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Abstract—Reservoir computing (RC) refers to a new class of reservoir units [13], support vector machine [14], filteunens
state-space models with a fixed state transition structure (the with delay&sum readout [15] etc. However, there are still
“reservoir’) and an adaptable readout form the state space. The serious problems preventing ESN to become a widely accepted

reservoir is supposed to be sufficiently complex so as to capture . . .
a large number of features of the input stream that can be tool: 1) There are properties of the reservoir that are poorly

exploited by the reservoir-to-output readout mapping. The field 6 understood [12],2) specification of the reservoir and input
RC has been growing rapidly with many successful applications. connections require numerous trails and even luck [B}],

However, RC has been criticized for not being principled enough. strategies to select different reservoirs for differerplagations

Reservoir‘cqnstruction is I{irgely driven by a series of randpmized have not been devised [16%) imposing a constraint on
model building stages, with both researchers and practitioners tral radi f th . trix i K tool t
having to rely on a series of trials and errors. To initialize Spectral radius o e reservoir matrix 1s a weak 1ool 1o

a systematic study of the field, we concentrate on one of the Properly set the reservoir parameters [16), the random
most popular classes of reservoir computing methods - Echo connectivity and weight structure of the reservoir is ualjkto

State Network (ESN) - and ask: What is the minimal complexity pe optimal and does not give a clear insight into the reservoi
of reservoir construction for obtaining competitive models and dynamics organization [16]. Indeed, it is not surprisingtth

what is the memory capacity of such simplified reservoirs? On a e - . .
number of widely used time series benchmarks of different origin part of the scientific community is skeptical about ESNs gein

and characteristics, as well as by conducting a theoretical analis  Used for practical applications [17].
we show: A simple deterministically constructed cycle reservoir Typical model construction decisions that an ESN user

is comparable to the standard echo state network methodology. must make include: setting the reservoir size; setting the
The (short term) memory capacity of linear cyclic reservoirs can - gnarity of the reservoir and input connections; setting th
be made arbitrarily close to the proved optimal value. . . - ] .
ranges for random input and reservoir weights; and setting
Index Terms—Reservoir computing, Echo state networks, Sim- the reservoir matrix scaling parameter The dynamical part
Blri dri?:(t:ilcjagem neural networks, Memory capability, Time series ot \he ESN responsible for input stream coding is treated as
a black box which is unsatisfactory from both theoreticad an
empirical standpoints. First, it is difficult to put a fingen o
|. INTRODUCTION what it actually is in the reservoir's dynamical organipati
ECENTLY there has been an outburst of research activitjat makes ESN so successful. Second, the user is required
in the field of reservoir computing (RC) [1]. RC modeldo tune parameters whose function is not well understood. In
are dynamical models for processing time series that malkés paper we would like to clarify by systematic investigat
a conceptual separation of the temporal data processing ithe reservoir construction, namely we show that in fact & ver
two parts: 1) representation of temporal structure in thmuin simple ESN organization is sufficient to obtain performance
stream through a non-adaptable dynarir@servoir”, and 2) comparable to those of the classical ESN. We argue that for
a memoryless easy-to-adamadout from the reservoir. For a variety of tasks it is sufficient to considelr) a simple fixed
a comprehensive recent review of RC see [2]. Perhaps timen-random reservoir topology with full connectivity from
simplest form of the RC model is the Echo State Networkiputs to the reservoir2) a single fixed absolute weight value
(ESN) [3]-[6]. Roughly speaking, ESN is a recurrent neural for all reservoir connections an8l) a single weight value
network with a non-trainable sparse recurrent part (resigrv v for input connections, with (deterministically genergted
and a simple linear readout. Connection weights in the ESNperiodic pattern of input signs.
reservoir, as well as the input weights are randomly geedrat In contrast to the complex trial-and-error ESN construttio
The reservoir weights are scaled so as to ensure‘Elecho our approach leaves the user with only two free parameters
State Property”(ESP): the reservoir state is &acho” of the to be set,r andv. This not only considerably simplifies the
entire input history. Typically, spectral radius of theeesir's ESN construction, but also enables a more thorough theateti
weight matrix W is made< 1'. ESN has been successfullyanalysis of the reservoir properties. The doors can be open
applied in time-series prediction tasks [6], speech reitmgn for a wider acceptance of the ESN methodology amongst
[7], noise modeling [6], dynamic pattern classification,[5]both practitioners and theoreticians working in the field of
reinforcement learning [8], and in language modeling [9]. time series modeling/prediction. In addition, our simpéted-
Many extensions of the classical ESN have been suggestaiistically constructed reservoir models can serve agulise
in the literature, e.g. intrinsic plasticity [10], [11], deupled baselines in future reservoir computing studies. The péper
reservoirs [12], refined training algorithms [6], leakytégrator organized as follows. Section Il gives an overview of Echo
_ _ ~ state network design and training. In Section Il we present
of Brminahom, Beminghan S18 311 Unkad Koo, ook OUT SMPiied reservoi topologies. Experimenal resus
P.Tino@cs.bham.ac.uk). presented in Section IV. We analyze both theoretically and
INote that this is not the necessary and sufficient conditmrElSP empirically the short term memory capacity (MC) of our
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simple reservoir in Section V. Finally, our work is discudsewhere §(¢) is the readout outputy(¢) is the desired output
and concluded in Sections VI and VI, respectively. (target), ||.|| denotes the Euclidean norm ard- > denotes
the empirical mean. To train the model in off-line mode, we
1) Initialize W with a scaling parametett < 1 and run the

] ) ) ESN on the training se®) dismiss data from initiatvashout
Echo state network is a recurrent discrete-time ”eurﬁériod and collect remaining network state) row-wise into

network with K input units, N internal (reservoir) units, and 3 matrix X5 and 3) calculate the readout weights using e.g.
L output units. The activation of the input, internal, andpuiit (igge regression [18]:

units at time step are denoted bys(t) = (s1(t), ..., sx ()7,

a(t) = (x1(t), .., an(t)", andy(t) = (yi(t), .., yr(t))" U= (XTX +21)"'x"Ty, ()
respectively. The connections between the input units and

the internal units are given by aV x K weight matrixV, wherel[ is the identity matrix,y a vector of the target values,
connections between the internal units are collected in and X > 0 is a regularization factor.

N x N weight matrix/, and connections from internal units

to output units are given i x N weight matrixU.

Il. ECHO STATE NETWORKS

IlIl. SIMPLE ECHO STATE NETWORK RESERVOIRS

Dynamical Reservoir To simplify the reservoir construction, we propose several
K Input units M e L output units easy structured topology templates and we compare them to
sV Yo those of the classical ESN. We consider blitiear reservoirs
that consist of neurons with identity activation functicag
Q well as non-linear reservoirsconsisting of neurons with the

commonly used tangent hyperbolic (tanh) activation fuorcti
Linear reservoirs are fast to simulate but often lead toriafe
performance when compared to non-linear ones [19].

A. Reservoir Topology

O---0 0O

I

[

[

|
O Besides the classical ESN reservoir introduced in the last
section Figure. 1 , we consider the following three reservoi
templates (model classes) with fixed topologies Figure. 2:

Fig. 1. Echo state network (ESN) Architecture . . )
o Delay Line Reservoir (DLR)} composed of units or-

ganized in a line. Only elements on the lower sub-
diagonal of the reservoir matrid” have non-zero values
x(t+1)=f(Vs(t+1)+ Wz(t)), (1) Wiy1,, =1 for i = 1..N — 1, wherer is the weight of
all the feedforward connections.
where f is the reservoir activation function (typicallstanh , DLR with feedback connections (DLRBthe same struc-
or some other sigmoidal function). The linear readout is tyre as DLR but each reservoir unit is also connected to
computed a5 the preceding neuron. Nonzero element$iofare on the
y(t+1)=Ux(t+1). (2) lower W;11; = r and uppeW; ;.1 = b sub-diagonals,
whereb is the weight of all the feedback connections.
« Simple Cycle Reservoir (SCRynits organized in a cycle.
Nonzero elements oft/ are on the lower sub-diagonal
Wit1,, = r and at the upper-right corné¥; x = r.

The internal units are updated according: to

Elements ofi¥ andV are fixed prior to training with random
values drawn from a uniform distribution over a (typically)
symmetric interval. To account for ESP, the reservoir caane
tion matrix W is typically scaled a8V «— aW/|Apqaz|, Where
|Amaz| is the spectral radidsof W and0 < « < 1 is a scaling
parameter [S]. , , B, Input Weight Structure

ESN memoryless readout can be trained both offline (Batch)

and online by minimizing any suitable loss function. We use The input layer is fully connected to the reservoir. For ESN
the Normalized Mean Square Error (NMSE) to train anthe input weights are (as usual) generated randomly from a

evaluate the models: uniform distribution over an intervgl-a, a]. In case of simple
. 9 reservoirs (DLR, DLRB and SCR), all input connections have

NMSE = Ua(t) — y(OI) , (3) the same absolute weight value > 0; the sign of each
{ly(@) = {y@)*) input weight is determined randomly by a random draw from

Bernoulli distribution of mean /2 (unbiased coin). The values

2There are no feedback connections from the output to theveiseand . .
v anda are chosen on the validation set.

no direct connections from the input to the output.
3The reservoir activation vector is extended with a fixed elenaecounting
for the bias term. 5In case of direct input-output connections, the matkixcollects inputs
4The largest among the absolute values of the eigenvalugg .of s(t) as well.
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(A) Dynamical Reservoir (B) Dynamical Reservoir (C) Dynamical Reservoir
N internal units N internal units N internal units
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output unit
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Fig. 2. (A) Delay Line Reservoir (DLR). (B) Delay Line Reseivwith feedback connections (DLRB). (C) Simple Cycle Resér(SCR).

IV. EXPERIMENTS 2) Laser Dataset:The Santa Fe Laser dataset [13] is a
cross-cut through periodic to chaotic intensity pulsadiaf

a real laser. The task is to predict the next laser activation

We use a range of timeseries covering a wide spectrum gf; | 1), given the values up to time L¢,,, = 2000, Lyq =
memory structure and widely used in the ESN literature [3 00, Ly, = 3000 and L, = 200.

[4], [6], [10], [11], [19]-[21]. For each data set, we dendte 3y panon Map: Henon Mapdataset [23] is generated by:
length of the training, validation and test sequenced by,

A. Datasets

Lyq and Ly, respectively. The firsL, values from training, y(t) =1 —14y(t — 1)* + 0.3y(t — 2) + 2(¢), (8)
validation and test sequences are used as the initial washou . . )
period. where y(t) is the system output at timg z(¢) is a normal

1) NARMA SystemThe Non-linear Auto-Regressive Mov-White noise with standard deviation 0f05 [24]. We used
ing Average NARMA system is a discrete time system. Thidtrn = 2000, Lyar = 3000, Ly = 3000 and L, = 200. The
system was introduced in [22]. The current output depends Bat@set is shifted by -0.5 and scaled by 2. Again, the task is

both the input and the previous output. In general, modeliig Predict the next valug(t + 1), given the values up to time

this system is difficult, due to the non-linearity and pok;eibt' ) L
long memory. 4) Non-linear Communication Channelfhe dataset was

- fixed order NARMA time series: NARM#stems of order createq as follows [6]: First, an i.i.d._ sequeniie) of symbols
O = 10,20 given by equations 5, and 6, respectively. transmltted through the channel is ggnerateq py rfindomly
choosing values from{—3,—1,1,3} (uniform distribution).

9 _ Then,d(t) values are used to form a sequenrce) through a
y(t+1) = 0.3y(t)+0.05y(t) Y y(t—i)+1.55(t=9)s(t)+0.1, jinear filter
=0
G (t) =0.08d(t +2) — 0.12d(t + 1) + d(¢) + 0.18d(t — 1)
L 1) — tah(030(0) - 0,050 (1 19 L —0.1d(t — 2) + 0.09d(t — 3) — 0.05d(t — 4)
y(t + 1) = tanh(0.3y(t) + 0.05y( );y( —1) +0.04d(t — 5) + 0.03d(t — 6) + 0.01d(t — 7). (9)
+ 1.5s(t — 19)s(t) + 0.01), (6) Finally, a non-linear transformation is applied tgn) to

wherey(t) is the system output at timeg s(¢) is the system produce the signai(n) :

input at t.imet (an i.i.d stream of values generated uniformly s(t) = q(t) +0.0036¢(t)2 — 0.11¢(t)>. (10)
from an intervall0, 0.5]) [21], [22].
-random 10th order NARMA time serieThis system is Following [6], the inputs(t) signal was shifted +30. The task
generated by: is to outputd(t — 2) when s(t) is presented at the network
input. L., = 2000, L, = 3000, L;s; = 3000 andL,, = 200.

5) IPIX Radar: The sequence (used in [12]) contains 2000
values with L;,,, = 800, L,, = 500, L;;; = 700 and

(7) L, = 100. The target signal is the sea clutter data (the radar

whereq, 3, and ¢ are assigned random values taken frorhackscatter from an ocean surface). The task was to predict
+50% interval around their original values in eq. (5) [21]y(t + 1) andy(¢t + 5) (1 and 5 step ahead prediction) when
Since the system is not stable, we used a non-linear satrratj(t) is presented at the network input.
function tanh [21]. The inputs(t) and target data(t) are 6) Sunspot seriesThe dataset (obtained from [25]) con-
shifted by -0.5 and scaled by 2 as in [10]. The networks wetains 3100 sunspots numbers from Jan 1749 to April 2007,
trained on system identification task to outpdt) based on whereLy;,.,, = 1600, L, = 500, L;s; = 1000 and L,, = 100.
s(t), with L., = 2000, L,, = 3000, L;s; = 3000 and The task was to predict the next valyé + 1) based on the
L, = 200. history of y up to timet.

9

y(t+1) = tanh(ay () +8y(t) Y y(t—i)+ys(t=9)s(t) +¢),
=0



IEEE TRANSACTIONS ON NEURAL NETWORKS 4

7) Non-linear System with Observational Noisghis sys- C. Results
tem was studied in [26] in the context of Bayesian Sequential
State estimation. The data is generated by: For each data set and each model class (ESN, DLR, DLRB,
SCR) we picked on the validation set a model representative
s(t—1) +8cos(1.2(t—1))+w(t), to be evaluated on the test set. Ten randomizations of each
1+ s2(t—1) model representative were then tested on the test set. Eor th
1) DLR, DLRB and SCR architectures the model representatives
are defined by the input weight value and the reservoir
y(t) = Fo(t), (12) weight » (for DLRB network we also need to speci_fy the
value b of the feedback connection). The randomization was
_ o performed solely by randomly generating the signs for in-
where the initial condition is(0) = 0.1; w() andv(?) are yiiqual input weightd, the reservoir itself was intact. For
zero-mean Gaussian noise terms with variances taken fr% ESN architecture, the model representative is spediffed
{1,10}, i.e. (¢2,02) € {1,10}*. Ly, = 2000, Luvar = 3000, jnnut weight scaling, reservoir sparsity and spectral uadif
L¢st = 3000 andL, = 200. The task was to_predlct the valuey,o weight matrix. For each model setting (e.g. for ESN -
y(t +5), given the values fromt —5 up to timet presented i, 4 \eight scaling, reservoir sparsity and spectral usji
at the network input. we generate 10 randomized models and calculate their averag
8) Isolated Digits: This datasétis a subset of the TI46 yajidation set performance. The best performing modeirggtt
dataset which contains 500 spokesvlated Digits (zero to on the validation set is then used to generate another set of

nine), where each digit is spoken 10 times by 5 femalgy randomized models that are fitted on the training set and
speakers. These 500 digits are randomly split into trainingpsequently tested on the test set.

(N, = 250) and test V;,; = 250) sets. Because of the
limited amount of data, model selection was performed usi%%
10-fold cross-validation on the training set. The Lyon Rass |
Ear model [27] is used to convert the spoken digits into 8l
g:?a22?0¥hzh;non deeIIS.pE?fI(L?Vr;IQr?c;hiviﬁSb’: Ig\?;ﬁ;:g duﬁ';ggth nly when they achieve competitive (or even better) results
Word Error Rate (WER), which is the number of incorrect r.1the|r non-linear counterparts.

classified words divided by the total number of presented Figures 3, 4 and 5(A) show the average test set NMSE
words. The 10 output classifiers are trained to output 1 (®CT0SS ten randomizations) achieved by the selected model
the corresponding digit is uttered and -1 otherwise. Faigw representa_nves. F|gure 3 prese_nts results ff)r the fourenod
[28] the temporal mean over complete sample of each spokgASSES Using non-linear reservoir on kager, Hénon Mapand

digit is calculated for the 10 output classifiers. The WinnefNon-linear Communication Channelatasets. On those time

Take-All (WTA) methodology is then applied to estimate théeries., the test NMSE for linear reservgirs were of an orcﬂ_er o
spoken digit's identity. We use this data set to demonstrate Magnitude worse than the NMSE achieved by the non-linear
modeling capabilities of different reservoir models on tig ones. While the ESN architecture slightly outperforms tine-si
dimensional (86 input channels) time series. plified reservoirs on théaser andHénon Maptime series, for

the Non-linear Communication Chann#éhe best performing
architecture is the simple delay line network (DLR). The SCR
reservoir is consistently the second-best performing isech
ture. Even though the differences between NMSE are in most

We trained a classical ESN, as well as SCR, DLR, arghses statistically significant, from the practical poihview,
DLRB models (with linear and tanh reservoir nodes) on thihey are minute. Note that thBon-linear Communication
time series described above with the NMSE to be minimize@hannelcan be modeled rather well with a simple Markovian
The model fitting was done using ridge regres$jowhere delay line reservoir and no complex ESN reservoir structure
the regularization facton was tuned per reservoir and pelis needed. Non-linearity in the reservoir activation and th
dataset on the validation set. For each model we calculagservoir size seem to be two important factors for sucoéssf
the average NMSEover 10 simulation runs. Our experimentdearning on those three datasets.

are organized along four degrees of freedom: 1) reservoirrigyre 4 presents results for the four model classes on
topology; 2) reservoir activation function; 3) input wetghthe threeNARMAtime series, namely fixeARMAof order

s(t) = 0.5s(t—1)+25

For some data sets the performance of linear reservoirs was
nsistently inferior to that of non-linear ones. Due tocpa
imitations, in such cases the performance of linear resesv
gnnot reported. Linear reservoirs are explicitely mengidn

B. Training

structure; 4) reservoir size. 10, 20 and randonNARMA of order 10. The performance
of linear reservoirs do not improve with increasing resé@rvo
Sobtained from http://snn.elis.ugent.be/rctoolbox size. Interestingly, within the studied reservoir rangé®-(5

"We also tried other forms of offline and online readout tragniauch as 200), linear reservoirs beat the non-linear one6rth order
wiener-hopf methodology (e.g. [16]), pseudoinverse sofufe.g [3]), singular '

value decomposition (e.g. [20]) and Recursive Least squage [21]). Ridge

regression lead to the best results. We are thankful to tbeyanous referee

for suggesting the inclusion of ridge regression in our repes of batch 9strictly speaking we randomly generated the signs for inpeights and

training methods. input biases. However, as usual in the neural network titeea the bias terms
8word error Rate (WER) in the case tsolated Digitsdataset can be represented as input weights from a constant input +1.
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Fig. 3. Test set performance of ESN, SCR, DLR, and DLRB topgebwithtanh transfer function on thé&aser, Henon Map andNon-linear Communication

Channeldatasets.
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Fig. 5. Test set performance of ESN, SCR, DLR, and DLRB tofekbgn thelsolated Digits (speech recognition) task using two ways of generatingtinpu
connection sign patterns; using initial digits ®f(A), and random generation (i.i.d. Bernoulli distributievith mean 1/2) (B). Reservoir nodes witanh
transfer functionf were used.

TABLE |

MEAN NMSE FORESN, DLR, DLRB,AND SCRACROSS10 SIMULATION RUNS (STANDARD DEVIATIONS IN PARENTHESI9 AND SCRTOPOLOGIES
WITH DETERMINISTIC INPUT SIGN GENERATION ON THHPIX RadarAND SunspoSERIES THE RESULTS ARE REPORTED FOR PREDICTION HORIZQN
AND MODELS WITH NON-LINEAR RESERVOIRS OF SIZEN = 80 (IPIX Radar AND LINEAR RESERVOIRS WITHNN = 200 NODES (Sunspot serigs

Dataset | v | ESN [ DLR [ DLRB [ SCR [ SCR-PI | SCR-EX | SCR-Log

T | 0.00115 (2.48E-05) 0.00112 (2.03E-05) 0.00110 (2.74E-05) 0.00109 (1.59E-05) 0.00109] 0.00109 | 0.00108
IPIX Radar [ 5 | 0.0301 (8.11E-04)| 0.0293 (3.50E-04) | 0.0296 (5.63E-04) | 0.0291(3.20E-04) | 0.0299 | 0.0299 | 0.0297
Sunspot | 1 | 0.1042 (8.33E-5) | 0.1039(9.19E-05) | 0.1040 (7.68E-05)| 0.1039(5.91E-05) | 0.1063 | 0.1065 | 0.1059
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TABLE I
NMSEFORESN, DLR, DLRB,AND SCRACROSS10 SIMULATION RUNS (STANDARD DEVIATIONS IN PARENTHESI9 AND SCRTOPOLOGIES WITH
DETERMINISTIC INPUT SIGN GENERATION ON THENon-linear System with Observational Nois&TA SET. RESERVOIRS HADN = 100 INTERNAL NODES
WITH tanh TRANSFER FUNCTIONf.

varw [ varv | ESN [ DLR [ DLRB [ SCR [ SCR-PI| SCR-EX | SCR-Log
I T | 0.4910 (0.0208)| 0.4950 (0.0202)| 0.4998 (0.0210)| 0.4867(0.0201) | 0.5011 | 0.5094 | 0.5087
10 1 | 0.7815 (0.00873)] 0.7782 (0.00822)] 0.7797 (0.00631) 0.7757(0.00582) | 0.7910 | 0.7902 | 0.7940
I 10 | 0.7940 (0.0121) | 0.7671 (0.00945)[ 0.7789 (0.00732)| 0.7655 (0.00548) 0.7671 | 0.7612 | 0.7615
10 | 10 | 0.9243(0.00931) 0.9047 (0.00863) 0.9112 (0.00918) 0.9034 (0.00722) 0.8986 | 0.8969 | 0.8965

NARMAL, For all NARMAseries, the SCR network is eitherto the class of so called normal networks which are shown
the best performing architecture or is not worse than the bés be inferior to the non-normal ones. Interestingly enqugh
performing architecture in a statistically significant man in our experiments, the performance of linear SCR was not
Note that NARMA time series constitute one of the mostorse than that of non-normal networks.
important and widely used benchmark datasets used in the
echo state network literature (e.g. [3], [4], [6], [10], [1]19]-
[21]).

The results for the high-dimensional data seated Digits D- Further Simplifications of Input Weight Structure

are presented in figure 5(A). Except for the reservoir size h | q | £ th hi is th
50, the performances of all studied reservoir models areT e only random element of the SCR architecture is the

statistically the same (see table IV in [Appendix A]). Wheﬁistribution_of the input weight signs. We fo_und out _that any
compared to ESN, the simplified reservoir models seem empt to_'mPose a regular pattern on the input weight signs
work equally well on this high dimensional input series.  (€-9- & periodic structure of the form —+ — ..., or + — — +

For IPIX Radar Sunspot SerieandNon-linear System with ~ ~ etc.) lead to performance deterioration. Interestingly

Observational Noiséhe results are presented in tables | and |Eno_ugh, I appears ,to be sufficient to rel_atg the sign pattern
respectively. On these data sets, the ESN performance did ﬁosmgledeterm|n|st|callygenerat_ed aper_lodlc sequence. Any
always monotonically improve with the increasing reserrvo!rSlmple pseudo-random generation of signs with a fixed seed

size. That is why for each data set we determined the b tf'nﬁ' Sulfg sign patternj _WOLlfed ugwe'isallg well acrqs al
performing ESN reservoir size on the validation s&t £ 80, enchmark data sets used In this study. For demonstratien, w

N — 200, N = 100 for IPIX Radar SunspotSeries and generated the universal input sign patterns in two ways:

Non-linear System with Observational Nqigespectively).
The performance of the other model classes (DLR, DLRB
and SCR) with those reservoir sizes was then compared to
that of ESN. In line with most RC studies using t8anspot
data set (e.g. [29]), we found that linear reservoirs were on
part! with the non-linear ones. For all three data sets, the
SCR architecture perform slightly better than standard ESN 2)
even though the differences are in most cases not staligtica
significant.

Ganguli, Huh and Sompolinsky [30] quantified and theo-
retically analyzed memory capacity of nhon-autonomousaline
dynamical systems (corrupted by a Gaussian state noisg) usi

Fisher information between the state distributions ataditst i S
times. They found out that the optimal Fisher memory Map andNon-linear Communication Channeéta sets), 5(B)

achieved for so called non-normal networks with DLR o{,lsolated pigits), and tabIe; I and IHPI,X Radar,_ S.un.qut
DLRB topologies and derived the optimal input weight vectdid Non-linear System with Observational Ngisendicate

for those linear reservoir architectures. We tried settihg that comparable performances of our SCR topology can be
input weights to the theoretically derived values, but thgPtained without any stochasticity in the input weight gene
performance did not improve over our simple strategy &tion by con§|stent use of the same sign generating algmnth
randomly picked signs of input weights followed by modefCross & variety _of data sets. Detailed results are prabsémte
selection on the validation set. Of course, the optimal inpfRPle V [Appendix A]. S _

weight considerations of [30] hold for linear reservoir netsl ~ We tried to use these simple deterministic input sign gener-

only. Furthermore, according to [30], the linear SCR belngtion strategy for the other simplified reservoir models DL
and DLRB). The results were consistent with our findings

for the SCR. We also tried to simplify the input weight
structure by connecting the input to a single reservoir unit
only. However, this simplification either did not improve;, o
deteriorated the model performance.

1) the input signs are determined from decimal expansion
do.d1dads... of irrational numbers (in our case (Pl)
ande (EX)). The firstN decimal digitsdy, ds, ..., dy are
thresholded at 4.5, e.g. f < d,, <4 and5 < d, <9,
then then-th input connection sign (linking the input to
the n-th reservoir unit) will be— and+, respectively,
(Log) - the input signs are determined by the first
iterates in binary symbolic dynamics of the logistic map
f(x) =4x(1 — z) in a chaotic regime (initial condition
was 0.33, generating partition for symbolic dynamics
with cut-value at 1/2).

The results shown in figures BNARMA laser, Hénon

10The situation changes for larger reservoir sizes. For exammn-linear
ESN and SCR reservoirs of size 800 lead to the average NMSEO468
(std 0.0087) and 0.0926 (std 0.0039), respectively.

Uland sometimes better (within the range of reservoir sizesideres in
our experiments)
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Fig. 6. Test set performance of SCR topology using four diffémwvays of generating pseudo-randomized sign patternsg usitial digits of = , and Ezp ;
logistic map trajectory, and random generation (i.i.d. Beith distribution with mean 1/2). The result are reported &@th NARMA laser, Henon Map and
Non-linear Communication Channdhtasets. Reservoir nodes wittinh transfer functionf were used.

E. Sensitivity Analysis parameter setting.

We tested sensitivity of the model performance on 5-step TABLE Il
ahead prediction with respect to variations in the (COINKDU) BEST CONNECTIVITY AND SPECTRAL RADIUS FORESNWITH DIFFERENT
parameteré. The reservoir size isV = 100 for 10th order INPUT SCALING FORLOth order NARM/DATASET.

NARMA data set. In the case of ESN we varied the input Data set| Inp | Con | Spec] NMSE
scaling, as well as the spectral radius and connectivityhef t 10th | 0.05] 0.18 | 0.85 | 0.1387 (0.0101)
reservoir matrix. In figure 7(A), we show how the performance order [ 0.1 10.I8 ] 0.85 [ 0.1075 (0.0093)

NARMA [ 0.5 | 0.18 | 0.85 | 0.2315 (0.0239)

depends on the spectral radius and connectivity of theveser T 1018 085 [ 06072 (0.0459)

matrix. The input scaling is kept fixed at the optimal value
determined on the validation set. Performance variatiott wi
respect to changes in input scaling (while connectivity and V. SHORT TERM MEMORY CAPACITY OF SCR
spectral radius are kept fixed at their optimal values) are ARCHITECTURE

reported_ in table Ill. For the SCR and DLR models figures |y his report [4] Jaeger quantified the inherent capacity
7(C,D), illustrate the performance sensitivity with resp&  of recurrent network architectures to represent past event
changes in the only two free parameters - the input apgiough a measure correlating the past events in an i.igitin
reservoir weights andr, respectively. In the case of DLRB gyream with the network output. In particular, assume that t
model, figures 7(B), present the performance sensitivith Winetwork is driven by a univariate stationary input sigaéi).
respect to changes in the reservoir weightand b, while  por 4 given delayk, we consider the network with optimal
keeping the input weight fixed to the optimal vattie parameters for the task of outputtingt — k) after seeing the

We performed the same analysis baserand IPIX Radar inpyt stream...s(t — 1)s(¢) up to timet. The goodness of
data sets and obtained similar stability patterns. In gé#nell  fit js measured in terms of the squared correlation coefficien
the studied reservoir models show robustness with respectyetween the desired output (input signal delayedkbyme
small (construction) parameter fluctuations around thevogt steps) and the observed network outp(t):

2
12We are thankful to the anonymous reviewer for making the suiges MCy, = Cov*(s(t — k),y(t))
13Note that figures 7(A-C/D) are not directly comparable sirfee inodel Var(s(t)) Var(y(t))’
parameters that get varied are different for each model (empectivity and . .
spectral radius for ESN vs. input and reservoir weights f0RS In this sense, Where C'ov denotes the covariance aridar the variance
only figures 7(C) and (D) can be compared directly. operators. The short term memory (STM) capacity is then

(13)
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086
Spectral radius

Fig. 7. Sensitivity of ESN (A), DLRB (B), DLR (C), and SCR (Dygologies on thelOth order NARMAdataset. The input sign patterns for SCR, DLR,
and DLRB non-linear reservoirs were generated using Indigits of .

given by [4]: with randomly selected signs. The elements of the recurrent

- weight matrix are set to 0 (80% of weights), 0.47 (10% of

[ -0. % of weights), with2 reservoir weights
MC = MC.. 14 we|ghts)', or 04? (10 ghts), wi

Z F (14) connection fraction and spectral radinls= 0.9 [16]. DLR
and SCR weight- was fixed and set to the value= 0.5.
Jaeger [4] proved that foany recurrent neural network o, DLRB r — 0.5 and b = 0.05. The output weights
with NV recurrent neurons, under the assumption of i.i.d. inpyfe e computed using pseudo-inverse solution. The empirica
stream, the STM capacity cannot exce€dWe prove (under getermined MC values for ESN, DLR, DLRB and SCR models
the assumption of zero-mean i.i.d. input stream) that thel ST yere (averaged over 10 simulation runs, standard dev. in
capacity of linear SCR architecture wifki reservoir units can parenthesis) 18.25 (1.46), 19.44 (0.89), 18.42 (0.96) &L
be made arbitrarily close o/ &1.29), respectively. Note that the empirical MC values for

Since there is a single input (univariate time serieSjnaar SCR are in good agreement with the theoretical value
the input matrix V' is an N-dimensional vectorV = o4 _ (1-0.5%) ~ 19.

(V1,Va,...,Vn)T. Consider a vector rotation operator yot
that cyclically rotates vectors by 1 place to the right, e.g. V]. DISCUSSION

roty(V) = (Vw, V1, Va,...,Vy_1)T. For k > 1, the k-fold ) i )
application of ro is denoted by rat The N' x N matrix A large number of models designed for time series process-

with k-th column equal to rfV) is denoted by{, e.g. ng. forecgstlng or mod(?hng follqwsaate—gpage formul_a’qon
Q = (rot, (V), oty (V), ..., roty (V) At each time step, all ‘relevant’ information in the driving
P TERAT e TN ' stream processed by the model up to timé represented

Theorem 1:Consider a linear SCR network with reservoilin the form of astate (at ime?). The model output depends
weight0 < r < 1 and an input weight vector’ such that the on the past values of the driving series and is implemented

matrix Q2 is regular. Then the SCR network memory capacit s a function of the state - the sq-callmhd—outfuncnon. _
is equal to he state space can take many different forms, e.g. a finite

MC =N — (1— 2N set, a countably infinite set, an interval etc. A crucial aspe
= (1 —7r=%). . . . L
of state-space model formulations is an imposition that the
state at timef + 1 can be determined in a recursive manner
The proof can be found in [Appendix B, C]. from the state at time and the current element in the driving
We empirically evaluated the short-term memory capaseeries §tate transitiorfunction). Depending on the application
ity (MC) of ESN and our three simplified topologies. Thelomain, humerous variations on the state space structare, a
networks were trained to memorize the inputs delayed lbyell as the state-transition/readout function formulasidvave
k=1,2,...,40. We used one input node, 20 linear reservolbeen proposed.
nodes, and 40 output nodes (one for eathThe input con-  One direction of research into a data-driven state space
sisted of random values sampled from a uniform distributiomodel construction imposes a state space structure (e.g. an
in the range [-0.5, 0.5]. The input weights for ESN andv-dimensional interval) and a semi-parametric formulaidn
our simplified topologies have the same absolute valde both the state-transition and readout functions. The pearam

k=1
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fitting is then driven by a cost functionadl measuring the exist, how do they compare in terms of memory capacity with
appropriateness of alternative parameter settings fogitten established models such as recurrent neural networks?
task. Recurrent neural networks are examples of this typeOn a number of widely used time series benchmarks of
of approach [22]. If€ is differentiable, one can employ thedifferent origin and characteristics, as well as by conithgct
gradient of€ in the parameter fitting process. However, thera theoretical analysis we have shovin:A very simple cycle
is a well known problem associated with parameter fitting itopology of reservoir is often sufficient for obtaining pa
the state-transition function [31]: briefly, in order totth’ mances comparable to those of ESN. Except forNB&RMA
an important piece of past information for the future uselatasets, non-linear reservoirs were need®dCompetitive
the state-transition dynamics should have an attractite seservoirs can be constructed in a completely deterministi
In the neighborhood of such a set the derivatives vanish amnner: The reservoir connections all have the same weight
hence cannot be propagated through time in order to reliabdglue. The input connections have the same absolute value
bifurcate into a useful latching set. with sign distribution following one of the universal deter

A class of approaches referred toraservoir computingry  ministic aperiodic patterns8) The memory capacity of linear
to avoid this problem by fixing the state-transition funatio cyclic reservoirs with a single reservoir weight valuean be
- only the readout is fitted to the data [2], [32]. The statmade to differ arbitrarily close from the proved optimal wal
space with the associated state transition structure lisccile of IV, where NV is the reservoir size. In particular, given an
reservoir The reservoir is supposed to be sufficiently complearbitrarily smalle € (0, 1), for
S0 as to capture a large number of features of the input stream 1
that can potentially be exploited by the readout. r=(1-¢,

The reservoir computing models differ in how the fixedhe memory capacity of the cyclic reservoir 4 — .
reservoir is constructed and what form the readout takes.pyen though the theoretical analysis of the SCR has been
For example,echo state networkESN) [3] typically have done for the linear reservoir case, the requirement that all
a linear readout and a reservoir formed by a fixed recurregjclic rotations of the input vector need to be linearly inde
neural network type dynamictiquid state machine@.SM)  pendent seems to apply to the non-linear case as well. Indeed
[33] also mostly have a linear readout and the reservoirs gigder the restriction that all input connections have theesa
driven by the dynamics of a set of coupled spiking neurogpsolute weight value, the linear independence conditéost
models.Fractal prediction machine¢FPM) [34] have been |ates to the requirement that the input sign vector follows a
suggested for processing symbolic sequences. Their @seperiodic pattern. Of course, from this point of view, a sienp
dynamics is driven by fixed affine state transitions oven\an  standard basis pattern (+1,-1,-1,...,-1) is sufficierteriestingly
dimensional interval. The readout is constructed as aci#® enough, we found out that the best performance levels were
of multinomial distributions over next symbols. Many othepptained when the input sign pattern contained roughly lequa
(sometimes quite exotic) reservoir formulations have begimper of positive and negative signs. At the moment we have
suggested (e.g. [11], [35]-{37]). no satisfactory explanation for this phenomenon and weeleav

The field of reservoir computing has been growing rapidly 55 an open question for future research.
with dedicated special sessions at conferences and speciglaeger argues [4] that if the vectdi§'V, i = 1,2, ..., N,
issues of journals [38]. Reservoir computing has been sugs |inearly independent, then the memory capagdit@’ of

cessfully applied in many practical applications [3-[@], |inear reservoir withV' units is N. Note that for the SCR
[39]. However, reservoir computing is sometimes critidize gseryoir

for not being principled enough [17]. There have been sévera

attempts to address the question of what exactly is a ‘good’ rot, (V) =

reservoir for a given application [16], [40], but no coheren

theory has yet emerged. The largely black box character arid so the condition that’‘V, i = 1,2,..., N, are linearly

reservoirs prevents us from performing a deeper theotetiéadependent directly translates into the requirement that

investigation of the dynamical properties of successfakre matrix 2 is regular. Asr — 1, the MC of SCR indeed

voirs. Reservoir construction is often driven by a series @fpproaches the optimal memory capacity, According to

(more-or-less) randomized model building stages, witthboTheorem 1, thél/C measure depends on the spectral radius of

the researchers and practitioners having to rely on a seri@s(in our caser). Interestingly enough, in the verification ex-

of trials and errors. Sometimes reservoirs have been edolveeriments of [4] with a reservoir of siz& = 20 and reservoir

in a costly and difficult to analyze evolutionary computatiomatrix of spectral radius 0.98, the empirically obtainkt”

setting [8], [14], [41], [42]. value was 19.2. Jaeger commented that a conclusive analysis
In an attempt to initialize a systematic study of the fieldhf the disproportion between the theoretical and empirical

we have concentrated on three research questibn¥Vhat values of M C was not possible, however, he suggested that

is the minimal complexity of the reservoir topology andhe disproportion may be due to numerical errors, as the

parametrization so that performance levels comparableaset condition number of the reservoir weight matiiX was about

of standard reservoir computing models, such as ESN, canie Using our result,MC = N — (1 — r2V) with N = 20

recovered?2) What degree of randomness (if any) is needeahd » = 0.98 yields MC = 19.4. It is certainly true that

to construct competitive reservoirs) If simple competitive for smaller spectral radius values, the empirically esteda

reservoirs constructed in a completely deterministic neannM C values of linear reservoirs decrease, as verified in several

wky
rk

k=1,2,..,N,
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studies (e.g. [19]), and this may indeed be at least partiathe non-autonomous reservoir dynamics that leads to often
due to numerical problems in calculating higher powers d@ahpressive performances of reservoir computation. Oupsm
W. Moreover, empirical estimates df/C' tend to fluctuate deterministic SCR model can be used as a a useful baseline
rather strongly, depending on the actual i.i.d. drivingeatn in future reservoir computation studies. It is the level of
used in the estimation (see e.g. [16]). Even though Theoreniniprovement over the SCR baseline that has a potential to
suggests that the spectral radiug®Bfshould have an influence truly unveil the performance gains achieved by the more (and
on the M C value for linear reservoirs, its influence becomesometimes much more) complex model constructions.
negligible for large reservoirs, since (providédis regular)
the MC of SCR is provably bounded within the interval
(N -1, N) . . . .
Memory capacityM C of a reservoir is a representative Reservoir computing learning machines are state-space
member from the class of reservoir measures that quanify tmodels with fixed state transition structure (the ‘reseryoi
amount of information that can be preserved in the reserv@pd an adaptable readout form the state space. The reservoir
about the past. For example, Ganguli, Huh and Somponnsirgysupposed to be sufficiently complex so as to capture a large
[30] proposed a different (but related) quantification ofrme number of features of the input stream that can be exploiyed b
ory capacity for linear reservoirs (corrupted by a Gaussidhe reservoir-to-output readout mapping. Even though e fi
state noise). They evaluated the Fisher information betwe@f reservoir computing has been growing rapidly with many
the reservoir activation distributions at distant timegieif Successful applications, both researchers and pracitdmave
analysis shows that the optimal Fisher memory is achievéirely on a series of trials and errors.
for the reservoir topologies corresponding e.g. to our DLR TO initialize a systematic study of the field, we have
or DLRB reservoir organizations. Based on the Fisher merioncentrated on three research issues:
ory theory, the optimal input weight vector for those linear 1) What is the minimal complexity of the reservoir topol-
reservoir architectures was derived. Interestingly efouden ogy and parametrization so that performance levels
we tried setting the input weights to the theoretically dedi comparable to those of standard reservoir computing
values, the performance in our experiments did not improve  models, such as ESN, can be recovered?
over our simple strategy for obtaining the input weights. W&hi  2) What degree of randomness (if any) is needed to con-
in the setting of [30], the memory measure does not depend struct competitive reservoirs?
on the distribution of the source generating the input strea 3) If simple competitive reservoirs constructed in a com-
the M C measure of [4] is heavily dependent on the generating  pletely deterministic manner exist, how do they compare
source. For the case of i.i.d. source (where no dependencies in terms of memory capacity with established models
between the time series elements can be exploited by the such as recurrent neural networks?

reservoir) the memory capacity/C' = N —1 can be achieved  on a number of widely used time series benchmarks of

by a very simple model: DLR reservoir with unit weight= 1, different origin and characteristics, as well as by conihgct
one input connection with weight 1 connecting the input with theoretical analysis we have shown:

the 1st reservoir unit, and fot = 1,2, ..., N — 1 one output
connection of weight 1 connecting tije+ 1)-th reservoir unit
with the output. The linear SCR, on the other hand, can get
arbitrarily close to the theoretical limid/C = N. In cases pletely deterministic manner.

f non i.i.d. r the temporal ndencies in thetin . - . . .
T e e e neLnt) The memoy Capacy of mpe et ycc reseruos

) . fy capacity beyon can be made to be arbitrarily close to the proved optimal
size N [4]. The simple nature of our SRC reservoir can enable

. . ) MC value.

a systematic study of thé/C' measure for different kinds
of input stream sources and this is a matter for our future
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vectors by 1 place to the right, e.g. given a vector=
R. Lyon, “A computational model of filtering, detectionchoompression (a;, as, ..., an)%, 1oty (a) = (an, a1, az, ...,

an_1)T. FOr &£ > 0, the k-

irin Proceedings of the IEEE ICASSP, pages 1282-128§0|d application of rot is denoted b&ft roty.
The N x v matrix with k-th column equal taot, (V. ) IS

B. Schrauwen, J. Defour, D. Verstraeten, and J. Van Cahnpet, denoted bw e.g.

“The introduction of time-scales in reservoir computing, k&g to
isolated digits recognition.” in Proceedings of the 17th International
Conference on Artificial Neural Networks (ICANN 2007), woéu4668
of LNCS, pages 471-479. Spring@007.

F. Schwenker and A. Labib, “Echo state networks and alenetwork
ensembles to predict sunspots activity,” BEBANN 2009 proceedings,
European Symposium on Artificial Neural Networks -Advaritésom-
putational Intelligence and Learning, Bruges (BelgiuraD09.

S. Ganguli, D. Huh, and H. Sompolinsky, “Memory traces ymamical
systems,”Proceedings of the National Academy of Scienges 105,
pp. 18970-18975, 2008.

Q = (roty (Vn..1),m0t2(Vn..1), ..., 1oty (V. 1))

We will Qeed a diagonal matrix with diagonal elements
—1.

1,7, rz, T

I’ = diag(1, r, 2, erl).

Furthermore, we will denote the matrix” 12 o by A,

A=0"1r?q

4oty is the identity mapping.
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TABLE IV
TEST SET PERFORMANCE OESN, SCR, DLRAND DLRB TOPOLOGIES ON DIFFERENT DATASETS FOR INTERNAL NODES WITtinh TRANSFER
FUNCTION.
Data set [ reservoir size] ESN [ DLR DLRB [ SCR
10th 50 0.166 (0.0171) 0.163 (0.0138) 0.158(0.0152) 0.160 (0.0134)
order 100 0.0956(0.0159) 0.112(0.0116) 0.105 (0.0131) 0.0983 (0.0156)
NARMA 150 0.0514(0.00818) 0.0618 (0.00771) 0.0609 (0.00787) 0.0544 (0.00793)
200 0.0425 (0.0166) 0.0476 (0.0104) 0.0402(0.0110) 0.0411 (0.0148)
10th 50 0.131 (0.0165) 0.133 (0.0132) 0.130 (0.00743) 0.129(0.0111)
order 100 0.0645(0.0107) 0.0822 (0.00536) 0.0837 (0.00881) 0.0719 (0.00501)
random 150 0.0260(0.0105) 0.0423 (0.00872) 0.0432 (0.00933) 0.0286 (0.00752)
NARMA 200 0.0128(0.00518) 0.0203 (0.00536) 0.0201 (0.00334) 0.0164 (0.00412)
20th 50 0.297 (0.0563) 0.232 (0.0577) 0.238 (0.0507) 0.221(0.0456)
order 100 0.235 (0.0416) 0.184 (0.0283) 0.183 (0.0196) 0.174(0.0407)
NARMA 150 0.178 (0.0169) 0.171 (0.0152) 0.175 (0.0137) 0.163(0.0127)
200 0.167 (0.0164) 0.165 (0.0158) 0.160 (0.0153) 0.158(0.0121)
50 0.0184(0.00231) 0.0210 (0.00229) 0.0215 (0.00428) 0.0196 (0.00219)
laser 100 0.0125(0.00117) 0.0132 (0.00116) 0.0139 (0.00121) 0.0131 (0.00105)
150 0.00945(0.00101) 0.0107 (0.00114) 0.0112 (0.00100) 0.0101 (0.00109)
200 0.00819(5.237E-04) | 0.00921 (9.122E-04) 0.00913 (9.367E-04) 0.00902 (6.153E-04))
50 0.00975(0.000110) 0.0116 (0.000214) 0.0110 (0.000341) 0.0106 (0.000185)
Hénon 100 0.00894(0.000122) | 0.00982 (0.000143)| 0.00951 (0.000120)| 0.00960 (0.000124)
Map 150 0.00871(4.988E-05) | 0.00929 (6.260E-05) 0.00893 (6.191E-05) 0.00921 (5.101E-05)
200 0.00868(8.704E-05) | 0.00908 (9.115E-05) 0.00881 (9.151E-05) 0.00904 (9.250E-05)
50 0.0038 (4.06E-4) 0.0034(2.27E-4) 0.0036 (2.26E-4) 0.0035 (2.55E-4)
Non-linear 100 0.0021 (4.42E-4) 0.0015(1.09E-4) 0.0016 (1.07E-4) 0.0015(1.23E-4)
communication 150 0.0015 (4.01E-4) 0.0011(1.12E-4) 0.0011(1.08E-4) 0.0012 (1.23E-4)
channel 200 0.0013 (1.71E-4) 0.00099(6.42E-5) 0.0010 (7.41E-5) 0.0010 (7.28E-5)
50 0.0732(0.0193) 0.0928 (0.0177) 0.1021 (0.0204) 0.0937 (0.0175)
Isolated 100 0.0296(0.0063) 0.0318 (0.0037) 0.0338 (0.0085) 0.0327 (0.0058)
Digits 150 0.0182(0.0062) 0.0216 (0.0052) 0.0236 (0.0050) 0.0192 (0.0037)
200 0.0138 (0.0042) 0.0124(0.0042) 0.0152 (0.0038) 0.0148 (0.0050)

TABLE V

TEST SET PERFORMANCE OSCRTOPOLOGY ON DIFFERENT DATASETS USING THREE DIFFERENT WAYSFOGENERATING PSEUDGRANDOMIZED INPUT
SIGN PATTERNS INITIAL DIGITS OF ™ AND Ezp; SYMBOLIC DYNAMICS OF LOGISTIC MAP.

Data set [ reservoir size] ESN [ SCR-PI SCR-Ex [ SCR-Log
20th 50 0.297 (0.0563) 0.233 (0.0153) 0.232 (0.0175) 0.196(0.0138)
order 100 0.235 (0.0416) 0.186 (0.0166) 0.175 (0.0136) 0.169(0.0172)

NARMA 150 0.178 (0.0169) 0.175 (0.00855) 0.158 (0.0103) 0.156(0.00892)

200 0.167 (0.0164) 0.166 (0.00792) 0.157 (0.00695) 0.155(0.00837)

50 0.0184 (0.00231) 0.0204 0.0187 0.0181
laser 100 0.0125(0.00117) 0.0137 0.0153 0.0140

150 0.00945(0.00101) 0.0115 0.0111 0.0126

200 0.00819(5.237E-04) 0.00962 0.00988 0.0107

50 0.00975(0.000110) 0.00986 0.00992 0.00998

Hénon 100 0.00894(0.000122) 0.00956 0.00985 0.00961

Map 150 0.00871(4.988E-05) 0.00917 0.00915 0.00920
200 0.00868(8.704E-05) 0.00892 0.00883 0.00898
50 0.0038 (4.06E-4) | 0.0036 (1.82E-04)| 0.0026(6.23E-05) | 0.0033 (1.09E-04)
Non-linear 100 0.0021 (4.42E-4) | 0.0016 (7.96E-05)| 0.0017 (1.04E-04)| 0.0015(8.85E-5)
communication 150 0.0015 (4.01E-4) | 0.0012 (7.12E-05)| 0.0011(6.10E-05) | 0.0012 (4.56E-05)
channel 200 0.0013 (1.71E-4) | 0.00088(2.55E-05) | 0.00090 (3.05E-05) 0.00093 (3.33E-05)

and (provideda is invertible)

(rote (V1. .n )" A7Y oty (Va..w),
(10t (mogyn (Vi.n )" A}

by ¢.

k>0,

rot, mody v (V1.8 ),

This can be easily shown, agTrot.(e;) Sselects theik + 1)st
column of @7 ((x + nstrow of o), which is formed by +
Dstelements of vectorst (Viy..1), ot (V..1), ..., 1oty (Var..1). ThIS

vector is equal to thé-th rotation ofvy .
It follows that forx =1,2,.... N — 1,

(rotk(Vl__N))Tﬂfl = (I’Otk (el))T

and so

Lemma 1:If ais a regular matrix, theny = 1 and¢, = »—2*,

k=1,2,..,N—1

Proof: Denote the standard basis vectoro,o,...,0)” in
®Y by e, It holds:

rotk(Vl,,N) = QTTOtk(el),

k=1,2,...,N —1.

Ck (rotk ( V1
(rot (V1

(rotk (61
—2k

r

T AT ot (Vi N)
Tt 2 (@ YT oty (Vi)
N 172 rotg (e1).
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APPENDIXC and
PROOF OF THEOREML )
Given an i.i.d. zero-mean real-valued input stregm) = R = —Z _a"r’*aq
.. s(t—2) s(t —1) s(¢) emitted by a source , the activations of L—r2N
the reservoir units at timeare given by _ o? (19)
1 — 2N
z1(t) = Vis(t)+rVns(t—1)+ r? Vn_1 s(t —2) "
+ P Vnoas(t=3) 4+ T Vo s(t— (N - 1)) By analogous arguments,
+ N Vist=N)+ VT vy st — (N +1) + ...
+ 2Ny, s(t— (2N - 1)) + R s(t —2N) Pr = r* o? rot, (V1. .n). (20)
+ PV yy st — 2N 4+ 1) + ...
Hence, the optimal readout vector reads (see (15)):
za(t) = Vas(t)+rVis(t—1)+r Vy s(t—2) U=(@1-=r)r* A~ toty (V1. n). @1
+ P VUn_1s(t=3)4 ..+ Va st — (N —1))
+ Y Ve s(t = N) NV s(t = (N 1)) + The ESN output at time is
+ VTl vg st — (2N — 1) + 2NV s(t — 2N)
+ VTV st — N+ 1) + 72V 2 vy s(t — (2N +2)) yt) = =T U
+ = A= r*Fz@)” A7 oty (Vi N).
en() = Vi s(®) 41 Vis s(t—1) gso:varlance of the ESN output with the target can be evaluated

r? Vn_g s(t—2) + ...

vy st — (N = 1)+ Vi s(t — N)
PN VN st — (N 4+1) + ...

PNy st — (2N = 1) + 2N Vi s(t — 2N)
PNty st — (2N + 1))

PPNy o st — (2N +2) + ...

+ 4+ + + o+

+

For the task of recalling the input fromtime steps back
the optimal least-squares readout veatds given by

U=R"ps, (15)

Var(y(t))
where
R = Ep(s(.tyla(t) & (8)]

is the covariance matrix of reservoir activations and
Pk = Ep(s(.e)[@(t) s(t — k)]

The covariance matrix can be obtained in an analytical formwe can now

Cov(y(t),s(t — k))

" Variance of the ESN

= (1 —=r*)r* cov(@t)T, s(t — k)
X A7t rot, (V.. n)

2P (1= 2Ny 62 (ot (Vi n))T
X A7t rot, (V.. n)

72k (1- TZN) o2 Cr-
output is determined as:

Ul Elz@t) e()T1U

v RU

i R by,

r2* (62 (roty (V1. N))T R™Y 1oty (V. w)
Cov(y(t), s(t — k)).

calculate the squared correlation coefficient

For example, because of the zero-mean and i.i.d. natureeof §etween the desired output (input signal delayedxkjme

sourcer , the element, , can be evaluated as follows:

Ep(s.enlz®)z” (1))

E[Vi Vo s2(t) + 72 Vv Vi s2(t — 1)

M Vv Vi 2t —=2) 4+ .+ 2D v v 2 — (V- 1)
PNy Ve s2(t = N) + 2 VEY vy vy st — (N + 1))
2N D oy 2 (- (2N — 1))

PN vV s2(t— 2N) + ... ]

Vi Vo Var[s(t)] 4+ 7 Vv Vi Var[s(t — 1)]

r* Vo1 Vv Var[s(t —2)] + ...

+ N Vi Vo Var[s(t — N)] + ...

o2 (ViVa + 2V Vi + 'V 1 VN + ...

+r2 NV 4 22NV, 4 )

o2 (ViVa + 2V Vi + r*Vn 1 VN + ...

+7‘2(N71)V2V3) E ’I"2Nj.
J=0

Ry 2

+ o+ o+ o+

where

MCZO
(16)

whereo? is the variance of. The expression (16) for, » can
be written in a compact form as

2
(e
ﬁ (I‘Otl(VNul))T F2 I'OIQ(VN‘J).

3112 = 1= (17) = (]_ —

In general, N1
R, =% (rot; (V.. T T? rot;(Viv. 1), i,5=1,2,..,N, (18) -

i, 1 _ 2N i .. L 1) 3 Ly eeey IV, o

MCy

steps) and the network outpuyt»):

Cov?(s(t — k), y(t))
Var(s(t)) Var(y(t))
Var(y(t))

52
(1 =) ¢

The memory capacity of the ESN is given by

MC:M0207M007
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Hence,

MC

N—-1

ZT% Gl —a— TZN)CO

k=0

N-1
GR-@a-r"M) + ZT% Ck
k=1
N-1
Co N+ Zr% Ck
k=1

N-—1
2N 2k
(N T + E " Cr
k=1
N

Zrzk Ch

k=1

By lemma 1, »** ¢, =1for e =1,2,..., v —1,and »>¥ ¢y = r2V.
It follows that mc = N — 1 + 2V,

PLACE
PHOTO
HERE

PLACE
PHOTO
HERE
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