches.

6.2 Dichotomous remission prediction

6.2.1 Learning in the model space approach

For the learning in the model space approach, the ROC curves for the dichotomous predictor are plotted
in Figure 6 for both of the virtual patient profile (Section 3.3) construction methods. As the results for
inattentiveness and hyperactivity scores were similar, only the ROC curves for inattentiveness are shown.
The AUC values are given in the legend. The crosses on the lines mark the resulting classifier performance
if one uses point estimates for the continuous symptom score from the model and simply applies the clinical
remission thresholds. The squares mark the classifiers that have critical values based on maximizing the
Youden’s J-statistic (or the BAC, see Section 4.2.3) for the training set—this is equivalent to the sensitivity
and specificity measures being maximized equally as a function of the critical values. Lastly, the circles
mark the best classifier for the validation set in terms of the Youden’s J-statistic. The closer the squares
are to the circles, the better optimized the classifier is assuming no knowledge of the validation dataset.
Those optimized classifiers marked by squares in the graph are used to generate various binary classifier
performance metrics (see Section 4.2) in Table 2.

Looking at Table 2. The confusion matrices (CFM) show the number of true positives and false negatives
in the first column, and false positives and true negatives in the second column. These may be used to
calculate any classification performance metrics not included in this paper, such as the F -measure.

Similar to the continuous symptom prediction task, the BRC outperforms the AIC showing that posterior
information is utilized effectively. As in the continuous task, the virtual patient profile construction method
labeled Method 2 is better overall than Method 1, but the difference is much smaller in the classification
task and the advantage is not universal across all metrics, especially for the AIC. Note that the virtual
patient profile construction method has little effect on the BRC as it does not use it. The BRC achieves
higher sensitivity values but a lower PPV compared to the BUC, meaning that the BRC is better at recalling
remission cases, but the remission predictions by the BUC are more reliable. The SPC achieved by the BUC
is notably higher, being better at ruling out false positives.

6.2.2 Conventional machine learning approaches

Table 3 shows the binary classifier performance metrics for the conventional machine learning approaches.
Apart from the AUC, all of the other metrics in the table were derived from classifier settings (set-points)
that had optimized the balanced accuracy (BAC) during the training stage. Apart from rcGPC, the BAC
values across the different approaches are similar. The MEC classifiers perform well compared with GPC and
SVC, with consistently high AUC values for both inattentiveness and hyperactivity. However, the set-points
of the MEC classifiers achieve lower sensitivity (but higher specificity) than the SVC. As mentioned in
Section 4.2, a higher sensitivity is more important for this exercise. PPV is the other measure of interest;
the lrMEC, in particular, achieved the highest PPV amongst all the conventional approaches—partially
helped by its low sensitivity.
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The ROC plot for the MEC is shown in Fig. 7. The lrMEC variant fitted the training set better but both the
lrMEC and the taMEC achieve similar validation performance. Tracing the ROC values, the lrMEC seems
more suitable for high specificity settings while taMEC appears to be more suitable for high sensitivity
classification.

For the machine learning approaches GPC and SVC, linear models work better. This was similarly
observed in the continuous symptom score prediction task. Comparing methods in tackling data imbalance,
the weighted SVM classifier rwSVC method performed better than the downsampled dsSVC method,
while the downsampled Gaussian process classifier dsGPC method performed better than the re-calibrated
rcGPC. Looking at both the BAC and AUC metrics, rwSVC and dsGPC perform similarly, with the
former slightly better at classifying remission of hyperactivity, whereas the latter is slightly better for
inattentiveness.

Overall for the conventional methods, the rwSVC achieves the best compromise between SEN and PPV,
meaning that it can identify remission cases more readily and at the same time the remission predictions
are more reliable. Comparing Tables 2 and 3, it can be seen that the learning in the model space approach
is superior overall. With respect to the BAC and AUC measures, the best performing BUC approach has an
advantage of about 6–7%. This is interesting given the similar performance in the continuous symptom
score prediction task amongst all approaches. The rms error measure in the symptom score prediction
task was based on point estimate calculations, and thus used no information on the shape of the posterior
distribution. The posterior predictive distribution (Section 3.4) for the BUC has a Student’s t-distribution
specific to each patient. The distributions were used to construct a probabilistic threshold in trading off
specificity and specificity. This subject-specific nonlinear thresholding procedure may have contributed to
its performance advantage over other approaches.

6.2.3 Comparison with literature

As far as the authors are aware, Kim et al. (20) is the only published literature on treatment response
prediction of ADHD patients using machine learning techniques. Their best attempt achieved an AUC value
of 0.84 and 86.4% classification accuracy (that is, the percentage of correct predictions, different from
the BAC measure used in this paper) using a wide range of information types including demographical,
clinical, genetic, environmental, neuropsychological and neuroimaging measures. In comparison, this
paper includes only the more readily obtainable demographical and clinical information and is able to
achieve best-case AUCs of 0.82–0.84. Restricting to demographical and clinical information, the highest
performing method using SVMs in Kim et al. (20) had an AUC of 0.69. Granted, the comparison is
imprecise because the quality, quantity and sources of demographical and clinical information are different
between this paper and Kim et al. (20). Judging from the AUC values achieved by SVMs in this paper
of about 0.71 (see Table 3), the results appears to be very close to those in Kim et al. (20). Due to this
similarity, the previous comparisons should be valid.

7 CLINICAL UTILITY AND FURTHER WORK

The proposed learning in the model space approach is capable of predicting, for an individual, the minimum
dosage of a particular medication required to have a user-defined chance of achieving symptomatic
remission. It is highly flexible and potentially can be extended to any disease or disorder where medication
is used in the course of treatment, speeding up and reducing the cost of the dose optimization/forced
titration process, and potentially improving the quality of life for patients by ending the treatment sooner.
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The current model, however, does not take into account adverse drug reactions (ADRs), minimization of
which is another goal of a dose optimization titration process. To improve clinical utility, it is essential that
ADRs are modeled. While data on this are available from the clinical notes accompaning the ADDUCE
trial, a different modeling approach is required to incorporate the many different types of ADRs, with
prevalence ranging from infrequent to very rare.

While the proposed approach achieves excellent performance in terms of treatment response classification,
there is room for improvement. One obvious way to achieve this is to incorporate more data, especially
covariates that are functions of time. In this exercise for example, the body mass index and age variables
measured at baseline (first appointment) of the patients contribute to the latent factors, which in turn form
the baseline variables. As such, they do not vary over time. It may be worth investigating whether the
addition of temporal covariates, such as blood pressure, would improve the model.

Another venue for potential improvement is to extend the linear model to a nonlinear model—there is
no guarantee that all the covariates have a linear relationship with treatment response. Identifying the
level and nature of nonlinear relationships is the first challenge. In the current Bayesian framework, the
introduction of nonlinearities increases computational complexity for Bayesian inference, requiring the use
of techniques such as Gibbs sampling.

There are other areas of interest. For example, what is the optimum strategy, in terms of timing and
requirements, for incorporating semi-new patient data to the model space to improve the generalizability of
the model for other new patients? How can medical adherence/concordance be modeled? Does gender of
the patient play a role in their treatment response?

8 CONCLUSION

A learning in the model space framework has been utilized to develop a personalized medicine approach to
treatment response prediction. First of all, factor analysis was performed to extract latent factors from a large
clinical dataset, collected from a UK sample of 157 patients suffering from attention-deficit hyperactivity
disorder. The resulting reduced-order patient information was then encoded in a model parameter space
resulting in a cloud of personalized models. Then, the patient-specific model space parameters were used
to train a Bayesian linear regression model. New patients are then matched to existing patients most
similar to themselves to obtain a virtual patient profile, which in turn forms a prior parameter set for
the Bayesian linear regression model. Through a Bayesian update algorithm, new data are continuously
integrated to improve the prediction performance for a given patient. In addition, the parameters of the
“new” patients can be added to the model parameter space (once sufficient data are available) to improve
the generalizability of the model for future patients.

Comparisons were made between the learning in the model space approach with conventional data-
driven machine learning and regression approaches. In terms of the prediction of the continuous symptom
factor scores, the performance of the learning in model space framework was on a par with conventional
approaches. However, the new approach is shown to outperform support vector machines, Gaussian
processes and linear mixed effects classifiers in the prediction of symptomatic remission. The effective gain
in classification performance of the new model can potentially speed up and reduce the cost of a forced
titration or dose optimization titration process, which is normally manually performed by the clinician to
assess the effective dosage of medication. Further work includes incorporating the prediction of adverse
drug reactions, which is also an important element in the dose optimization titration process.
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9 APPENDIX

9.1 Prior distributions and knowledge

With respect to equations (3) and (4), dropping the subscript for subject s for convenience, the outcome
likelihood can then be modeled as:

Pr
(
y | X;ω, σ2

)
= N

(
µ = Xω, σ2I

)
=

(
1

2πσ2

)0.5As

exp

{
− 1

2σ2
(y −Xω)ᵀ (y −Xω)

}
(13)

where I is the As × As identity matrix.

The conjugate prior of the unknowns—the parameter vector ω and the error variance σ2 are given
by, respectively, Pr

(
ω | σ2

)
∼ N

(
τ0, σ

2Λ−10

)
and Pr

(
σ2
)
∼ G−1 (α0, β0), where the G−1 is the

Inverse-Gamma distribution (68), such that

Pr
(
σ2
)

=
βα0
0

σ2(α0+1)Γ(α0)
exp

(
−β0
σ2

)
; σ2, α0, β0 > 0.

Assuming ω and σ2 are independent, the joint prior probability density function Pr
(
ω, σ2

)
is then given

by the Normal-Inverse-Gamma (NG−1) prior, such that

Pr
(
ω, σ2

)
= Pr

(
ω | σ2

)
Pr
(
σ2
)

= NG-1
(
τ0,Λ

−1
0 , α0, β0

)
(14)

=
βα0
0

(2π)
P/2 ∣∣Λ−10

∣∣1/2 Γ(α)

(
1

σ2

)α0+1+P/2

×

exp

{
− 1

σ2

[
β0 +

1

2
(ω − τ0)ᵀΛ−10 (ω − τ0)

]}
. (15)

9.2 Posterior distributions

The posterior distribution can be parameterized as

Pr
(
ω, σ2 | y

)
∝ Pr

(
ω | σ2; y

)
Pr
(
σ2 | y

)
=

(
1

σ2

)αn+1+P/2

exp

{
− 1

σ2

[
βn +

1

2
(ω − τn)ᵀΛn (ω − τn)

]}
, (16)

where the two probabilities on the right-hand side correspond to, respectively, the multivariate normal
distribution N

(
τn, σ

2Λ−1n
)

and the inverse-gamma distribution G−1 (αn, βn). The parameters of the
distributions are obtained through Bayesian learning:

Λn = XᵀX + Λ0 τn = Λn (Λ0τ0 + Xᵀy)

αn = α0 +
n

2
βn = β0 +

1

2

(
yᵀy + τ ᵀ0 Λ0τ0 − τ ᵀnΛnτn

)
(17)

where n is the number of observations (68).
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9.3 Marginal distributions

The marginal distribution of treatment outcome Pr (y) is found by integrating out (marginalising) ω∗
and σ2 over Pr

(
y | ω, σ2

)
to obtain Pr (y). First of all, one computes the distribution Pr

(
y | σ2

)
by

integrating out ω, which is

Pr
(
y | σ2

)
=

∫
Pr
(
y | ω, σ2

)
Pr
(
ω | σ2

)
dω

=

∫
N
(
Xω, σ2I

)
N
(
τ0, σ

2Λ−10

)
dω.

This can be shown to result in

Pr
(
y | σ2

)
= N

(
Xτ0, σ

2
(
I + XΛ−10 Xᵀ)) . (18)

The marginal density Pr (y) can then be obtained by integrating out a NG−1 density function, as

Pr (y) =

∫
Pr
(
y | σ2

)
Pr
(
σ2
)

dσ2

=

∫
N
(
Xτ0, σ

2
(
I + XΛ−10 Xᵀ))G−1 (α0, β0) dσ2

=

∫
NG-1

(
Xτ0, σ

2
(
I + XΛ−10 Xᵀ) , α0, β0) dσ2

= tν

(
Xτ̂s,

β̂s
α̂s

(
I + XΛ̂sX

ᵀ
))

(19)

where tν is the multivariate Student’s t-distribution with the number of degrees of freedom ν = 2α̂∗.
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Figure 1. High level causal factor model of treatment response prediction in ADHD
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Figure 2. Reduced causal factor model of treatment response prediction in ADHD
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Figure 3. Boxplot of combined equivalent (in IR-MPH units) daily dosage of medications taken for all
patients versus appointment number. Red horizontal lines: median; boxes: interquartile range; whiskers:
95% confidence intervals; red crosses: outliers.
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Figure 4. Boxplots of symptom scores across all patients versus appointment number. Red horizontal
lines: median; boxes: interquartile range; whiskers: 95% confidence intervals; red crosses: outliers.
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Figure 6. Receiver operator characteristic (ROC) plots of inattentiveness prediction using virtual patient
profile constructed by Methods 1 and 2 in the learning in model space approach; crosses: no critical value
adjustment (based on point estimates); squares: best performing critical values on training set; circles:
best performing critical values on the validation set; AUC: Area under the ROC curve AIC: appointment-
independent classifier; BRC: retrospective Bayesian linear regression classifier; BUC: incremental Bayesian
learning/update classifier.
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Figure 7. Receiver operator characteristic (ROC) plot of inattentiveness prediction using mixed effects
models; crosses: no threshold adjustment (based on point estimates); squares: best performing threshold
setting on training set; circles: best performing threshold setting on the validation set; AUC: Area under the
ROC curve; taMEC: threshold-adjusted mixed effects classifier; 6lrMEC: logitic regression mixed effects
classifier.
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Figure 8. Examples of Bayesian linear regression on continuous inattentiveness (INA) and hyperactivity
(HYP) symptom scores with the Bayesian linear regression training dataset (BRR).
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Figure 9. Examples of continuous hyperactivity symptom score prediction with the validation set.
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Table 1. Rms errors for predicting symptom scores for inattentiveness (INA) and hyperactivity (HYP)
using the (a) learning in model space and (b) conventional approaches.

(1a) Learning in model space

Inattentiveness Hyperactivity

Method 1 Method 2 Method 1 Method 2

AIR* 0.98 0.84 0.97 0.85

BRR† 0.82 0.82 0.84 0.84

BUR‡ 0.99 0.73 1.01 0.75
* AIR: appointment-independent Bayesian linear prediction
† BRR: retrospective Bayesian linear regression ‡ BUR: incremental Bayesian
learning/update linear regression

(1b) Conventional approaches

Inattentiveness Hyperactivity

Kernel: Linear Nonlinear Linear Nonlinear

SVR* 0.73 0.74 0.76 0.81

GPR† 0.72 0.77 0.76 0.84

MER‡ 0.82 0.83
* SVR: support vector machine regression
† GPR: Gaussian processes regression
‡ MER: mixed effects regression
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Table 2. Sensitivity, specificity, accuracy and AUC of the remission classifier with critical values adjusted
with respect to uncertainties in the predicted symptom scores.

Inattentiveness Hyperactivity

Method 1 Method 2 Method 1 Method 2

C
FM

1
AIC* 93 327

67 660

141 501

19 486

82 314

57 694

121 448

18 560

BRC†
140 482

20 505

140 483

20 504

125 480

14 528

125 483

14 525

BUC‡
117 338

43 649

123 280

37 707

97 307

42 701

109 253

30 755

SE
N

2 AIC 58.1 % 88.1 % 59.0 % 87.1 %
BRC 87.5 % 87.5 % 89.9 % 89.9 %
BUC 73.1 % 76.9 % 69.8 % 78.4 %

SP
C

3 AIC 66.9 % 49.2 % 68.9 % 55.6 %
BRC 51.2 % 51.1 % 52.4 % 52.1 %
BUC 65.8 % 71.6 % 69.5 % 74.9 %

B
A

C
4 AIC 62.5 % 68.7 % 63.9 % 71.3 %

BRC 69.3 % 69.3 % 71.2 % 71.0 %
BUC 69.4 % 74.3 % 69.7 % 76.7 %

PP
V

5 AIC 22.1 % 22.0 % 20.7 % 21.3 %
BRC 22.5 % 22.5 % 20.7 % 20.6 %
BUC 25.7 % 30.5 % 24.0 % 30.1 %

N
PV

6 AIC 90.8 % 96.2 % 92.4 % 96.9 %
BRC 96.2 % 96.2 % 97.4 % 97.4 %
BUC 93.8 % 95.0 % 94.4 % 96.2 %

A
U

C
7 AIC 69.0 % 72.0 % 68.0 % 73.8 %

BRC 81.2 % 80.9 % 83.6 % 83.3 %
BUC 77.1 % 82.3 % 76.7 % 84.4 %

1 CFM: confusion matrix
2 SEN: sensitivity
3 SPC: specificity
4 BAC: balanced accuracy
5 PPV: positive predictive value
6 NPV: negative predictive value
7 AUC: area under ROC curve
* AIC: appointment-independent classifier
† BRC: retrospective Bayesian linear regression classifier
‡ BUC: incremental Bayesian learning/update classifier
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Table 3. Sensitivity, specificity, accuracy and AUC of the remission classifier with critical values adjusted
with respect to uncertainties in the predicted symptom scores.

Inattentiveness Hyperactivity

Linear Non-linear Linear Non-linear

Se
ns

iti
vi

ty
dsSVC1 70.0 % 70.6 % 67.6 % 66.9 %

dsGPC2 68.1 % 67.5 % 67.6 % 66.9 %

rwSVC3 76.9 % 33.8 % 76.9 % 69.1 %

rcGPC4 43.1 % 43.2 % 71.3 % 48.2 %

taMEC5 60.0 % 58.9 %

lrMEC6 53.1 % 56.0 %

Sp
ec

ifi
ci

ty

dsSVC 61.9 % 62.3 % 67.8 % 66.6 %

dsGPC 67.9 % 69.1 % 67.8 % 71.3 %

rwSVC 55.9 % 77.6 % 62.1 % 62.1 %

rcGPC 59.0 % 18.4 % 50.7 % 50.6 %

taMEC 73.3 % 73.8 %

lrMEC 81.4 % 81.4 %

B
al

an
ce

d
ac

cu
ra

cy

dsSVC 66.0 % 66.5 % 67.7 % 66.7 %

dsGPC 68.0 % 68.3 % 67.7 % 69.1 %

rwSVC 66.4 % 55.7 % 69.5 % 65.6 %

rcGPC 51.1 % 44.8 % 46.9 % 49.4 %

taMEC 66.6 % 66.4 %

lrMEC 67.2 % 70.6 %

Po
si

tiv
e

pr
ed

ic
tiv

e
va

lu
e dsSVC 23.0 % 23.3 % 22.4 % 21.6 %

dsGPC 25.6 % 26.2 % 22.4 % 24.3 %

rwSVC 22.0 % 19.6 % 21.9 % 20.1 %

rcGPC 15.6 % 12.4 % 10.8 % 11.9 %

taMEC 26.7 % 23.7 %

lrMEC 31.6 % 29.0 %

N
eg

at
iv

e
pr

ed
ic

tiv
e

va
lu

e dsSVC 92.7 % 92.9 % 93.8 % 93.9 %

dsGPC 92.9 % 92.9 % 93.8 % 93.4 %

rwSVC 93.7 % 87.8 % 95.1 % 93.6 %

rcGPC 86.5 % 79.8 % 86.6 % 87.6 %

taMEC 91.8 % 92.9 %

lrMEC 91.5 % 94.1 %

A
re

a
un

de
r

R
O

C
cu

rv
e

dsSVC 71 % 69 % 73 % 71 %

dsGPC 75 % 71 % 73 % 70 %

rwSVC 71 % 60 % 76 % 71 %

rcGPC 49 % 41 % 46 % 48 %

taMEC 74.8 % 77.5 %

lrMEC 75.8 % 77.2 % 1 d
s
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