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Highlights

1. Manipulating probabilistic contingencies, but not sequence rhythm, impairs 

structure learning.

2. Trial-by-trial feedback facilitates maximization and structure learning.

3. Adopting a decision strategy closer to maximization relates to better learning. 

4. Selective attention and working memory account for individual variability in 

strategy and learning.

Key words: structure learning, uncertainty, perceptual decisions
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Abstract

Experience is known to facilitate our ability to interpret sequences of events and make 

predictions about the future by extracting temporal regularities in our environments. 

Here, we ask whether uncertainty in dynamic environments affects our ability to learn 

predictive structures. We exposed participants to sequences of symbols determined by 

first-order Markov models and asked them to indicate which symbol they expected to 

follow each sequence. We introduced uncertainty in this prediction task by 

manipulating the: a) probability of symbol co-occurrence, b) stimulus presentation rate, 

c) feedback. Our results demonstrate that increasing the similarity in the probabilities 

of symbol co-occurrence impaired performance on the prediction task. In contrast, 

increasing uncertainty in stimulus presentation rate by introducing temporal jitter 

resulted in participants adopting a strategy closer to probability maximization than 

matching and improving in the prediction tasks. Next, we show that feedback plays a 

key role in learning predictive statistics. Trial-by-trial feedback yielded stronger 

improvement than block feedback or no feedback; that is, participants adopted a 

strategy closer to probability maximization and showed stronger improvement when 

trained with trial-by-trial feedback. Further, correlating individual strategy with 

learning performance showed higher improvement in structure learning for observers 

who adopted a strategy closer to maximization. Our results indicate that executive 

cognitive functions (i.e. selective attention, working memory) may account for this 

individual variability in strategy and structure learning ability. Taken together, our 

results provide evidence for flexible structure learning; individuals adapt their decision 

strategy closer to probability maximization, reducing uncertainty in temporal sequences 

and improving their ability to learn predictive statistics in variable environments. 
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Introduction

Successful everyday interactions entail that we identify spatiotemporal regularities (i.e. 

patterns that repeat frequently) in our cluttered and dynamic environments and exploit 

them to predict future events. Learning and experience are known to facilitate our 

ability to extract the environment’s statistics (Aslin & Newport, 2012; Perruchet & 

Pacton, 2006). For example, humans become sensitive to stimuli (shapes, tones or 

syllables) that co-occur following a spatial or temporal pattern through repetitive 

exposure (Chun, 2000; Fiser & Aslin, 2002; J. R. Saffran, Aslin, & Newport, 1996; 

Jenny R Saffran, Johnson, Aslin, & Newport, 1999; N. B. Turk-Browne, Junge, & 

Scholl, 2005).  

Our recent work demonstrates that individuals extract the statistics that govern the 

temporal structure of events and exploit them to make predictions  about future events 

(R. Wang, Y. Shen, P. Tino, A. E. Welchman, & Z. Kourtzi, 2017). Further, we show 

that this learning of predictive structures relates to the decision strategy of individuals. 

In particular, previous work has highlighted the role of strategies in probabilistic 

learning and decision making (Acerbi, Vijayakumar, & Wolpert, 2014; Erev & Barron, 

2005; Murray, Patel, & Yee, 2015; Schulze, van Ravenzwaaij, & Newell, 2015; Shanks, 

Tunney, & McCarthy, 2002). Humans and animals are known to engage in probability 

matching (match their choices probabilistically according to the underlying input 

statistics) or probability maximization (maximize their success by selecting the most 

probable outcomes) when making choices. Yet, the factors that determine individual 

decision strategies and influence learning ability remain largely unknown. 

Previous work provides evidence for the role of uncertainty in perceptual decision 

making (Bach & Dolan, 2012). In particular, noisy sensory signals (Daikoku, 2018; 
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Dayan & Daw, 2008; Dosher & Lu, 1998; Hasson, 2017) or increased stochasticity in 

temporal sequences (A. C. Nobre & van Ede, 2018; Rolke & Hofmann, 2007) impact 

the difficulty of perceptual tasks. Further, feedback is known to play a key role in 

resolving uncertainty and facilitating perceptual decisions (Dayan & Abbott, 2001; 

Kluger & DeNisi, 1996; Petrov, Dosher, & Lu, 2005).  

Here, we test whether uncertainty in sensory processing and feedback affect decision 

strategy and structure learning in the context of a sequence prediction task. In particular, 

we trained participants with temporal sequences comprising unfamiliar symbols and 

determined by first-order Markov models. Participants were exposed to these context-

based statistics (i.e. symbol probability is contingent on previous symbols) and they 

were asked to judge whether a test symbol that followed the sequence presentation 

matched the expected symbol based on the preceding sequence. This sequence 

prediction task allows us to track participant responses over time and interrogate the 

decision strategy that individuals adopted during learning. We introduced uncertainty 

in the task by manipulating: a) the probability of symbol co-occurrence, b) the stimulus 

presentation rate, c) feedback. We reasoned that during training individuals will adapt 

their decision strategies and performance in the sequence prediction task. Our results 

demonstrate that: (1) increasing the similarity in the probabilities with which symbol 

contingencies appear in the sequence impaired performance on the prediction task; (2) 

increasing uncertainty in stimulus presentation rate by temporal jittering facilitated 

probability maximization and performance; (3) trial-by-trial feedback enhanced 

performance compared to block feedback or no feedback and facilitated probability 

maximization, while uncorrelated feedback resulted in limited improvement. 

Correlating individual strategies with learning performance showed that observers that 

adopted a strategy closer to maximization showed stronger performance improvement. 
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Finally, we show that attentional and working memory ability may account for 

individual differences in decision strategy and structure learning ability. 

Materials and Methods

Observers

105 observers (40 males and 65 females, mean age = 22.1±0.3 years) participated in 

this study and they were randomly allocated into different experimental groups. All 

observers were naive to the aim of the study, had normal or corrected-to-normal vision 

and gave written informed consent. This study was approved by the University of 

Cambridge Ethics Committee and the institutional review board of the Institute of 

Psychology, Chinese Academy of Sciences. 

Stimuli

Stimuli comprised 4 symbols chosen from Sabaean alphabet and Ndjuká syllabary 

(Figure 1a). These symbols were highly discriminable from each other and were 

unfamiliar to the observers. Each symbol was presented at 6.5o of visual angle in black 

on mid-grey background. Experiments were controlled using Matlab and the 

Psychophysics toolbox 3 (Brainard, 1997; Pelli, 1997). Stimuli were presented on a 21-

inch CRT monitor (ViewSonic P225f , 1024×768 pixel, 85 Hz frame rate) at a distance 

of 60 cm. 

Sequence design
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We employed first-order Markov model (i.e. level-1) to generate probabilistic 

sequences (R. Wang et al., 2017). The level-1 Markov model produces a sequence of 

symbols, where the symbol at time i is determined probabilistically by the immediately 

preceding symbol. We refer to the symbol presented at time i, s(i), as the target and to 

the previous symbol s(i-1) as the context: 

P(s(i)|s(i-1),s(i-2),…,s(1))=P(s(i)|s(i-1)). 

At each time point in the sequence, the symbol that follows a given context is 

determined probabilistically. The underlying Markov model can be represented through 

the associated context-conditional target probabilities. We used 4 symbols that we refer 

to as stimuli A, B, C and D. The correspondence between stimuli and symbols was 

counterbalanced across participants. Specifically, for level-1, the target depended on 

the item that immediately preceded it. Given a context (the last seen symbol), only one 

of two targets could follow (Figure 1b): one had a high probability of being presented 

(80% of occurrence in most groups, 60% in Group 2) and the other a low probability 

(20% of occurrence in most groups, 40% in Group 2). For example, when Symbol A 

was presented, only symbols B or C were allowed to follow, and B had a higher 

probability of occurrence than C. 

Experimental Design:

We tested six groups of participants. Experiment 1 (Group 1: N=18) aimed to replicate 

our previous findings (R. Wang et al., 2017) and test whether learning is maintained 

over time. In Experiments 2-4, we manipulated: (1) symbol occurrence in sequences; 

(2) stimulus presentation rate; (3) feedback. In Experiment 2, we modified the 
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probability with which symbols appeared in the sequence. A new group of participants 

(Group 2: N = 18) were exposed to the sequences with probabilities of context-target 

contingencies at 60% vs. 40%, in contrast to 80% vs. 20% in Group 1. In Experiment 

3 (Group 3: N = 18), visual stimuli appeared in a stream separated by jittered blank 

intervals, in contrast to Group 1 in which the stimuli were presented at a fixed interval. 

In Experiment 4, we examined the role of feedback in learning predictive structures: In 

contrast to participants in Group 1 who were trained with block feedback, participants 

in Group 4 (N = 18) were trained with trial-by-trial feedback), participants in Group 5 

(N = 15) were trained without any feedback, and participant in Group 6 (N = 18) were 

trained with uncorrelated feedback.

All participants underwent six sessions: one session involved testing on cognitive tasks 

(i.e. working memory and selective attention), the remaining five sessions involved 

testing and training on the sequence prediction task using first-order Markov sequences. 

Before and after training (pre- and post-training sessions), participants were tested with 

structured sequences and random sequences (i.e., all four symbols were presented with 

equal probability 25% in a random order). To investigate whether the learning effect 

was maintained over time, ten observers in Group 1 were re-tested four weeks after 

training. 

Training sessions: Training comprised 23 blocks of structured sequences (60 trials per 

block) that were conducted on four consecutive days. For each trial (Figure 1a), a 

sequence of 9–13 stimuli appeared in the center of the screen, one at a time in a 

continuous stream, for 100 ms each followed by a central white fixation dot 

(interstimulus interval, ISI) for 400 ms on average. The ISI was fixed at 400 ms, except 

for Group 3 in which the ISI was jittered; that is the ISI in a given trial was chosen 

randomly from a uniform distribution of values ranging between 100 and 700 ms and 
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binned in temporal windows of 20 ms (i.e.100, 120, 140 ms etc). The end of each trial 

was indicated by a red-dot cue that was presented for 400 ms. Following this, all four 

symbols appeared in the center (2 x 2 grid) of the screen. Observers were asked to 

indicate which symbol they expected to appear following the preceding sequence by 

pressing a key corresponding to the location of the predicted symbol. Following the 

observer’s response, a circle appeared on the selected stimulus for 300 ms to highlight 

the observer’s choice. For Group 4 and Group 6, trial-by-trial feedback was provided 

by coloring this circle (green vs. red signified correct vs. incorrect responses, 

respectively). For Group 4 feedback matched the presented sequence (Group 4: trial 

feedback), while for Group 6 feedback was uncorrelated to observers’ responses (Group 

6: uncorrelated feedback). For other groups (Group 1-3,5), the color of the circle was 

always white, simply indicating the observer’s choice rather than providing feedback. 

If no response was made within 2 s, a null response was recorded and the next trial 

started. For Group 1-3, observers were given feedback (i.e. score in the form of 

performance index (PI), see “Behavioural analysis”) at the end of each block (block 

feedback). For Group 5 (no feedback), neither block feedback nor informative trial 

feedback was provided.

Test sessions: To compare performance before and after training, the pre- and post-

training sessions included three blocks, that is, two blocks of structured sequences 

interleaved with one block of random sequences (i.e., all four symbols were presented 

with equal probability 25% in a random order). Participants were trained with structured 

sequences and tested with both structured and random sequences to ensure that training 

was specific to the trained sequences. Each block comprised 40 trials, during which 

participants performed the same sequence prediction task as in the training sessions. 
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The stimuli and procedure were identical to the training sessions but no feedback was 

given during test sessions. 

Figure 1

Figure 1. Trial and sequence design. (a) 9 to 13 symbols were presented one at a time in a 

continuous stream followed by a cue and the test display. (b) Sequence design. For the first-

order Markov model (Level1), a diagram indicates states (circles) and transitional probabilities 

(black arrow: high probability, e.g., 80%; gray arrow: low probability, e.g., 20%). Transitional 

probabilities are shown in a four-by-four conditional probability matrix, with rows indicating 

temporal contexts and columns indicating the corresponding targets.

Cognitive testing

Memory: visual short-term memory 

The working memory task was designed based on the sequential working memory task 

by Luck and Vogel (Luck & Vogel, 1997). Colored dots were displayed on a grey 

background for 500ms, followed by a 1000ms delay.  After the delay, the dot display 

re-appeared with one of the dots highlighted by a white square. Participants reported 
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whether the highlighted dot had remained the same color on the second presentation. 

An initial display of two dots was used. We manipulated the number of dots in the 

display using a two-down one-up staircase, resulting in 70.7% performance. Working 

memory thresholds (i.e. number of dots in the display) were calculated by averaging 

the last two-third reversals in each staircase. For each trial, each dot was randomly 

assigned a color, and one dot was randomly chosen as the target. Each dot had a radius 

of 12 pixels and dots were displayed in random locations within a 10x10 grid (jittered 

± 10 pixels).  Each run consisted of 10 staircase reversals, and participants completed 

3 runs, after which we computed the average threshold as their working memory score. 

In this task, a higher score (greater number of items in display) denotes better 

performance.

Attention: useful field of view 

We used the Useful Field of View (UFOV; Visual Awareness Inc.) task to assess 

selective attention (Edwards et al., 2006). Each trial started with a fixation bounding 

box (1-s duration), followed by the test stimuli (variable duration between 16.7 and 500 

ms), a white noise visual mask to control for after images (1-s duration) and the 

response screen (displayed until a response was made). The central stimulus (a 

silhouette of 2 cm × 1.5 cm of a car or a truck) was presented on a black background 

inside a white bounding box, with a simultaneously presented peripheral stimulus (2 

cm × 1.5 cm silhouette of a vehicle) which was fixed at 11 cm from the central stimulus 

at one of the eight radial locations. The target stimuli were embedded in the context of 

distractors (47 triangles of the same size and luminance as the targets). Participants 

were asked to ignore the triangles and point out whether the central stimulus comprised 

a car or a truck, as well as the location of the peripheral target. Using a double-staircase 

method, the duration of the display within each task varied between 16.7 and 500 ms. 
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This allowed us to establish the minimal display duration at which the participant could 

correctly perform the tests 75 % of the time. Participants completed three runs, after 

which we computed the average threshold as their selective attention score. Thus, a 

lower score (shorter display duration) indicates better performance in this task.

Behavioural analysis

Performance index (PI): We assessed participant responses in a probabilistic manner, 

following our previous work (R. Wang et al., 2017). We computed a performance index 

per context that quantifies the minimum overlap (min: minimum) between the 

distribution of participant responses (Presp) and the distribution of presented targets 

(Ppres) estimated across 60 trials per block by:

PI(context) = ∑𝑡𝑎𝑟𝑔𝑒𝑡𝑚𝑖𝑛 (𝑃𝑟𝑒𝑠𝑝(𝑡𝑎𝑟𝑔𝑒𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡), 𝑃𝑝𝑟𝑒𝑠(𝑡𝑎𝑟𝑔𝑒𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡))

The overall performance index is then computed as the average of the performance 

indices across contexts, PI(context), weighted by the corresponding context 

probabilities P(context):

PI =  ∑𝑐𝑜𝑛𝑡𝑒𝑥𝑡𝑃𝐼(𝑐𝑜𝑛𝑡𝑒𝑥𝑡) · 𝑃(𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

To compare across different conditions, we defined a normalized PI measure that 

quantifies participant performance relative to random guessing. We computed a random 

guess baseline; i.e. performance index PIrand that reflects participant responses to targets 

with equal probability for each target for a given context for level-1(PIrand = 0.45 for 

probability of 80% vs. 20%, PIrand = 0.50 for probability of 60% vs. 40%). To correct 

for differences in random-guess baselines, we subtracted the random guess baseline 
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from the performance index (PInormalized = PI − PIrand). PI improvement was the 

difference in normalized PI between pre- and post-training sessions.

Strategy choice and strategy index

Following our previous work (R. Wang et al., 2017), we quantified each participant’s 

strategy, by comparing individual participant response distributions (response-based 

model) to two baseline models: (i) probability matching, where probabilistic 

distributions are derived from the Markov models that generated the presented 

sequences (Model-matching) and (ii) a probability maximization model, where only the 

single most likely outcome is allowed for each context (Model-maximization). We used 

Kullback-Leiber (KL) divergence to compare the response distribution to each of these 

two models. KL is defined as follows:

𝐾𝐿 = ∑
𝑐𝑜𝑛𝑡𝑒𝑥𝑡

𝑀(𝑐𝑜𝑛𝑡𝑒𝑥𝑡) ∑
𝑡𝑎𝑟𝑔𝑒𝑡

𝑀(𝑡𝑎𝑟𝑔𝑒𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡) 𝑙𝑜𝑔 (
𝑀(𝑡𝑎𝑟𝑔𝑒𝑡|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)
𝑅(𝑡𝑎𝑟𝑔𝑒𝑡)|𝑐𝑜𝑛𝑡𝑒𝑥𝑡)

for level-1 model where R( ) and M( ) denote the probability distribution or conditional 

probability distribution derived from the human responses and the models (i.e. 

probability matching or maximization) respectively, across all the conditions.

We quantified the difference between the KL divergence from the response-based 

model to Model-matching and the KL divergence from the response-based model to 

Model-maximization. We refer to this quantity as strategy choice indicated by 

∆KL(Model-maximization, Model-matching). We computed strategy choice per 

training block, resulting in a strategy curve across training for each individual 

participant. We then derived an individual strategy index by calculating the integral of 

each participant’s strategy curve and subtracting it from the integral of the exact 

matching curve, as defined by Model-matching across training. We defined the integral 
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curve difference (ICD) between individual strategy and exact matching as the 

individual strategy index. Negative strategy index indicates a strategy closer to 

matching, while positive index indicates a strategy closer to maximization.

Results

Experiment 1: Learning temporal statistics with block feedback 

To test whether individuals adapt to the environment’s statistics, we trained eighteen 

participants (Group 1) on multiple training blocks over four sessions, during which they 

were presented with structured sequences of symbols that were determined by the first-

order Markov model and were asked to perform a prediction task; that is, participants 

indicated the symbol they expected to appear following the preceding sequence. During 

the training phase, the visual stimuli were presented one after another at a fixed rate of 

2Hz. Participants were given block feedback; that is, the Performance Index (PI) score 

(indicating how closely the probability distribution of participant responses matches the 

probability distribution of the presented symbols) was shown to the participants at the 

end of each block (i.e. 60 trials). To quantify the learning effect, we compared the 

normalized PI (i.e. after subtracting performance based on random guessing) before and 

after training. A repeated measures ANOVA showed a significant session effect (F(1,17) 

= 36.72, p < 0.001), indicating that repeated exposure facilitates learning of structured 

sequences (Figure 2). Specifically, most observers (13/18) improved in the prediction 

task with an average PI improvement of 30.7±2.8%; only five participants showed 

performance less than 10% above random guessing. The learning curves in Figure 2a 

indicate that performance improves throughout training. These results corroborated our 
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previous findings (R. Wang et al., 2017) showing that participants succeed in extracting 

regularities and making predictions about upcoming events.

Figure 2

Figure 2. Experiment 1. (a) Mean Performance index across test and training blocks.  Data are 

fitted separately for participants who improved during training (black symbols, N = 13) and 

those who did not improve (grey symbols, N = 5). Random guess baseline is indicated by dotted 

lines. (b) Normalized PI for test sessions. Data are shown before (gray bars), immediately after 

(black bars) and four weeks after training (dotted bars). Error bars indicate standard error of the 

mean.

To examine whether the learning effect we observed was maintained over time, ten 

participants were called back for an additional test session four weeks after training 

(spaced by 27.2±4.8 days). Performance in this test session was significantly higher 

than the pre-training test (F(1,9) = 38.54, p < 0.001) (Figure 2b). Mean PI improvement 

immediately after and four weeks after training was 29.2±3.4% and 25.9±4.2%, 
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respectively and did not differ significantly between these post-tests (t(9) = 1.06, p = 

0.319), suggesting that the training-dependent improvement we observed was sustained 

for a prolonged time.

Experiment 2: Manipulating context-conditional probability of symbol occurrence

In this experiment we asked whether increasing uncertainty during the training by 

manipulating the context-conditional probability of symbol occurrence affects learning 

in the context of the prediction task. In particular we changed the symbol transitional 

probability from 80% vs. 20% (Experiment 1) to 60% vs.40%, while keeping the 

context and targets identical to the model used in Experiment 1. We hypothesized that 

decreasing the discriminability of contingency probabilities would impair learning. We 

trained a new group of eighteen observers (Group 2) on the prediction task using the 

less discriminable contingency probabilities (60% vs. 40%). 

Figures 3a, 3c show that this manipulation resulted in low PI improvement (4.6 ± 2.2%) 

A two-way repeated measures ANOVA comparing performance before and after 

training between Group 1 (Experiment 1) and Group 2 (Experiment 2) showed a 

significant interaction of session and group (F(1,34) = 18.12, p < 0.001). There was no 

significant difference between groups for the pre-training performance (F(1,34) = 0.11, 

p = 0.738). In contrast, performance after training for Group 1 was significantly higher 

than Group 2 (F(1,34) = 16.58, p < 0.001). These results suggest that probability of 

context-target contingencies affects learning of temporal statistics; that is, making the 

probabilities of symbol co-occurrence less discriminable compromises performance 

and learning in the prediction task.
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Experiment 3: Manipulating uncertainty in stimulus presentation rate by temporal jitter

Previous studies have shown that rhythmic stimulation that induces strong temporal 

expectation facilitates processing of events (Jones, Moynihan, MacKenzie, & Puente, 

2002; Rohenkohl, Cravo, Wyart, & Nobre, 2012; Schroeder & Lakatos, 2009). Here, 

we tested whether disrupting rhythmic stimulation by introducing temporal jitter 

disrupts learning in the prediction task. In particular, we varied the ISI between 

successive stimuli in a trial. That is, in Group 1, the stimuli were presented at a fixed 

rate of 2Hz and the ISI was fixed at 400ms. In contrast, in Experiment 3 (N=18, Group 

3) the ISI was jittered, ranging from 100 to 700ms. We reasoned that jittering the ISI 

would prevent temporal expectation and may impair learning of temporal statistics. 

In contrast to this prediction, our results show that training resulted in a significant 

improvement for most participants in Group 3 (13/18, mean PI improvement: 

25.6±3.8%) except five participants who showed only small improvement (i.e. 

performance after training less than 10% above random guessing) (Figure 3b). A mixed 

ANOVA comparing across Experiment 1 and Experiment 3 with Session (Pre vs. Post) 

and Group (Group 1 vs. Group 3) showed a significant main effect of session (F(1,34) 

= 72.81, p < 0.001), consistent with enhanced performance after training. There was no 

significant main effect of group (F(1,34) = 1.79, p = 0.190) nor interaction between 

session and group (F(1,34) = 0.22, p = 0.639), indicating similar improvement across 

groups despite temporal jitter in Group 3.

Decision strategies for learning temporal statistics

We next asked whether increasing uncertainty in the prediction task by manipulating 

the probability of context-target contingencies or the stimulus presentation rate affects 

participant decision strategies when making predictions. Previous work on probabilistic 
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learning and decision making has proposed that individuals adopt decision strategies 

ranging from matching to maximization when making probabilistic choices (Acerbi et 

al., 2014; Erev & Barron, 2005; Murray et al., 2015; Schulze et al., 2015; Shanks et al., 

2002). We have previously shown that in the context of our prediction task, participants 

are exposed to stochastic sequences and use these strategies when learning the 

probabilities of different outcomes (R. Wang et al., 2017). Modelling the participants’ 

responses allows us to quantify their decision strategy. Specifically, participants may 

adopt (1) probability matching (that is, match their choices to the relative probabilities 

of the context-target contingencies presented in the sequences); or (2) deviate from 

matching towards maximization (that is, choose the most likely outcome in a given 

context). To quantify these strategies, we computed a strategy index that indicates 

participant’s preference (on a continuous scale) for responding using probability 

matching versus maximization. Figure 3d illustrates variability of strategy index for 

learners from Group 1 and Group 3. The strategy index for Group 1 was not 

significantly different from matching (that is, zero strategy index; t(12) =  1.32; P = 

 0.213), while the strategy index for Group 3 was significantly higher than zero (t(12) = 

 8.93; P <  0.001). Comparing individual strategy across groups showed significantly 

higher strategy index for Group 3 than Group 1 (t(24) = 3.14, p = 0.004), suggesting 

that disrupting rhythmic stimulation by temporal jitter results to a decision strategy 

closer to maximization.

Correlating PI with strategy index showed a significant positive relationship (r = 0.312, 

p=0.022 for Group 1-3, N=54), suggesting that maximization strategy relates to 

improved performance in the prediction task. This relationship may explain the 

surprising result we observed for Group 3; that is, performance in the prediction task 

improves despite temporal jitter. That is adopting a strategy closer to maximization may 
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facilitate learning when uncertainty in stimulus presentation rate is increased due to 

temporal jitter.

Figure 3

Figure 3. Experiment 2 and Experiment 3. (a) Mean Performance index across test and training 

blocks for Group 2 (Experiment 2). Data are fitted separately for participants who improved 

during training (black symbols, N = 5) and those who did not improve (grey symbols, N = 13). 

(b) Mean Performance index across test and training blocks for Group 3 (Experiment 3). Data 

are fitted separately for participants who improved during training (black symbols, N = 13) and 

those who did not improve (grey symbols, N = 5). (c) Normalized PI pre- and post-training for 

Group 2 and Group 3. Error bars indicate standard error of the mean. (d)  Box plots of strategy 
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index show individual variability for learners in Group 3 and Group 1 (Experiment 1). The 

upper and lower error bars display the minimum and maximum data values, and the central 

boxes represent the interquartile range (25th–75th percentiles). The thick line in the central 

boxes represents the median. Crosses denote outliers. 

Experiment 4: Manipulating feedback

Theoretical work has suggested that supervised, error-correcting learning mechanisms 

rely on external feedback (Dayan & Abbott, 2001). To understand the role of feedback 

in learning temporal statistics, we trained 3 additional groups of participants with a) 

trial-by-trial feedback based on the symbol expected by the pre-defined sequences 

(Group 4, Figure 4a); b) no feedback (Group 5, Figure 4b); c) uncorrelated feedback, 

that is, random trial-by-trial feedback that was uncorrelated to the observers’ responses 

(Group 6, Figure 4c). 

Figure 4d shows mean performances before and after training per group. A mixed two-

way ANOVA showed a significant interaction of session and group (F(2,48) = 12.69, 

p < 0.001), suggesting that performance improvement differed across groups. PI 

improvement for Group 4, Group 5 and Group 6 was 33.2±3.6%, 19.0±1.1%, and 

8.6±0.5% respectively. Specifically, trial-by-trial feedback (Group 4) resulted in most 

participants (17/18 learners) showing improvement in the task that was on average 

higher than the improvement observed for the other groups (Group 4 vs. Group 5: t(31) 

= 2.697, p =0.011; Group 4 vs. Group 6: t(34) = 5.043, p < 0.001). Most participants 

improved in the task even without feedback (12/15 learners) and there was no 

significant difference in performance between block feedback and no feedback (Group 

1 vs. Group 5: t(31) = 0.805, p =0.427). However, providing uncorrelated feedback 
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resulted in limited improvement (i.e. two thirds participants showed < 10% 

improvement; Group 5 vs Group 6: t(31) = 2.064, p =0.047), and nearly half participants 

(8/18) showed performance less than 10% above random guessing in the prediction task 

after training.  

We then compared participant decision strategies across groups to test whether 

feedback modulates decision strategy (Figure 4e). A one-way ANOVA on strategy 

index showed a significant effect of group (F(2,48) = 15.70, p < 0.001). For participants 

who trained with trial-by-trial feedback (Group 4), the strategy index was significantly 

higher than zero (t(17) = 5.225, p < 0.001) and higher than the strategy index for groups 

that trained with no feedback or uncorrelated feedback (Group 4 vs. Group 5: t(31) = 

2.936, p = 0.006; Group 4 vs. Group 6: t(34) = 5.913, p < 0.001), suggesting that 

participants adopted a strategy closer to maximization. In contrast, participants who 

trained without feedback (Group 5) showed strategy index that did not differ 

significantly from matching (that is, zero strategy index, t(14) = 0.802, p = 0.436), 

suggesting that participants learned by matching the probability distribution of the 

presented context-target contingencies. Due to the lower number of participants who 

improved when trained with uncorrelated feedback (Group 6), the strategy index in this 

group was lower than zero (t(17) = -2.783, p = 0.013) and significantly lower than 

Group 5(t(31) = 2.129, p = 0.041). These results suggest that decreasing feedback 

uncertainty by providing trial-by-trial feedback facilitates maximization and learning 

of temporal statistics. 

Figure 4
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Figure 4. Experiment 4. (a) Mean Performance index across blocks for Group 4 (trial-by-trial 

feedback). Data are fitted separately for participants who improved during training (black 

symbols, N = 17) and one participant who did not improve (grey symbols). (b) Mean 

Performance index across blocks for Group 5 (no feedback). Data are fitted separately for 

participants who improved during training (N = 12) and those who did not improve (N = 3). (c) 

Mean Performance index across blocks for Group 6 (uncorrelated feedback). Data are fitted 

separately for participants who improved during training (N = 10) and those who did not 

improve (N = 8). (d) Normalized PI for test sessions in Groups 4,5,6. Error bars indicate 

standard error of the mean. (e)  Box plots of strategy index show individual variability per group.

Correlating learning performance to strategies

We further tested whether individual strategies relate to learning performance. 

Combing data across experiments (N = 105), there was a significant correlation (Figure 

5a) between participants’ strategy index and behavioral improvement (i.e. difference in 

normalized PI between pre- and post-training sessions) (r = 0.471, p<0.001), indicating 
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that participants who adopt a strategy closer to maximization show higher improvement. 

Despite the fact that improvement varied across groups due to the experiment 

manipulation (a linear regression model showed group as a significant predictor on PI 

improvement, R2 = 0.325, F = 9.551, p<0.001), including strategy index as an additional 

regressor significantly explained 7.9% more variance in performance improvement (p 

= 0.001, ∆R2 = 0.079). At first glance, this result may appear surprising, as exact 

matching is expected to result to 100% performance. Interrogating the response 

distribution across participants showed that most learners with high PI adopted a 

strategy towards maximization (i.e. responding more than 80% to high probability 

contingencies) over training. This result is in line with previous findings suggesting that 

probability maximization is favored when learning complex probabilistic tasks 

(Lagnado, Newell, Kahan, & Shanks, 2006; R. Wang et al., 2017).

Correlating cognitive abilities to learning temporal statistics

Finally, we asked whether cognitive control abilities (i.e. attention, working memory) 

relate to learning performance. Selective attention and working memory were assessed 

before training on the prediction task using the Useful Field of View task and visual 

short-term memory tasks respectively. We observed individual variability in cognitive 

tasks across participants. Performance in selective attention—as measured by SOA 

duration needed for separating targets from cluttered distractors —ranged from 16 to 

165 ms, and performance in working memory—as measured by number of items which 

were correctly memorized —ranged from 3.43 to 9.5 number of dots. There was a 

significant correlation between selective attention and working memory scores (r = 

−0.304, p = 0.002) across participants in all groups. Further, we found:  a) significant 
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correlation between selective attention scores (r = −0.327, p = 0.001) and working 

memory scores (r = 0.234, p = 0.016) with strategy index (Figure 5b) in the prediction 

task across all participants (N = 105), b) significant correlation between selective 

attention scores (r = −0.280, p = 0.004) and working memory scores (r = 0.192, p = 

0.050) with PI improvement. These results suggest that participants with better 

attentional and working memory skills are more likely to adopt a strategy closer to 

maximization and improve in statistical learning. 

Further, multiple regression analysis showed that group and cognitive abilities 

(selective attention, working memory) explained significantly (F(7,97) = 5.31, p < 

0.001) 27.7 % of the variance in strategy index (R = 0.526), and group had the strongest 

impact on decision strategy (p < 0.001, R2 = 0.234). Interestingly, we found that 

selective attention rather than working memory was better at predicting the strategy 

adopted during training; that is, excluding the variation accounted for by group (i.e. 

experimental manipulation), a model with selective attention as an additional regressor 

significantly explained 3.3% more of the variance in strategy index (p = 0.038). 

However, we did not observe a significant impact of working memory in the model (p 

= 0.101). These results suggest that selective attention is a key predictor of decision 

strategy; that is, it is likely that selecting the most probable outcomes when maximizing 

facilitates learning of temporal statistics. 

Figure 5
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Figure 5. Correlations across participants in all groups (N=105). (a) Significant correlations of 

individual decision strategy and performance improvement (r = 0.471， CI= [0.331， 0.603]). 

A skipped Pearson correlation analysis using the Robust correlation toolbox (Pernet, Wilcox, 

& Rousselet, 2012) replicated this significant positive correlation following exclusion of six 

bivariate outliers (r = 0.623， CI= [0.508， 0.724]). Negative strategy-index values indicate a 

strategy closer to matching, while positive values indicate a strategy closer to maximization. 

(b) Correlating cognitive skills with decision strategy. Left, correlation of selective attention 

scores with strategy index. A lower score (SOA: stimulus onset asynchrony; i.e. shorter display 

duration) indicates better performance in the selective attention task that relates to decision 

strategy closer to maximization. Right, correlation of working memory scores with strategy 

index. A higher score (larger number of dots in the display) indicates better performance in the 

working memory task that relates positively with decision strategy closer to maximization. The 

color of the dots indicates participant group.

Discussion

Extracting the statistics governing event streams is critical for adaptive behavior in 

rapidly changing environments. Our findings demonstrate that exposure to temporal 

sequences facilitates our ability to extract their structure and predict upcoming events; 

an improvement that lasts for a prolonged period following training (up to 4 weeks). 
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We show that this learning of predictive structures is maintained under uncertainty that 

relates to the characteristics of the temporal sequences and task feedback. In particular, 

learners adapt their behavior to changes in the sequence design, rate of stimulus 

presentation and feedback. Further, attentional and working memory skills account for 

variability in decision strategy that strongly relates to individual structure learning 

ability. Our findings advance our understanding of structure learning in four main 

respects.

First, we show that less discriminable contingency probabilities compromised learning 

performance. This is consistent with previous work (Hasson, 2017; Okano, Daikoku, 

Ugawa, Kanai, & Yumoto, 2021; Thiessen, Kronstein, & Hufnagle, 2013), showing 

that probability of stimulus occurrence is key for extracting spatiotemporal structures. 

For example, previous studies have shown that sequences of syllables with high 

conditional probabilities are perceived to correspond to words, while syllable 

transitions with low predictability are more likely to be perceived as word-boundaries 

(Jenny R. Saffran, Newport, & Aslin, 1996). Our analysis showed that participants 

failed to extract the underlying first order Markov structure (i.e. identify the correct 

context-target contingencies) in sequences with highly similar contingency 

probabilities. In this model, the target depended on the immediately preceding stimulus.  

Specifically, given a context, only one of two targets (among all four symbols) could 

follow: one with a high probability and the other with a low probability. For example, 

for context A, the probability of AB, AC, AD, AA were 0.8, 0.2, 0 and 0, respectively. 

Tracking observers’ responses across trials showed that decreasing the probability 

difference (i.e. changing the context-conditional probabilities from 80% vs. 20% to 60% 

vs.40%) resulted in impaired performance. That is, most participants were not able to 

predict the corresponding conditional probabilities nor extract the appropriate context-

Electronic copy available at: https://ssrn.com/abstract=4014051



28

target contingencies. These results indicate that probability of context-target 

contingencies plays a key role in learning temporal structure.

Second, we asked whether temporal uncertainty influences learning of predictive 

structure. Previous studies have shown that temporal variability and uncertainty 

disrupts temporal expectation and impairs performance (A. Nobre, Correa, & Coull, 

2007). In contrast, presenting stimuli at a regular rhythm or at the expected time has 

been shown to facilitate action preparation and execution (e.g. reduced reaction times 

and saccade latencies) (Niemi & Näätänen, 1981) and enhance perceptual judgements 

(Lasley & Cohn, 1981; Rohenkohl et al., 2012; Rolke & Hofmann, 2007; Westheimer 

& Ley, 1996). In contrast to this previous work, we found that disrupting the rhythmic 

presentation of the sequence by introducing temporal jitter did not disrupt learning of 

predictive structures. Interestingly, learners presented with temporally jittered 

sequences adopted a strategy closer to maximization, suggesting that maximizing may 

facilitate learning of temporal structure under temporal uncertainty. It is likely that our 

participants focused on the probabilistic associations between symbols rather than the 

sequence rhythm, as our prediction task requires the participants to make an explicit 

judgement about the expected stimulus. This is consistent with previous work 

suggesting that humans are rational probabilistic learners and able to extract organized 

structures from ambiguous information (e.g. feature correlations in multidimensional 

sequences (N. Turk-Browne, Isola, Scholl, & Treat, 2008)) in a flexible manner (Aslin 

& Newport, 2012). Further, temporal jitter may result in increased cognitive load. Our 

results suggest that adopting a strategy closer to maximization  facilitates structure 

learning under conditions of higher task demands, consistent with previous work 

showing that participants adopt a strategy closer to maximization when learning more 
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complex probabilistic sequences and tasks after training (Lagnado, Newell, Kahan, & 

Shanks, 2006; R. Wang et al., 2017). 

Previous behavioral and neurophysiological studies have suggested that temporal 

uncertainty induced by varying the regularity of rhythmic stimulus streams influences 

stimulus processing at a perceptual level (Rohenkohl et al., 2012; Rolke & Hofmann, 

2007; Schroeder, Wilson, Radman, Scharfman, & Lakatos, 2010). Entraining the brain 

to rhythmic events has been shown to facilitate sensory processing (Lakatos, Karmos, 

Mehta, Ulbert, & Schroeder, 2008; A. C. Nobre & van Ede, 2018; Schroeder & Lakatos, 

2009). It is likely that irregular stimulus presentation disrupts perceptual processing in 

visual cortico-striatal circuits that have been shown to relate to structure learning based 

on probability matching. In particular, we have previously shown that distinct brain 

circuits relate to individual strategies for learning temporal statistics (Karlaftis et al., 

2019; Rui Wang, Yuan Shen, Peter Tino, Andrew E. Welchman, & Zoe Kourtzi, 2017): 

probability matching engages occipitotemporal and ventral caudate regions, whereas 

maximization engages fronto-striatal circuits (i.e. dorsolateral prefrontal cortex, 

cingulate, sensory–motor regions, and putamen). Thus, it is possible that structure 

learning under temporal uncertainty recruits fronto-striatal circuits that support learning 

by maximization rather than matching facilitating learners to flexibly adapt their 

decision strategy and learn the environments statistics.

Third, we test whether feedback modulates decision strategy and learning of predictive 

statistics. Feedback is known to play a key role in learning new skills from simple 

feature processing to complex social interactions (Kluger & DeNisi, 1996). Theoretical 

work has proposed that supervised, error-correcting learning mechanisms rely on 

external feedback (Dayan & Abbott, 2001; Liu, Dosher, & Lu, 2014; Petrov et al., 2005). 

Yet, previous work on statistical learning has shown that learning of spatiotemporal 
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regularities may occur implicitly (i.e., by mere exposure rather than external feedback) 

(Perruchet & Pacton, 2006). Our results demonstrate that participants were able to 

extract the underlying sequence structure without any feedback; that is, participant who 

received no feedback or sparse performance feedback (i.e. mean performance feedback 

quantitatively across a block of sixty trials) performed similarly in the prediction task. 

However, trial-by-trial correct feedback enhanced task performance and resulted in 

learners adopting a strategy closer to maximization than matching. In contrast, random 

feedback that was uncorrelated to the participants responses compromised learning 

substantially. Our results are consistent with  previous work showing that informative 

feedback shifts decision strategy towards maximization in probabilistic choice tasks 

(Shanks et al., 2002). That is, trial-by-trial feedback supports error correction, reducing 

uncertainty and facilitating a decision strategy that delivers best outcomes and increased 

reward. 

Finally, we show that individual strategies and performance in learning temporal 

statistics correlate with attentional and working memory skills. The role of attention 

and working memory in statistical learning remains debated (Conway, 2020). It is 

possible that working memory is involved in the encoding of multiple sequence items, 

facilitating learning of temporal statistics; yet the role of working memory in sequence 

learning remains controversial (Janacsek & Nemeth, 2013). Further, some studies 

propose that selective attention may gate learning of statistics; that is, regularities are 

only learned when the stimuli are attended (N. B. Turk-Browne et al., 2005), while 

others argue that extracting regularities is a consequence of attentional processing 

(Pacton & Perruchet, 2008). Statistical learning has been proposed to involve a 

multicomponent learning system that relates to stimulus encoding, retention and 

abstraction, with each component of this system depending on attention or working 
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memory to a different degree (Arciuli, 2017). Although attention and working memory 

have traditionally been considered to be distinct cognitive processes, recent studies 

propose an overlap between the brain systems that support these processes (Awh, Vogel, 

& Oh, 2006). Here, we provide evidence that participants with better attentional and 

working memory skills adopt a strategy closer to maximization and show improved 

structure learning. Interestingly, we demonstrate that selective attention is a stronger 

predictor of maximization strategy than working memory. This is likely due to the fact 

that extracting probabilistic conjunctions is more relevant in the context of our 

prediction task than memorizing sequences. Consistent with previous computational 

work proposing a key role of attentional selection in learning (Dayan, Kakade, & 

Montague, 2000; Yu & Dayan, 2005), our findings suggest that selective attention may 

facilitate the selection of the most probable outcomes (i.e.  adopting a maximization 

strategy), reducing uncertainty and supporting learning of temporal statistics.

In sum, our findings provide evidence for flexible learning of predictive statistics; that 

is, individuals adapt their decision strategy to learn the underlying structure of events 

in the face of sensory or feedback-related uncertainty and predict upcoming events. 

Future work may investigate the brain plasticity mechanisms that mediate our ability 

for this flexible structure learning under uncertainty.
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