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Abstract

Reservoir Computing (RC) models, a subclass of recurrent
neural networks, are distinguished by their fixed, non-trainable
input layer and dynamically coupled reservoir, with only
the static readout layer being trained. This design circum-
vents the issues associated with backpropagating error signals
through time, thereby enhancing both stability and training
efficiency. RC models have been successfully applied across a
broad range of application domains. Crucially, they have been
demonstrated to be universal approximators of time-invariant
dynamic filters with fading memory, under various settings of
approximation norms and input driving sources.
Simple Cycle Reservoirs (SCR) represent a specialized class
of RC models with a highly constrained reservoir architecture,
characterized by uniform ring connectivity and binary input-
to-reservoir weights with an aperiodic sign pattern. For linear
reservoirs, given the reservoir size, the reservoir construction
has only one degree of freedom – the reservoir cycle weight.
Such architectures are particularly amenable to hardware im-
plementations without significant performance degradation
in many practical tasks. In this study we endow these ob-
servations with solid theoretical foundations by proving that
SCRs operating in real domain are universal approximators
of time-invariant dynamic filters with fading memory. Our
results supplement recent research showing that SCRs in the
complex domain can approximate, to arbitrary precision, any
unrestricted linear reservoir with a non-linear readout. We
furthermore introduce a novel method to drastically reduce
the number of SCR units, making such highly constrained
architectures natural candidates for low-complexity hardware
implementations. Our findings are supported by empirical
studies on real-world time series datasets.

Introduction
Reservoir Computing (RC) is a subclass of Recurrent Neural
Network defined by a fixed parametric state space represen-
tation (the reservoir) and a static trained readout map. This
distinctive approach not only simplifies the training process
by focusing adjustments solely on the static readout layer
but also enhances computational efficiency. The simplest
recurrent neural network realization of RC (Jaeger 2001;
Maass, Natschlager, and Markram 2002; Tiňo and Dorffner
2001; Lukosevicius and Jaeger 2009) are known as Echo
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State Networks (ESN) (Jaeger 2001, 2002a,b; Jaeger and
Haas 2004). The representation capacity of ESNs have been
demonstrated in a series of papers, showing existentially that
ESNs can approximate any time-invariant dynamic filters
with fading memory in a variety of settings (Grigoryeva and
Ortega 2018a,b,b; Gonon and Ortega 2019).

Simple Cycle Reservoirs (SCRs) (Rodan and Tiňo 2010)
are RC models characterized by a highly restricted archi-
tecture: a uniform weight ring connectivity among reservoir
neurons and binary uniformly weighted input-to-reservoir
connections. This simplicity is particularly advantageous
for hardware implementations, reducing implementation and
computational costs, as well as enhancing real-time process-
ing capabilities without degrading performance. However,
while cyclic reservoir topology with a single connection
weight has been adopted in a variety of hardware imple-
mentations (Appeltant et al. 2011; Nakajima, Tanaka, and
Hashimoto 2021; Coarer et al. 2018; Abe et al. 2024), its
theoretical foundations have been missing. To rectify this
situation we rigorously prove that SCRs operating in real do-
main are universal approximators of time-invariant dynamic
filters with fading memory. Our results supplement recent
research (Li, Fong, and Tino 2024) showing that SCRs in
the complex domain can approximate, to arbitrary precision,
any unrestricted linear reservoir with a non-linear readout,
opening the door to a broad range of practical scenarios in-
volving real-valued computations. Furthermore, based on our
constructive proof arguments, we formulate a novel method
to drastically reduce the number of SCR units, making such
highly constrained architectures natural candidates for low-
complexity hardware implementations.

We emphasize that proving that SCR architecture retains
universality when moving from the complex to the real do-
main is far from straightforward. Indeed, as shown in (Li,
Fong, and Tino 2024), attempts to even partially restrict SCR
in the complex domain to the real one result in more complex
multi-reservoir structures.1

We conclude the paper with numerical experiments that

1As we will show, to retain advantages of the single simple SCR
structure in the real domain and retain universality one needs to con-
sider orthogonal similarity throughout the approximation pipeline,
as well as completion of the set of roots of unity in the canoni-
cal form of orthogonal matrices for cyclic dilation of orthogonally
dilated coupling matrices.
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validate the structural approximation properties demonstrated
in our theoretical analysis. In particular, we begin with an ar-
bitrary linear reservoir system with linear readout and demon-
strate, on real-life datasets, that the approximation SCR coun-
terparts will gradually approach the original system as the
number of reservoir neurons increase, reinforcing the theo-
retical insights provided.

The Setup
We first introduce the basic building blocks needed for the
developments in this study.
Definition 1. A linear reservoir system over R is formally
defined as the triplet R := (W,V, h) where the dynamic
coupling W is an n×n real-valued matrix, the input-to-state
coupling V is an n × m real-valued matrix, and the state-
to-output mapping (readout) h : Rn → Rd is a (trainable)
continuous function.

The corresponding linear dynamical system is given by:{
xt = Wxt−1 + V ut

yt = h(xt)
(1)

where {ut}t∈Z− ⊂ Rm, {xt}t∈Z− ⊂ Rn, and {yt}t∈Z− ⊂
Rd are the external inputs, states and outputs, respectively.
We abbreviate the dimensions of R by (n,m, d).

We make the same assumption as in (Li, Fong, and Tino
2024, Definition 1), that
1. The input stream {ut} is uniformly bounded by a constant

M .
2. The dynamic coupling matrix W has its operator norm

∥W∥ < 1.
The only difference in this present work is the requirement
that all the matrices and vectors are over R. Under the as-
sumptions, for each left infinite time series u = {ut}t∈Z− ,
the system (1) has a unique solution given by

xt(u) =
∑
n≥0

WnV ut−n,

yt(u) = h(xt(u)).

We refer to the solution simply as {(xt, yt)}t.
Definition 2. For two reservoir systems R = (W,V, h) (with
dimensions (n,m, d)) and R′ = (W ′, V ′, h′) (with dimen-
sions (n′,m, d)):
1. We say the two systems are equivalent if for any in-

put stream u = {ut}t∈Z− , the solutions {(xt, yt)}t and
{(x′t, y′t)}t for systems R and R′ satisfy yt = y′t for all t.

2. For ϵ > 0, we say the two systems are ϵ-close if for
any input stream u = {ut}t∈Z− , the solutions of the two
systems (under the notation above) satisfy ∥yt − y′t∥2 < ϵ
for all t.

We now define the main object of interest in this paper. We
begin by the following definition.
Definition 3. Let P = [pij ] be an n× n matrix. We say P
is a permutation matrix if there exists a permutation σ in
the symmetric group Sn such that

pij =

{
1, if σ(i) = j,

0, if otherwise.

We say a permutation matrix P is a full-cycle permutation
2 if its corresponding permutation σ ∈ Sn is a cycle per-
mutation of length n. Finally, a matrix W = cP is called a
contractive full-cycle permutation if c ∈ (0, 1) and P is a
full-cycle permutation.

Simple cycle reservoir systems originate from the mini-
mum complexity reservoir systems introduced in (Rodan and
Tiňo 2010):
Definition 4. A linear reservoir system R = (W,V, h) with
dimensions (n,m, d) is called a Simple Cycle Reservoir
(SCR) over R 3 if
1. W is a contractive full-cycle permutation, and
2. V ∈ Mn×m ({−1, 1}).

Our goal is to show that every linear reservoir system is
ϵ-close to a SCR over R. This is done in a way that does
not increase the complexity of the readout function h. To be
precise:
Definition 5. We say that a function g is h with linearly
transformed domain if g(x) = h(Ax) for some matrix A.

Universality of Orthogonal Dynamical
Coupling

In (Halmos 1950), Halmos raised the question of what kind of
operators can be embedded as a corner of a normal operator.
He observed that one can embed a contractive operator W
inside a unitary operator:

Ũ =

[
W DW⊤

DW −W⊤

]
where DW = (I−W⊤W )1/2 and DW⊤ = (I−WW⊤)1/2.
This motivated the rich study of the dilation theory of linear
operators. One may refer to (Paulsen 2002) for more com-
prehensive background on dilation theory. In the recent study
(Li, Fong, and Tino 2024), the authors used a dilation theory
technique to obtain an ϵ-close reservoir system with a unitary
matrix as the dynamic coupling. A key idea is the theorem
of Egerváry, which states that for any n× n matrix W with
∥W∥ ≤ 1 and N > 1, there exists a (N + 1)n× (N + 1)n
unitary matrix U such that the upper left n × n corner of
Uk is W k for all 1 ≤ k ≤ N . In fact, this matrix U can be
constructed explicitly as:

U =


W 0 0 . . . 0 DW⊤

DW 0 0 . . . 0 −W⊤

0 I 0 . . . 0 0
...

. . .
...

...
0 . . . I 0

 .

We first notice that when W is a matrix over R, this dilation
matrix U is over R as well. Therefore, U is an orthogonal
matrix. This technique allows us to obtain an ϵ-close reservoir
system with an orthogonal dynamic coupling matrix.

2Also called left circular shift or cyclic permutation in the litera-
ture

3We note that the assumption on the aperiodicity of the sign
pattern in V is not required for this study
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Theorem 6. Let R = (W,V, h) be a reservoir system defined
by contraction W with ∥W∥ =: λ ∈ (0, 1). Given ϵ > 0,
there exists a reservoir system R′ = (W ′, V ′, h′) that is
ϵ-close to R, with dynamic coupling W ′ = λU , where U
is orthogonal. Moreover, h′ is h with linearly transformed
domain.

Proof. The proof follows that of an analogous statement in
the complex domain in (Li, Fong, and Tino 2024, Theorem
11). The arguments follow through by replacing unitary ma-
trices by orthogonal matrices and conjugate transpose by
regular transpose.

Universality of Cyclic Permutation Dynamical
Coupling

Having established universality of orthogonal dynamic cou-
pling in the reservoir domain, we now continue to show that
for any reservoir system with orthogonal state coupling, we
can construct an equivalent reservoir system with cyclic cou-
pling of state units weighted by a single common connection
weight value. In broad terms we will employ the strategy of
(Li, Fong, and Tino 2024), but here we need to pay special
attention to maintain all the matrices in the real domain.

We begin by invoking (Li, Fong, and Tino 2024, Propo-
sition 12), which stated that matrix similarity of dynamical
coupling implies reservoir equivalence. It therefore remains
to be shown that for any given orthogonal state coupling we
can always find a full-cycle permutation that is close to it to
arbitrary precision. Specifically, when given an orthogonal
matrix, the goal is to perturb it to another orthogonal matrix
that is orthogonally equivalent to a permutation matrix. Here
we cannot adopt the strategy in (Li, Fong, and Tino 2024,
Section 5) because it would inevitably involve a unitary ma-
trix over C during the diagonalization process. Instead, we
convert an orthogonal matrix to its canonical form via a (real)
orthogonal matrix.

The core idea of our approach is schematically illustrated
in Figure 1. Given a reservoir system with dynamic coupling
W , we first find its equivalent with orthogonal coupling U .
Rotational angles in the canonical form of U are shown as
red dots (a). Roots of unity corresponding to a sufficiently
large cyclic dilation coupling can approximate the rotational
angles to arbitrary precision ϵ (b).

We begin by recalling some elementary results of orthog-
onal and permutation matrices. For each θ ∈ [0, 2π), define
the following rotation matrix:

Rθ =

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
.

The eigenvalues of Rθ are precisely e±iθ. Moreover, notice
that:[
0 1
1 0

]
R−θ

[
0 1
1 0

]
=

[
0 1
1 0

] [
cos(θ) sin(θ)
− sin(θ) cos(θ)

] [
0 1
1 0

]
=

[
cos(θ) − sin(θ)
sin(θ) cos(θ)

]
= Rθ.

Therefore, Rθ and R−θ are orthogonally similar. Employing
the real version of Schur decomposition, for any orthogonal

matrix C ∈ O(n), there exists an orthogonal matrix S such
that the product S⊤CS has the following form:

S⊤CS =



Rθ1

. . .
Rθk

±1
. . .

±1



=


Rθ1

. . .
Rθk

Υ

 ,

where θi ∈ (0, π), and Υ := diag{a1, a2, ..., aq}, ai ∈
{−1,+1}, i = 1, 2, ..., q, is a diagonal matrix with q en-
tries of ±1’s. For simplicity, we will assume for the rest of
the paper an even dimension n, which inherently implies
that q is also even. The case when n is odd is analogous and
follows from similar arguments.

Note that without loss of generality, Υ can always take the
form where +1’s (if any) preceded −1’s (if any). This can be
achieved by permuting rows of Υ which is an orthogonality
preserving operation and invoking (Li, Fong, and Tino 2024,
Proposition 12). This can be further simplified by observing:

R0 =

[
1 0
0 1

]
, Rπ =

[
−1 0
0 −1

]
.

Hence, pairs of +1’s (and −1’s) can therefore be grouped
as blocks of R0 (and Rπ). Therefore, without loss of gen-
erality, S⊤CS is a block diagonal matrix consisting of
{Rθ1 , . . . , Rθm}, θi ∈ [0, π], i = 1, 2, ...,m, and at most

one block of the form
[
1 0
0 −1

]
. In the literature this is

known as the canonical form of the orthogonal matrix C.
Given the inherent orthogonality of permutation matrices,

their corresponding canonical forms can be computed. Given
an integer ℓ ≥ 1, the complete set of ℓ-th roots of unity is a
collection of uniformly positioned points along the complex
circle, denoted by {ei

2jπ
ℓ : 0 ≤ j ≤ ℓ− 1}. It is well-known

from elementary matrix analysis that the eigenvalues of a
full-cycle permutation matrix form a complete set of roots of
unity.

Therefore, given an ℓ×ℓ full-cycle permutation P (ℓ even),
we can find an orthogonal matrix Q such that Q⊤PQ is a
block diagonal matrix of {1,−1, R 2πj

ℓ
: 1 ≤ j < ℓ

2}. Here,

note that for each 1 ≤ j < ℓ
2 , R 2πj

ℓ
has two conjugate eigen-

values ei
2πj
ℓ and e−i 2πj

ℓ . Hence, an ℓ× ℓ orthogonal matrix
X is orthogonally equivalent to a full-cycle permutation if
and only if its canonical form consists of:

1. A complete set of rotation matrices {R 2πj
ℓ

: 1 ≤ j < ℓ
2},

and
2. Two additional diagonal entries of 1 and −1.
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(a) (b)

Figure 1: Schematic illustration of the core idea enabling us to prove universality of SCRs in the real domain. Given a reservoir
system with dynamic coupling W and its equivalent with orthogonal coupling U , rotational angles in the canonical form of U are
shown as red dots (a). Roots of unity corresponding to cyclic dilation approximate the rotational angles to a prescribed precision
ϵ (b).

Theorem 7. Let U be an n×n orthogonal matrix and δ > 0
be an arbitrarily small positive number. There exists n1 ≥
n, an n1 × n1 orthogonal matrix S, an n1 × n1 full-cycle
permutation P and an (n1−n)×(n1−n) orthogonal matrix
D, such that ∥∥∥∥S⊤PS −

[
U 0
0 D

]∥∥∥∥ < δ.

Proof. We only prove the case when the canonical form of U
is in a block diagonal form consisting of Rθ1 , Rθ2 , . . . , Rθk .
The case when the canonical form contains additional entries
of ±1 is analogous. Let S1 be the orthogonal matrix such
that S⊤

1 US1 is in the canonical form. For fixed δ > 0, pick
an integer ℓ0 > 0 such that: |1− e

πi
ℓ0 | < δ.

For each j = 1, . . . k, the interval Ij :=(
θjℓ0(k+1)

π − (k + 1),
θjℓ0(k+1)

π + (k + 1)
)

has length
2(k + 1), and therefore contain 2(k + 1) distinctive integers.
Moreover, since θj ∈ [0, π], the interval Ij contains at least
k distinct integers strictly within (0, ℓ0 · (k + 1)). From
each interval I1, . . . , Ik we can thus choose distinct integers
a1, · · · , ak, with aj ∈ Ij and 0 < aj < ℓ0 · (k + 1) such
that for each j = 1, . . . , k:

0 <

∣∣∣∣θjℓ0(k + 1)

π
− aj

∣∣∣∣ < (k + 1),

or equivalently,

0 <

∣∣∣∣θj − aj
ℓ0(k + 1)

· π
∣∣∣∣ < π

ℓ0
.

This implies:∣∣∣eiθj − e
πi

aj
ℓ0·(k+1)

∣∣∣ = ∣∣∣∣1− e
i
(
−θj+

aj
ℓ0·(k+1)

·π
)∣∣∣∣

=

∣∣∣∣1− e
i
∣∣∣θj− aj

ℓ0·(k+1)
·π

∣∣∣∣∣∣∣ ≤ ∣∣∣1− ei
π
ℓ0

∣∣∣ < δ.

Now for each j = 1, . . . , k, set βj :=
πaj

ℓ0(k+1) ∈
(0, π). Let A0 be the block diagonal matrix consisting of

{Rβ1
, . . . , Rβk

}. Since the eigenvalues of Rβj
is within δ to

Rθj , we obtain:

∥∥A0 − S⊤
1 US1

∥∥ =

∥∥∥∥∥∥∥
Rβ1 −Rθ1

. . .
Rβk

−Rθk


∥∥∥∥∥∥∥

= max{
∥∥Rβj

−Rθj

∥∥} < δ,

where ∥·∥ denotes the operator norm.
Let n1 := 2ℓ0(k + 1). We have each βj =

aj

n1
· (2π),

and therefore the rotations Rβ1
, . . . , Rβk

are all rotations of
distinct n1-roots of unity. Whilst this is not a complete set
of rotations of the roots of unity, we can complete the set
of rotations by filling in the missing ones. In particular the
missing set of rotations is given explicitly by:

R1 :=
{
R 2πa

n1

: a ∈ Z, 0 < a <
n1

2
, a ̸= aj

}
Let D denote the (n1 − n)×(n1 − n) block diagonal matrix
consisting of:

1. All the missing blocks of rotations described in R1, and
2. Two additional diagonal entries of 1 and −1.

By construction D is orthogonal since it contains block di-
agonal matrices of ±1 and Rθ. Consider the n1 × n1 matrix
A := (S1A0S

⊤
1 )⊕D. Then A is orthogonal by construction

and the canonical form of A consists of:

1. A complete set of rotations R πa
n1

, a ∈ Z, 0 < a < n1

2 , and
2. An additional diagonal entry of 1 when n1 is odd and two

additional diagonal entries of 1 and −1 when n1 is even.

This is precisely the canonical form of a n1×n1 full-cycle
permutation. Let P be a full-cycle permutation of dimension
n1, then there exists an orthogonal matrix S such that A =
S⊤PS. We have,∥∥∥∥S⊤PS −

[
U 0
0 D

]∥∥∥∥ =

∥∥∥∥[S1A0S
⊤
1 − U 0
0 0

]∥∥∥∥
=

∥∥A0 − S⊤
1 US1

∥∥ < δ,
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as desired.

Remark 8. In practice, the dimension n1 is usually much
smaller than the theoretical upper bound of 2ℓ0(k+1). Here,
the integer ℓ0 is chosen to satisfy |1 − e

πi
ℓ0 | < δ, which

equivalently means:

π

ℓ0
< arccos

(
1− δ2

2

)
.

In practice, a much lower dimension can be achieved. Given
a set of angles {θi} from an n× n orthogonal matrix U . For
a fixed n′ > n, we can use maximum matching program in
a bipartite graph to check whether: for each θi there exists a
distinct ki such that the root-of-unity 2kiπ

n′ approximates θi.
For fixed n′, define a bipartite graph G with vertex set A∪B

with A = {θi} and B = { 2aπ
n′ : 0 < a < n′

2 }. An edge e

joins θi ∈ A with 2aπ
n′ ∈ B if

∣∣∣eθii − e
2aπi
n′

∣∣∣ < δ. One can
easily see that we can find distinct ki to approximate θi by
2kiπ
n′ if and only if there exists a matching for this bipartite

graph with exactly |A| edges. We let nC denote the smallest
n′ such that a desired maximum matching is achieved. We
shall demonstrate later, in the numerical experiment section,
that nC is significantly lower than the theoretical upper bound
given by Theorem 7.
Theorem 9. Let U be an n× n orthogonal matrix and W =
λU with λ ∈ (0, 1). Let R = (W,V, h) be a reservoir system
with state coupling W . For any ϵ > 0, there exists a reservoir
system Rc = (Wc, Vc, hc) that is ϵ-close to R such that:
1. Wc is a contractive full-cycle permutation with ∥Wc∥ =

∥W∥ = λ ∈ (0, 1), and
2. hc is h with linearly transformed domain.

Proof. The proof follows that of an analogous statement in
the complex domain in (Li, Fong, and Tino 2024, Theorem
14). The arguments follow through by replacing unitary ma-
trices by orthogonal matrices and conjugate transpose by
regular transpose.

From Cyclic Permutation to SCR
We have now ready to prove the main result (Theorem 12).
So far, we have proved that any linear reservoir system
R = (W,V, h) is ϵ-close to another reservoir system R′ =
(W ′, V ′, h′) where W ′ is a permutation or a full-cycle per-
mutation. It remains to show that one can make the entries in
the input-to-state coupling matrix V to be all ±1.

We first recall the following useful Lemmas.
Lemma 10 ((Li, Fong, and Tino 2024, Lemma 16)). Let n, k
be two natural numbers such that gcd(n, k) = 1. Let P be an
n× n full-cycle permutation. Consider the nk × nk matrix:

P1 =


0 0 0 . . . 0 P
P 0 0 . . . 0 0
0 P 0 . . . 0 0
...

. . .
...

...
0 . . . P 0

 .

Then P1 is a full-cycle permutation.

Lemma 11 ((Li, Fong, and Tino 2024, Lemma 17)). For
any n×m real matrix V and δ > 0, there exists k matrices
{F1, · · · , Fk} ⊂ Mn×m ({−1, 1}) and a constant integer
N > 0 such that: ∥∥∥∥∥∥V − 1

N

k∑
j=1

Fj

∥∥∥∥∥∥ < δ

Moreover, k can be chosen such that gcd(k, n) = 1.
We now obtain our main theorem on the universality of

SCR over R. In comparison to (Li, Fong, and Tino 2024,
Theorem 20), the coupling matrix V in a SCR over R contains
only ±1 instead of {±1,±i}.
Theorem 12. For any reservoir system R = (W,V, h) of
dimensions (n,m, d) and any ϵ > 0, there exists a SCR
R′ = (W ′, V ′, h′) of dimension (n′,m, d) that is ϵ-close
to R. Moreover, ∥W∥ = ∥W ′∥ and h′ is h with linearly
transformed domain.

Proof. One may refer to the proof of (Li, Fong, and Tino
2024, Theorem 20). Crucially, because the dynamic coupling
matrix V in the intermediate steps are all over R instead of
C, the resulting matrix V ′ only have ±1.

(Grigoryeva and Ortega 2018b)(Corollary 11) shows that
linear reservoir systems with polynomial readouts are uni-
versal. They can approximate to arbitrary precision time-
invariant causal fading memory filters. This result, together
with Theorem 12, establish universality of SCRs in the real
domain. Indeed, given a time-invariant fading memory filter,
one can find an approximating linear reservoir system with
polynomial readout h approximating the filter to the desired
precision. By Theorem 12, we can in turn constructively ap-
proximate this reservoir system with a SCR, again to arbitrary
precision in the sense of Definition 2. Moreover, the SCR
readout is a polynomial of the same degree as h, since it is h
with linearly transformed domain. We summarize our results
in the main theorem below:
Theorem 13. Any time-invariant fading memory casual fil-
ter over uniformly bounded inputs can be approximated to
arbitrary precision by a SCR.

Numerical Experiments
We conclude the paper with numerical experiments illustrat-

ing our contributions. For reproducibility of the experi-
ments, all experiments are CPU-based and are performed
on Apple M3 Max with 128GB of RAM. The source code
and data of the numerical analysis is openly available at:

Code — https://github.com/Lampertos/RSCR

.

Dilation of Linear Reservoirs on Time Series
Forecasting
This section illustrates the structural approximation proper-
ties of linear reservoir systems when dilating the reservoir
coupling matrix, when applied to univariate time series fore-
casting. The readout function will be assumed to be linear
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throughout the numerical analysis in this section, as the pri-
mary objective of this paper is to examine the structural
approximation properties of the state-space representation of
linear reservoirs as determined by the coupling matrix.

Initially, a linear reservoir system featuring a randomly
generated coupling matrix W is constructed. We then ap-
proximate this system by linear reservoir systems under two
types of dilated coupling matrices: (1) U – Orthogonal dila-
tion of W (Theorem 6) , and (2) C – Cyclic dilation of U
(Theorem 9).

The results demonstrate that the prediction loss approxi-
mation error diminishes progressively as the dimension of di-
lation increases. For demonstration purposes, we keep dimen-
sionality of the original reservoir system to be approximated
by SCR low (n = 5). The elements of W are independently
sampled from the uniform distribution U(0, 1). The elements
of input-to-state coupling V is generated by scaling the bi-
nary expansion of the digits of π by 0.05 (Rodan and Tiňo
2010). Univariate forecasting performance of the initial and
the approximating reservoir systems are compared on two
popular datasets used in recent time series forecasting studies
(e.g. (Zhou et al. 2020) (adopting their training/validation/test
data splits)):

ETT The Electricity Transformer Temperature dataset con-
sists of measurements of oil temperature and six external
power-load features from transformers in two regions of
China. The data was recorded for two years, and mea-
surements are provided either hourly (indicated by ’h’) or
every 15 minutes (indicated by ’m’). In this paper we used
oil temperature of the ETTm2 dataset for univari-
ate prediction with train/validation/test split being 12/4/4
months.

Datasets — https://github.com/zhouhaoyi/ETDataset

ECL The Electricity Consuming Load consists of hourly
measurements of electricity consumption in kWh for 321
Portuguese clients during two years. In this paper we used
client MT 320 for univariate prediction. The train/valida-
tion/test split is 15/3/4 months.

Datasets — https://archive.ics.uci.edu/dataset/321/
electricityloaddiagrams20112014

The readout h of the original reservoir system is trained
using ridge regression with a ridge coefficient of 10−9. Note
that modified versions of the input-to-state map V and the
readout map h will be employed in all subsequent dilated
systems. Specifically, the readout map will not be subject
to further training in these systems. In all simulations, we
maintain a spectral radius λ = 0.9 and prediction horizon is
set to be 300.4

The initial system R = (W,V, h) is dilated
over a set of pre-defined dilation dimensions D :=
{2, 6, 10, 15, 19, 24, 28, 33, 37, 42}5. For each N ∈ D, by

4These two parameters are primarily chosen not for accuracy of
the forecasting capacities but to demonstrate the structural approxi-
mation properties proven in this paper.

5Recall that the corresponding orthogonal dilation will have
dimensions (N + 1) · 5× (N + 1) · 5 for each N ∈ D.

Theorem 6, we construct a linear reservoir system RU

with an orthogonal dynamic coupling WU of dimension
nU = (N + 1)n. Then by Theorem 9, we dilate RU into
an ϵ-close linear reservoir system RC with contractive cyclic-
permutation dynamic coupling.

For the orthogonal dilation, the linear reservoir system
RU := (WU , VU , hU ) is defined by:

WU := λ · U, where

U :=


W DW⊤

DW −W⊤

I
. . .

I 0

 ∈ MnU×nU
(R)

VU :=

[
V
0

]
, hU (x) = h (Pn(x)) ,

where nU := 5 · (N + 1), and Pn : RnU ↪→ R5 denote the
projection onto the first n = 5 coordinates.

Since U is orthogonal, it’s canonical form TU can be ob-
tained via the real version of Schur’s decomposition:

U = JUTUJ
⊤
U ,

where we note that both U and TU have unit spectral radius.
By Remark 8, given ϵ > 0 and the canonical form TU of U ,

the maximum matching program in bipartite graphs allows
us to find the canonical form of the nC × nC-dimensional
root-completed-matrix A (along with the corresponding di-
mension nC ), given by T := A0 ⊕D, described in the proof
of Theorem 7. By construction T is ϵ-close to TU ⊕ D in
terms of operator norm.

Let C be the nC × nC -dimensional full cycle permutation
matrix of unit spectral radius. Since C is orthogonal, we
can once again apply Schur’s decomposition to obtain it’s
canonical form:

C = JCTCJ
⊤
C .

By construction, T contains rotational matrices with angles
at the roots of unity that are rearrangements of the eigenvalues
of cyclic permutation of the same size. Therefore there exists
permutation matrix P̃ such that:

P̃ T P̃⊤ = TC .

Therefore by the proof of Theorem 9 (following that of (Li,
Fong, and Tino 2024, Theorem 14)), the linear reservoir sys-
tem RC := (WC , VC , hC) for the cyclic dilation is defined
by:

WC := λ · C, VC := P

[
VU

0

]
,

hC(x) = h
(
Pn(P

⊤x)
)
, P := JC P̃ J

⊤
U , (2)

where C ∈ Mnc×nc
(R) is a cyclic permutation of dimension

nc > 5 · (N + 1), and JU is a nc − 5 · (N + 1) × nc − 5 ·
(N + 1) matrix with an JU on the upper left hand corner and
zero everywhere else.
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By the uniform continuity of the readout h, it suffices to
evaluate the closeness of the state trajectories of the original
and the approximating cyclic dilation systems, as they are
driven by the same input time series ETTm2 and ECL. The
two state activation sequences are not directly comparable,
but they become comparable if the states of the approximating
system are transformed by the orthogonal matrix P (Equa-
tion (2)) and projected into the first n coordinates. Figure 2
shows the mean square differences between the states of the
two systems as a function of the dilation dimension N . As ex-
pected, MSE between the states decays to zero exponentially
as the dilation dimension increases.
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Figure 2: Mean and 95% confidence intervals of the mean
square differences of the states of the original reservoir and
the approximating cyclic dilation systems over 15 random-
ized generations of the original system. The data used is
labelled in the sub-caption.

Reduction of Dilation Dimension With Maximum
Matching in Bipartite Graph
In this section we illustrate how the dimension nC of the
cyclic dilation obtained from the maximum matching pro-
gram in bipartite graphs discussed in in Remark 8 can yield
reservoir sizes drastically lower than the theoretical upper
bound given by the approximating full-cycle permutation P :

n1 = 2 · ℓ0 · (k + 1) >

⌈
2 · π

arccos
(
1− δ2

2

) · (k + 1)

⌉
.

We generate 10 orthogonal matrices U uniformly randomly
for each initial dimension n ∈ {20, 40, . . . , 140, 160}. We
perform cyclic dilation as described in the previous section
and compare it against the theoretical upper bound. Notice
that the y-axis is in log scale. The dimension nC is sig-
nificantly lower than the theoretical upper bound, reaching
≈ 300−400 units for initial reservoirs of size 80−160, which
is well within possibilities of hardware implementations of
such reservoirs.

Conclusion
In this paper, we rigorously demonstrated the universality of
Simple Cycle Reservoir (SCR) in the real domain, adopting
the strategy from (Li, Fong, and Tino 2024). Specifically,
we proved that SCRs are universal approximations for any
real-valued unrestricted linear reservoir system and any real-
valued time-invariant fading memory filter over uniformly
bounded input streams.
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Figure 3: Theoretical upper bound v.s. dimension from maxi-
mum matching of bipartite graph.

To achieve this, we constrained our approach to the real do-
main throughout the approximation pipeline. We performed
cyclic dilation of orthogonally dilated coupling matrices by
completing the set of roots of unity in the canonical form
of orthogonal matrices, rather than using the eigendecompo-
sition method involving unitary matrices. This ensured that
all approximant systems remained in the real domain under
orthogonal similarity.

We facilitated the completion of roots of unity by utilizing
a maximum matching program in bipartite graphs, enabling
a tighter dimension expansion of the approximation system.
This method ensured efficient and effective expansion to
achieve the desired approximation accuracy.

The fully constructive nature of our results is a crucial step
towards the physical implementations of reservoir computing
(Appeltant et al. 2011; Nakajima, Tanaka, and Hashimoto
2021; Coarer et al. 2018; Abe et al. 2024).
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Tiňo, P.; and Dorffner, G. 2001. Predicting the future of
discrete sequences from fractal representations of the past.
Machine Learning, 45(2): 187–218.
Zhou, H.; Zhang, S.; Peng, J.; Zhang, S.; Li, J.; Xiong, H.;
and Zhang, W. 2020. Informer: Beyond Efficient Transformer
for Long Sequence Time-Series Forecasting. In AAAI Con-
ference on Artificial Intelligence.

16629


