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Abstract—In a streaming environment, the characteristics of the data themselves and their relationship with the labels are
likely to experience changes as time goes on. Most drift detection methods for supervised data streams are
performance-based, that is, they detect changes only after the classification accuracy deteriorates. This may not be
sufficient in many application areas where the reason behind a drift is also important. Another category of drift detectors
are data distribution-based detectors. Although they can detect some drifts within the input space, changes affecting only
the labelling mechanism cannot be identified. Furthermore, little work is available on drift detection for high-dimensional
supervised data streams. In this paper we propose an advanced Hierarchical Reduced-space Drift Detection Framework
for Supervised Data Streams (HRDS) which captures drifts regardless of their effects on classification performance. This
framework suggests monitoring both marginal and class-conditional distributions within a lower-dimensional space
specifically relevant to the assigned classification task. Experimental comparisons have demonstrated that the proposed
HRDS not only achieves high-quality performance on high-dimensional data streams, but also outperforms its competitors
in terms of detection recall, precision and F-measure across a wide range of different concept drift types including subtle
drifts.

Index Terms—Concept drift, drift detection, data stream mining, online learning

F

1 INTRODUCTION

IN real-world applications such as weather predic-
tion, industrial quality control and spam or fraud

detection, data often arrives in the form of a stream.
Data that continuously flow can be generated by
sources that change in time. When there is a change in
the underlying data distribution and/or its relation-
ship with labels, such phenomenon is called concept
drift [1]. This problem has received growing attention
not only because it may greatly affect the reliability of
real time machine learning systems, but also because
it is useful to find out the reason and the nature of
the changes [2]. One way of categorizing drifts is by
its influence on the target concept. Changes in the
posterior class probabilities P (Y |X) are called real
drifts, whereas changes affecting the input distribution
P (X) only are called virtual drifts [3].

Various change detection tests (CDTs) have been
proposed to explicitly mark out the drifts [4], [5].
Unfortunately, current detection methods cannot well
address both types of drifts simultaneously and con-
sistently. Most of them monitor over time either some
classification-performance-related indicators [6], [7],
[8], [9], [10], [11], [12], [13], or some data-distribution-
related characteristics [14], [15], [16], [17], [18], [19],

Manuscript received MM DD,YYYY ; revised MM DD,YYYY.

[20]. Existing detectors for supervised data streams
primarily belong to the earlier category [4], [21]. They
concentrate on addressing real drifts which lead to
a decline in classification performance only. Some
popular algorithms within this category are drift de-
tection method (DDM) [6] and early drift detection
method (EDDM) [7]. The former detects abrupt drift
by applying statistical test on the false classification
rate directly, whereas the latter monitors the distance
between consecutive classification errors. Linear four
rate (LFR) [10] is another detector which monitors all
components of the confusion matrix. Although these
detectors can be used in conjunction with any classifier
since they utilize only the error stream, their detection
performance is still dependent on the chosen base
classifier [22]. Besides, they fail to detect drifts not
deteriorating the classification performance.

In addition to the above, many detectors within
the second category monitoring the underlying data
features have also been proposed. Cumulative sum
(CUSUM) control chart [14] monitors the cumulative
sum of deviations for drift detection, and intersec-
tion of confidence intervals (ICI) CDT [17] carefully
designs mean and variance-related features that fol-
low a Gaussian distribution. For multivariate data
streams, non-parametric distribution-based detectors
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Figure 1: General framework of HCDT

either monitor the estimated empirical density of two
windows [15], [20], [23] or adopt univariate statistical
tests on each individual features for detection [17],
[24]. These approaches tend to be problematic for
higher dimensional data streams [9], [10]. Besides,
while these detectors can be directly applied to su-
pervised data streams, they do not consider any class
information and thus cannot detect drift affecting the
data labelling mechanisms only (e.g., a class swap)
[25]. Since they monitor the overall input space, they
tend to be insensitive to drifts affecting only a sub-
region of the input space (e.g., a single class drift).

Based on the vast scope of individual CDTs exist-
ing in the literature, more consolidated frameworks
have been developed recently. Hierarchical change
detection test (HCDT) presented in Fig. 1 is a general
two-layer detection-and-verify framework [26]. HCDT
incorporates in Layer-I a simple non-parametric online
detector such as the CUSUM CDT or ICI-based CDT,
and in Layer-II an offline two-sample test such as the
Hotelling T2 test [27]. Once a potential drift is reported
in Layer-I, the Layer-II test is activated to compare the
training set with the most recent set so as to confirm
(or deny) the validity of the suspected drift. HCDT
has been shown to achieve more advantageous false
positive rate (FPR) versus detection delay (DD) trade-
off than its single CDT counterpart, but it has only
been tested on non-labelled scalar data [26]. Direct ap-
plication of this framework to multivariate supervised
data streams still suffers from the aforementioned
deficiencies of distribution-based detectors. Inspired
by this framework, another hierarchical framework
named HLFR for supervised data streams was pro-
posed [28]. HLFR incorporates LFR as the base detec-
tor in Layer-I and a permutation test [29] in Layer-II.
However, HLFR is purely classification performance-
based, therefore, it cannot detect real and virtual drifts
simultaneously.

Concept drifts can be incurred by many causes
and they present differently in different periods [6].
Therefore, it is important to be aware of all drifts re-
gardless of their effects on classification, especially in
areas such as condition monitoring, adversarial attack
detection and strategic planning. Furthermore, there is
little work on drift detection on high-dimensional data

streams. In this paper, we adopt the hierarchical struc-
ture and propose a new detection framework, HRDS
(Hierarchical Reduced-space Detection framework for
multivariate Supervised data streams), to detect both
real and virtual drift accurately and efficiently for
multi-dimensional data streams. The key idea is to
leverage the knowledge from supervised information
to discover changes that may not be detected by the
existing detection methods. To achieve this goal, first
a lower-dimensional feature space for the given classi-
fication task is explicitly constructed using the training
data. All incoming data are first projected to this space.
Next we monitor not only the marginal distribution
of the data stream, but also each individual class-
conditional distribution. Finally, a novel method to
reconfigure more informative retraining datasets after
each detection is presented. HRDS can be used in
conjunction with any classifiers and its performance
is independent of the choice of classifier. The contri-
butions of our work include:

1) This is the first hierarchical detection frame-
work proposed for supervised data stream
that detects both real and virtual drifts.

2) Compared with the existing HCDT frame-
work, the data-distribution based HRDS is
more accurate and efficient in terms of a high
number of true detections, while maintaining
a low number of false alarms, when operating
on higher-dimensional data streams.

3) For both real and virtual drifts, HRDS per-
forms no worse, and in many cases better, than
state-of-the-art detection algorithms, whether
they are performance-based or distribution-
based, in terms of more true detections and
lower false alarms within any specified accept-
able detection delay range.

Detecting the concept drifts and then adapting a
learner to them are two different mechanisms. From
the practical point of view, an accurate detector very
important in maintaining good classification perfor-
mance in the long run. The focus of this paper is to
detect drifts. How to build an appropriate classifier
for a specific data stream is beyond the scope of this
study.

The rest of the paper is organized as follows. Sec-
tion 2 formulates the problem of concept drift. Section
3 explains each component of the proposed HRDS
framework in detail. In Section 4, four sets of experi-
ments are carried out on both synthetic and real-world
data streams to demonstrate the superiority of HRDS
in comparison with some state-of-the-art detectors,
including distribution-based ones and performance-
based ones. Section 5 concludes the paper and points
out potential future extensions of this work.
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2 TERMINOLOGY AND PROBLEM FORMULA-
TION

In a streaming environment, a supervised data stream
to be inspected for change is formed by observa-
tions {(Xt, yt), t ∈ Z+}. The generation process of
the observations at time t can be denoted by the
joint distribution Pt(X, Y ). Xt ∈ Rd represents the
d-dimensional feature vector of the tth observation
and yt is its class label. yt ∈ {0, 1, ..., Q} where
Q + 1 is the number of available classes. For bi-
nary classification, yt ∈ {0, 1}. A concept drift is
said to occur when there is a change in the joint
probability Pt(X, Y ) [21]. The alternative hypothe-
ses for assessing an abrupt change are formulated
as follows: (Xt, yt) ∼ Pt0(X, Y ), for t < T ∗ and
(Xt, yt) ∼ Pt1(X, Y ), for t ≥ T ∗, where t0 < T ∗ ≤ t1,
Pt1(X, Y ) 6= Pt0(X, Y ) and T ∗ is an unknown change
point.

The joint probability Pt(X, Y ) can be written as

Pt(X, Y ) =Pt(Y |X) · Pt(X) (1)

where Pt(X) can be obtained through marginalization

Pt(X) =

Q∑
q=0

Pt(Y = q) · Pt(X|Y = q) (2)

Based on the probabilistic definition of a concept drift
and the above decomposition, it is not difficult to tell
that the change can manifest itself in different forms
corresponding to the different components of the joint
probability [30], [31]. Assuming P (Y ) is stationary
over time, drift can occur in: 1) the marginal distri-
bution over covariates P (X); 2) the posterior class
probability or classification concept P (Y |X); 3) the
class-conditional distributions P (X|Y ).

Most existing work tackling drift in supervised
data streams focused on the second type of drift or
real concept drift, since it is considered to be most
detrimental to classification accuracy. However, we
consider the detection of all types of drift to be equally
important for the following reasons. Firstly, even when
a so-called virtual drift takes place and classification
accuracy is not negatively affected, the optimal de-
cision boundary is often likely to change. Retraining
the classifiers can improve classification performance.
Secondly, detection of such drifts provides insight into
the underlying data streams, which can help under-
standing of the streaming. This information may also
be beneficial when there is a pattern in a series of mul-
tiple drifts. The systematic study [4] has supported the
view that all types of change are equally important,
but there is a lack of research effort in the investigation
of drifts not affecting classification accuracy.

Therefore, in this paper we do not explicitly dis-
tinguish between real and virtual drifts. We present a

Figure 2: General framework of HRDS. The detailed
descriptions for each novel component are provided in
sub-sections 3.1, 3.2 and 3.3

framework aiming to detect all types of drifts regard-
less of whether they affect classification or not. Then,
practitioners can decide whether it is worth retraining
the current classification model based on the specific
application scenario.

3 HIERARCHICAL REDUCED-SPACE DRIFT
DETECTION FRAMEWORK FOR MULTIVARIATE
SUPERVISED DATA STREAM

In this section we describe a novel change de-
tection test framework named HRDS (Hierarchical
Reduced-space Detection framework for multivariate
Supervised data stream) aiming to answer the follow-
ing research questions.

1) How to detect both real and virtual drifts in
supervised data streams regardless of their
effect on classification performance?

2) How to improve the efficiency of data
distribution-based detector for high-
dimensional data stream?

3) How to improve detection performance to
achieve high true detections and low false
alarms within a specified delay range for all
types of drifts even when the magnitude of
drift is small?

HRDS adopts the hierarchical structure introduced
in [26] but with three major novel components ex-
plained in the following sub-sections. The general
outline of HRDS is presented in Fig. 2. This framework
has a high degree of flexibility and may be customized
by using different change-detection and validation
techniques. The algorithmic version of HRDS is pre-
sented in Algorithm 1. Although we provide one
possible realization for a binary classification problem
as an illustrative example in this paper, it is worth
noting that the general framework of HRDS is also
suitable for multi-class data streams.
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Algorithm 1: General framework of HRDS

1 Input: initial training sets TSM for marginal
detector and TS0, TS1, TS2, ... for each
class-conditional detector

2 Output: confirmed detections
3 Find the lower-dimensional feature space S ;
4 Initialize the marginal and class-conditional

detectors;
5 while there is incoming data do
6 Project data onto S ;
7 Perform concept drift detection within S ;
8 if change detected in any of the CDTs at T̂

then
9 Estimate the potential drift starting

point Tref ;
10 Activate the validation layer on the

respective stream;
11 if change is validated then
12 Record T̂ as a confirmed detection;

13 Define TSM
C as all instances in

{x(t), t ∈ [Tref , ..., T̂ ]};
14 Update training sets TSM , TS0, TS1, ...

accordingly and continue from line 3.

15 Output the confirmed changes.

3.1 Learning of a lower-dimensional subspace

The aim of this step is to identify a lower-dimensional
space S that contains the most relevant information
for the given classification task, that is, identify a
feature subspace spanned by the training samples
(line 3, Algorithm 1) so that the incoming multivariate
data samples are projected onto this space (line 6,
Algorithm 1). Then instead of monitoring the original
input samples, the detection is carried out within this
reduced feature space for the particular classification
task. Comparing with the existing HCDT without this
step, HRDS inherently reduces the possibility of false
alarms as well as the computational burden because
there are fewer dimensions to monitor. Meanwhile,
valuable data characteristics relevant to classification
are preserved.

Within a bi-class setting, we choose a recursive
support vector machine (RSVM) [32] as a tool for
identification of the relevant low-dimensional feature
space S . The detailed RSVM algorithm is presented
in Algorithm 2, where l is the length of an initial
training dataset and φ(·) is the kernel function. If
a linear kernel is applied, φ(xi) = xi. RSVM was
initially proposed for both dimensionality reduction
and accuracy improvement for offline classification
problems. It starts as a regular SVM [33] but can
recursively derive new maximum margin features if
the data cannot be well separated in terms of one

direction only. Practitioners can a-priori restrict the di-
mension of the reduced feature space, or allow RSVM
to automatically identify the number of components
that are sufficient to account for the structure needed
for successful classification.

Algorithm 2: RSVM [32]

1 Determine the vector w̃1 =
∑l

i=1 α
1
iφ(xi) by

solving the dual optimization problem [33]
2 Let wr−1 = w̃r−1/||w̃r−1|| and generate the

following training set for SVM problem by
projecting the samples xi, 1 ≤ i ≤ l into a
subspace that is orthogonal to wr−1:

φ(xri ) = φ(xr−1
i )− 〈φ(xr−1

i ), wr−1〉wr−1 (3)

3 Go back to line 2 or Terminate if either
max{||φ(xri )|| : 1 ≤ i ≤ l} < ε or the desired
number of dimensions R has been reached.

Suppose we want to maintain a R-dimensional
subspace. Based on an initial training set, Algorithm 2
provides us with one or several orthogonal directions
{wr, r = 1, ..., R} which can be used as projectors
to the R-dimensional subspace. Then each newly
arrived instance xj can be projected to the feature
space as 〈φ(xj), wr〉 =

∑l
i=1 α

r
iκ(xj ,xi) for r =

1, ..., R and i = 1, ..., l. It is worth pointing out that
only κ(xi,xj) computation is concerned with the dual
optimization problem, instead of the explicit kernel
φ(xj). From the second iteration, κ(xri , x

r
j) can be

recursively computed by using (3) and κ(xr−1
i ,xr−1

j ),
allowing different kernels to be adopted.

3.2 Class-based detection

While CDTs focus on detecting drifts by monitoring
P (Y |X) or P (X), there has been a lack of attention
paid to P (X|Y ). Supervised information can be bet-
ter utilized by class-conditional distributions because
they focus on sub-regions of the input space. In HRDS,
we suggest not only incorporating a distribution-
based detector to inspect data features from the
marginal distribution perspective, but also construct-
ing one CDT for each class-conditional distribution
P (X|Y = q), where q ∈ {0, 1, ..., Q}. The CDTs are
initialized on its respective data stream (line 4, Algo-
rithm 1). All CDTs are simultaneously placed on the
incoming instances in the lower-dimensional subspace
S derived earlier. Note that only the marginal detector
and one of the class-conditional detectors are activated
at each time stamp. Usually, the number of classes
of a data stream is much lower than the number of
dimensions. Therefore, HRDS is still expected to be
computationally cheaper to implement than existing
multivariate detectors that either try to estimate the
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distribution density or monitor each dimension indi-
vidually. By monitoring also the class-conditional dis-
tributions, HRDS captures both real and virtual drift,
regardless of the effect on classification performance.
Besides, since it synchronizes sub-regions of the input
space, it is able to distinguish between drifted and
non-drifted classes and its detection sensitivity over
smaller drifts is enhanced.

Different techniques can be chosen as the base
CDT for this component. ICI-based CDT has been
used in the existing HCDT as a reference example. A
dominant advantage of this sequential CDT is that it
is endowed with a refinement procedure that directly
provides the estimated drift starting time Tref [34].
Thus, a new dataset representing the most recent
concept is automatically identified. For other drift de-
tectors, the method introduced in [35] is recommended
to identify Tref .

3.3 Knowledge base reconfiguration

Once a suspicious change is reported in the detection
layer by at least one of the base detectors at time T̂ , a
potential drift starting time Tref is estimated and the
validation layer is activated (lines 8-9, Algorithm 1).
Offline statistical test is used to compare the previous
training set of the respective detector and instances
from Tref to T̂ to determine if the drift should be
confirmed (line 10, Algorithm 1). If a drift is validated,
the existing HCDT framework discards all past data
and reconfigure based on the most recent data only.
This approach may be over-conservative for a super-
vised data stream as a drift may have uneven effects
on different classes. Unnecessary rejection of data in a
relatively stationary class leads to information loss and
can become problematic when available information
is already scarce or expensive to obtain. Here we
propose a novel way of reconstructing the re-training
sets in order to maintain as much useful information
as possible for detector reconfiguration. The idea can
be summarized as follows:

1) for data streams where we can confirm that a
change has taken place (with a detected and
validated change), the respective detectors are
immediately reconfigured based on the latest
training dataset representing the current con-
cept.

2) for data streams where there is ambiguity if a
change has taken place (a detected but inval-
idated change), we do not make any amend-
ment to the existing detector.

3) for data streams where we are inclined to
believe that no drift has taken place (with no
detection both from the class-conditional and
the marginal detector), we combine the latest

training instances with previous ones to form
a more informative retraining set.

It should be noted that when one class-conditional
detector reports and validates a change, it subse-
quently impacts the marginal distribution according to
Equation (2), therefore in this case the marginal detec-
tor is always retrained. Herewith, the performance of
the detectors is expected to improve as extra relevant
instances are used for retraining.

Hotelling T2 test has been shown to be a suitable
complementary validation test for ICI-based CDT in
the existing HCDT framework. As a concrete real-
ization under a bi-class scenario, the reconstruction
scheme for all detectors after each detection can be
summarized in Table 1.

4 COMPUTATIONAL STUDIES

This section presents four sets of experiments that
evaluate the effectiveness and efficiency of HRDS.
Experiment 1 aims to demonstrate the effectiveness
of each component of the HRDS framework which
differentiates it from the existing HCDT. This set of ex-
periments are carried out on data streams with a range
of different dimensionalities to reveal its advantage
on high-dimensional data. Experiment 2 illustrates the
superiority of HRDS in drift detection on both real
and virtual drifts over state-of-the-art methods. Exper-
iment 3 validates that the superior performance pro-
vided by HRDS also benefits classification, even when
integrated with a very simple classifier. Experiments
1-3 are based on datasets of synthetically generated
sequences where the ground truth of drift occurrences
is available. In Experiment 4, we demonstrate the role
of HRDS on a real-world data stream. Finally, we
provide a brief analysis on the computational time
complexity of the approaches being considered in the
experiments. All experiments were run on a CentOS
7.6 Computer with v4 2.20 GHz processor and 128 GB
memory.

4.1 Performance metrics

A variety of performance metrics for drift detection
have been used in the literature. For instance, when
counting the number of True Positive (TP), False
Negative (FN) and False Positive (FP), some authors
focused more on whether a correct or wrong detection
is raised on a drifted sequence, but not on the num-
ber of detections [36], [37]. Differently, some authors
distinguish between Detected, Late, Missed and False
detections based on sliding windows and paid atten-
tion to whether there were redundant detections after
a Detected (TP) detection [19], [38]. In [9] all detections
raised on a stream are taken into account and each
single detection is categorized into TP or FP based on a
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Table 1: Re-construction of training sets after drift detection. Without loss of generality, we assume the last instance
received belongs to class 0. Analogous definitions can be made for class 1. TSM , TS0, TS1 are the existing training
sets for the marginal and class-conditional detectors respectively. TSM

C is composed of all instances representing the
current concept in [Tref , T̂ ]. TS0

C (TS1
C) denotes class 1 (class 0) instances from TSM

C .
Layer-I and II output
from the Marginal Detector
Detected and Validated Detected but Invalidated No Detection

Layer-I and II
output from
Class 0

Detected
and
Validated

M: TSM = TSM
C

C0: TS0 = TS0
C

C1: TS1 = [TS1, TS1
C ]

M: TSM = TSM
C

C0: TS0 = TS0C
C1: TS1 = [TS1, TS1

C ]

M: TSM = TSM
C

C0: TS0 = TS0
C

C1: TS1 = [TS1, TS1
C ]

Conditional
Detector

Detected
but
Invalidated

M: TSM = TSM
C

C0: TS0 = TS0
C

C1: TS1 = TS1
C

M: No retraining
C0: No retraining
C1: TS1 = [TS1, TS1

C ]

M: TSM = [TSM , TSM
C ]

C0: No retraining
C1: TS1 = [TS1, TS1

C ]

No
Detection

M: TSM = TSM
C

CL0: TS0 = TS0
C

C1: TS1 = TS1
C

M: No retraining
C0: TS0 = [TS0, TS0

C ]
C1: TS1 = [TS1, TS1

C ]

specified window size. Later, the notion of acceptable
delay ∆ was formally introduced in [39]. Here, FPs
are defined as detections outside of the acceptable
detection interval [t, t+∆], but extra detections within
the interval are neglected. Based on the these previous
evaluation paradigms, we would like to further dis-
tinguish between a true but delayed detection and a
genuinely missed detection. In some real-world ap-
plications, these cases are associated with different
penalties. In addition, from a practical point of view,
distinguishing between various types of false alarms
also helps the designer to understand which aspect
of an algorithm needs to be modified to improve its
performance.

Therefore, when analysing the results of a reactive
detector, we propose a more realistic and comprehen-
sive definition paradigm as in Fig. 3a. Based on a pre-
defined acceptable detection delay range [T ∗, T ∗ + ∆]
where T ∗ is the real drifting time, we define a TP
as the first detection within this range, a FN missed
as a missed alarm throughout the concept. We also
distinguish between three types of FPs: FP early,
FP duplicate and FP late. A FP early is the first false
alarm before T ∗ related to algorithm initialization,
FP duplicate’s are redundant false alarms related to
algorithm reconfiguration, and a FP late is the first
detection in [T ∗ + ∆, T end] when there is no alarm
raised in [T ∗, T ∗ + ∆]. An illustrative example is
presented in Fig. 3b.

The total number of FPs and FNs are therefore FP
= FP early + FP duplicate + FP late and FN = FN late
+ FP late respectively. Performance of the detector
is evaluated via number of TPs, FPs, FNs or Recall,
Precision and F-measure as defined in Fig. 3c. For each
synthetic dataset in the experiments, 30 sequences are
generated, and all reported figures are summations or
averages. Detection performance is measured for sev-
eral acceptable lengths ∆ = {500, 1000, 1500, 2000} so
as to limit the maximum detection delay allowed.

Experiment 1: Understanding HRDS

In order to better understand the novelty of HRDS rel-
ative to the existing hierarchical framework HCDT, we
carry out a component-wise evaluation. The character-
istics of HRDS and several variations containing only
partial components are presented in Table 2. HCDT-
M is the existing HCDT framework which monitors
the marginal input distribution only. HCDT-CC is
the existing HCDT framework applied to the class-
conditional distributions. HDS is very similar to HRDS
by employing univariate detectors on both marginal
and class-conditional distributions but without the
projection to the lower-dimensional feature space. The
experiment is carried out on data streams of varying
dimensionalities to find out how well HRDS can cope
with multivariate data streams.

(a)

(b)

(c)
Figure 3: Detection performance definition paradigm. (a)
describes how FP, TP and FN
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Table 2: Compared detection frameworks in Experiment 1.

detection reconfiguration

Algorithm monitor P (X) monitor P (X|Y ) feature space single CDT multiple CDTs

HRDS X X X X

HCDT-M (HCDT) X X

HCDT-CC X X

HDS X X X

Table 3: Synthetic data generation of d-dimensional hyperplane datasets.
Concept d− dimensional hyperplane

1 a10 = −1.5; a1i = i× 0.1 ∀ i ∈ {1, ..., d}
2 a20 = a10 − 1; a2i = a1i − 0.5 ∀ i ∈ {1, ..., d}

RSVM introduced in Algorithm 2 is chosen to find
the appropriate lower-dimensional space in HRDS.
For simplicity, we project the data onto a one-
dimensional space in the experiment as it contains
the most relevant information regarding classifica-
tion. Then a univariate ICI-based CDT is used as a
base detector. When comparing different structures
of data-driven hierarchical frameworks, it should be
noted that the performance of algorithms depends on
specific parameters of the base CDT regulating the
possibility of FPs. The following confidence parameter
values Γ ∈ {2.25, 2.5, ..., 3.5} are considered. Higher
values of Γ reduce the probability of FPs at the expense
of longer detection delays and possibly more FNs.
Following [26], the initial training set length and the
minimum retraining set size were set to 400 and 80,
respectively.

Synthetic data generated for this experiment is
a set of d-dimensional moving hyperplanes y =
−a0 +

∑d
i aixi, where d = [5, 10, 15, 20, 25], xi ∈ [0, 1]

and y ∈ [0, d]. This is a popular dataset which has
been used very often in the field [40], [41], [42]. The
generation mechanism also allows easy alteration of
the dataset dimension. Details of the data generation
parameters can be found in Table 3. Each class contains
5000 data points with 5% of noise added. The data
sequence consists of 10, 000 instances with one abrupt
change at timestamp 5001. Total number of TPs and
FPs are computed to compare the performance.

Due to the page limit, we report only the results
for 2 selected acceptable delay length values ∆ = 1000
and 2000 in Table 4. The following findings are also
applicable to ∆ = 500 and 1500. Firstly, we notice from
Table 4 that HRDS achieves the highest TP in almost
all cases. This is true even for a tight ∆, indicating
that HRDS is able to not only detect the drifts, but also
detect them earlier than the existing HCDT and other
variations being considered. Meanwhile, HRDS al-
ways reports the lowest FP. In contrast, other methods
monitoring each dimension of the data stream within
the input space individually lead to much higher
FP. HDS, which is also based on this novel recon-

figuration scheme but does not project data into the
low-dimensional space as HRDS does, always ranked
second in terms of both TP and FP. In addition, com-
paring with the results of HCDT-CC, we can conclude
that HRDS is very different from the existing HCDT
applied on each class. The novelty of HRDS lies in not
only class-based inspections, but also the projection of
data to the low-dimensional space and the utilization
of both marginal and class-conditional information
in detector reconfiguration. As dimension increases,
the number of FP detections raised by the compared
methods increases dramatically and the superiority of
HRDS becomes more dominant, confirming its ability
to operate efficiently even for higher dimensional data
streams. Also, comparing the performance presented
in Table 4 horizontally, it can be seen that HRDS is
relatively insensitive to the choice of base detector
parameter Γ, making it a more reliable and stable
detection framework among the compared methods.

Experiment 2: Drift detection ability

In this subsection we aim to compare the drift de-
tection ability of HRDS on a wide range of drifts
with state-of-the art methods, namely HCDT [26] and
HLFR [43] introduced in Section 1. These consoli-
dated frameworks have been shown to perform better
than their individual base detector counterparts. We
also compare HRDS with two classic performance-
based benchmarks, DDM [6] and EDDM [7], which
have not been used as base change detectors in
the above mentioned frameworks. All hyper param-
eters of the detection and validation tests of the al-
gorithms were directly taken as recommended and
used by their authors. Recall that the detection result
from performance-based detectors is contingent on the
choice of classifier. Therefore, two classifiers from the
range of classifiers that have been used in the original
papers for HLFR, DDM and EDDM are adopted: an
SVM and a decision tree. The SVM classifier adopts
a linear kernel except for one non-linearly separable
dataset, Rotating Checkerboard, where a radial basis
function (RBF) kernel is applied. Following [26], the
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Table 4: Performance comparison on data streams with various dimensions.

∆ = 1000 2000

TP FP TP FP

Γ = 2.25 2.5 2.75 3.0 3.25 3.5 2.25 2.5 2.75 3.0 3.25 3.5 2.25 2.5 2.75 3.0 3.25 3.5 2.25 2.5 2.75 3.0 3.25 3.5

5D

HRDS 30 27 22 16 11 7 18 10 16 15 19 23 30 30 30 30 30 30 18 7 8 1 0 0
HCDT-M 5 2 3 0 0 0 31 27 27 26 21 18 24 23 24 11 8 4 12 6 6 15 13 14
HCDT-CC 26 23 19 14 11 9 22 17 17 17 21 22 30 30 30 30 30 30 18 10 6 1 2 1
HDS 23 25 19 16 12 9 19 11 18 16 18 22 29 26 29 30 30 30 13 10 8 2 0 1

10D

HRDS 30 30 28 27 24 21 21 12 10 9 9 11 30 30 30 30 30 30 21 12 8 6 3 2
HCDT-M 27 27 26 21 20 18 157 66 35 13 10 17 28 29 30 28 29 29 156 64 31 6 1 6
HCDT-CC 29 28 29 25 20 13 130 83 57 56 47 53 30 30 30 30 30 30 129 81 56 51 37 36
HDS 25 28 28 25 24 21 114 81 59 21 24 15 27 29 30 29 29 30 112 80 57 17 19 6

15D

HRDS 30 30 30 30 29 27 11 12 9 8 4 4 30 30 30 30 30 30 11 12 9 8 3 1
HCDT-M 23 27 28 28 28 24 344 203 83 4 16 6 27 29 29 29 30 30 340 201 82 3 14 0
HCDT-CC 22 23 26 21 18 12 134 106 82 60 58 61 25 25 30 28 29 29 131 104 78 53 47 44
HDS 21 25 28 29 28 27 216 176 119 40 40 13 27 28 30 29 30 30 210 173 117 40 38 10

20D

HRDS 30 30 30 30 30 28 15 10 9 9 9 7 30 30 30 30 30 30 15 10 9 9 9 5
HCDT-M 19 21 24 26 28 27 405 211 123 40 18 3 23 23 26 26 29 30 401 209 121 40 17 0
HCDT-CC 10 13 9 16 10 14 107 95 56 36 38 30 16 20 13 19 17 24 101 88 52 33 31 20
HDS 17 19 18 20 22 27 238 164 96 68 58 22 23 21 21 22 25 29 232 162 93 66 55 20

25D

HRDS 30 30 30 29 29 29 21 19 21 19 18 15 30 30 30 30 30 30 21 19 21 18 18 14
HCDT-M 29 29 28 26 24 19 842 515 278 155 92 66 30 30 30 30 30 30 841 514 276 151 86 55
HCDT-CC 30 30 24 19 21 16 281 213 156 134 103 92 30 30 30 30 30 30 281 213 150 123 94 78
HDS 29 29 28 27 24 23 425 301 195 117 85 60 29 30 30 30 30 30 425 300 193 114 79 53

Table 5: Synthetic data generation of 4D Multivariate Gaussian. The illustration is given in Fig. 4.

Concept 4D Gaussian
(a) (b) (c) (d)

1
µ1

C0
= [0, 0, 0, 0]

µ1
C1

= [0.8, 0.8, 0.8, 0.8]

Σ1
C0

= Σ1
C1

= 14

2
µ2

C0
= [−0.2, 0.1,

−0.2, 0.1]

µ2
C0

= [−0.2,−0.2,

−0.2,−0.2]

µ2
C0

= [0.4,−0.3,

0.4, 0.4]

µ2
C0

= [−0.3,−0.4,

−0.4, 0.4]
µ2

C1
= µ1

C1

Σ2
C0

= Σ2
C1

= 14 + 0.2× (J4 − 14)

Table 6: Synthetic data generation of 6D Multivariate Gaussian datasets. The illustration is given in Fig. 5.
Concept 6D Gaussian

1
µ1

C0
= [2, 2, 3, 3, 4, 4];

µ1
C1

= [1, 1, 2, 2, 3, 3] ; Σ1
C0

= Σ1
C1

= 16

2
µ1

C0
= [2.6, 2.6, 3.8, 3.8, 4.2, 4.2]

µ2
C1

= µ1
C1

; Σ2
C0

= Σ2
C1

= 16

3
µ1

C0
= [2.2, 2.2, 3.4, 3.4, 4.4, 4.4]

µ3
C1

= µ2
C1

; Σ3
C0

= Σ3
C1

= 16

4
µ1

C0
= [2.8, 2.8, 3.4, 3.4, 3.8, 3.8]

µ4
C1

= µ3
C1

; Σ4
C0

= Σ4
C1

= 16

5
µ1

C0
= [2.6, 2.6, 3.0, 3.0, 3.4, 3.4]

µ5
C1

= µ4
C1

; Σ5
C0

= Σ5
C1

= 16

parameter Γ is set to 2.5 and the initial training set
length and the minimum retraining set size are both
set to 160 for both HCDT and HRDS. Detection re-
call, precision and F-measure are plotted with y-axis
corresponding to the selected acceptable delay length
∆ = {500, 1000, 1500, 2000}.

In this experiment we first test on data streams
with one abrupt drift only. With drift affecting P (Y |X)
or not and its magnitude being small or large, there are
4 possible scenarios for a single drift. These cases will
be examined individually. We then consider two more

complicated multiple-drift datasets where more forms
of drifts are present. The following synthetic datasets
are generated for the experiment:

1) 4D Multivariate Gaussian (Fig. 4): Here we
synthetically generate drifts affecting the target con-
cept differently by changing the class-distribution in-
dependently. For simplicity, we assume only one class
drifted. Possible drift scenarios are visualized in Fig. 4.
In order to reflect the 4 scenarios, 4 groups of 4D Mul-
tivariate Gaussian datasets are generated. Each data
sequence consists of 10, 000 observations and a single
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Figure 4: Illustration of various drift types of 4D Mul-
tivariate Gaussian. (a) small drift affecting P (Y |X); (b)
small drift not affecting P (Y |X); (c) large drift affecting
P (Y |X); (d) large drift not affecting P (Y |X). Data gener-
ation details are given in Table 5.

Figure 5: Illustration of 6D Multivariate Gaussian. Data
generation details are given in Table 6

Figure 6: Illustration of Rotating Checkerboard

abrupt change takes place at instance 5001. The mag-
nitude of drift is controlled by the change in within-
class distance dw and the effect on the target concept is
controlled by the change in between-class distance db.
The (dw, db) pair for the stationary concept is always
(0,0). For drifts with smaller magnitudes, the (dw, db)
pair for concept 2 is set to (0.5, -0.9) and (0.5, 0.8)
reflecting scenarios (a-b) respectively. For drifts with
greater magnitudes, the (dw, db) pair for concept 2 is
set to (1.0, -0.8) and (1.0, 1.1) reflecting scenarios (c-d)
respectively. Data generation details can be found in
Table 5.

2) 6D Multivariate Gaussian (Fig. 5): moving to
multiple drift scenarios, we first consider a scenario
where a series of drifts is not detrimental to classifi-
cation at the beginning, but can eventually impair the
accuracy after several evolutions. A simple illustration
of this situation is presented in Fig. 5. Each sequence
is of length 25, 000 and contains 5 concepts. The drift
magnitude is also controlled by (dw, db) pairs. The
evolution of concept is summarized as (0, 0), (0.4, 2.4),
(0.4, 1.9), (0.4, -1.4) and (0.4, -2.1) successively. Details
of the data generation process can be found in Table 6.

3) Rotating Checkerboard (Fig. 6): here we con-
sider a common benchmark dataset first used by [44]
for concept drift problems. In this dataset all 4 drifts
lead to a strong change in classification boundary.
Each stream is of length 25, 000 and contains 5 con-
cepts. Examples are sampled uniformly from the unit
square with dimensionality of 2 and the labels are set
by a checkerboard with 0.5 tile width. At each concept
drift, the checkerboard is rotated by an angle of π/6
radians.

Detection performance for 4D Multivariate Gaus-
sian is summarized in Fig. 7. Overall, HRDS ranked
first in 14 out of the 16 cases (4 datasets and 4
∆’s) in terms of F-measure, indicating its ability to
achieve the best trade-off between recall and preci-
sion. Performance-based detectors HLFR, EDDM and
DDM only secure high recall values for real drifts
affecting P (Y |X) that cause an evident degradation
in classification accuracy (Fig. 7a and Fig. 7c). Al-
though the recall values attained by these methods are
sometimes higher than HRDS, the precision values for
these cases are rather low, indicating that they lead
to much higher number of false alarms. For drifts not
decreasing classification performance, i.e., drifts not
affecting P (Y |X) (Fig. 7b and Fig. 7d), performance-
based detectors fail and the data-based detector HCDT
becomes the second best detector after HRDS in terms
of detection F-measure. In addition, HRDS also sur-
passes HCDT by a great amount when drift magni-
tude is small (Fig. 7a and Fig. 7b). This is due to the
fact that the detection mechanism monitoring class-
conditional distributions makes HRDS more sensitive
for even the lightest changes on the overall input
space. For drifts with greater magnitude (Fig. 7c and
Fig. 7d), the performance of HCDT improves, but still
it falls behind HRDS not only in terms of F-measure,
but also in terms of recall and precision, except for one
case.

Moving to the multiple-drifts scenarios, HRDS also
outperforms its competitors in all 8 cases in terms of
F-measure as shown in Fig. 8 and Fig. 9. For 6D Multi-
variate Gaussian (Fig. 8), since the magnitude of each
single drift is relatively small, it takes two or more con-
secutive drifts in order for the effect of the drift series
to be sufficiently noticeable by HCDT, which monitors
the input marginal distribution. Performance-based
detectors HLFR, EDDM and DDM are only able to
detect the last one or two drifts in Fig. 5, since earlier
drifts do not deteriorate classification performance.
On the Rotating Checkerboard data streams, the ef-
fectiveness of HRDS can also be clearly identified
from Fig. 9. As expected, HCDT does not perform
well because purely distribution-based detectors fail
to detect changes affecting the labelling mechanism
only [45]. The distribution of overall input space of
this dataset remains unchanged. This phenomenon
demonstrates that detecting concept drift by moni-
toring the class-conditional distributions is helpful.
For this dataset, P (Y |X) is significantly affected by
all drifts, allowing the performance-based detectors
to capture the drifts more acutely. Therefore HLFR,
EDDM and DDM achieved very high recall values.
However, this may not be a preferable outcome as
significantly more false alarms are triggered if we
examine the precision plot. Therefore, HRDS, which
secures the highest F-measure, is still the most reliable

Page 9 of 14 Transactions on Knowledge and Data Engineering

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL XX, NO. XX, MM/YYYY 10

(a) Magnitude: small; Type: affecting P (Y |X) (b) Magnitude: small; Type: not affecting P (Y |X)

(c) Magnitude: large; Type: affecting P (Y |X) (d) Magnitude: large; Type: not affecting P (Y |X)

Figure 7: Detection performance for 4D Multivariate Gaussian against acceptable delay lengths. Subfigures (a-d)
correspond to scenarios (a-d) in Fig. 4 respectively.

Figure 8: Detection performance for 6D Multivari-
ate Gaussian. For performance-based detectors HLFR,
EDDM and DDM: Linear SVM as the base classifier (top);
decision tree as the base classifier (bottom).

Figure 9: Detection performance for Rotating Checker-
board. For performance-based detectors HLFR, EDDM
and DDM: RBF SVM as the base classifier (top); decision
tree as the base classifier (bottom).

choice. Another interesting finding from Fig. 8 and
Fig. 9 is that when a decision tree is used as the
base classifier, HLFR and EDDM achieve much better
than when an SVM classifier is used. This confirms
that the choice of classifier plays an important role
in performance-based drift detection. In contrast, the
performance achieved by HRDS is invariant of the
base classifier.

It can be concluded from this subsection of exper-
iments that for real drifts affecting P (Y |X), HRDS
performs no worse, and in many cases better than ex-
isting performance-based detectors. For virtual drifts
not directly affecting P (Y |X), HRDS performs better
than both distribution-based and performance-based
detectors. HRDS also performs particularly better than
the comparative methods when the changes have mi-
nor effect on the overall input distribution.

Experiment 3: Role in classification
The focus of this paper is to propose a new drift
detector framework HRDS. Intuitively, accurate detec-
tion and localisation of drifts would help to improve
classification because it leads to just-in-time model
retraining. Which classifier and what classifier training
techniques achieve the lowest classification error in a
reactive streaming environment is a matter for future
work. However, in order to evaluate the role of a more
accurate and efficient detector in streaming data clas-
sification environments, we present the prequential
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(a) Linear SVM as the base classifier (b) Decision tree as the base classifier
Figure 10: Prequential classification error plot against timestamp for 6D Multivariate Gaussian.

(a) RBF SVM as the base classifier (b) Decision tree as the base classifier
Figure 11: Prequential classification error plot against timestamp for Rotating Checkerboard.

classification error rate for 6D Multivariate Gaussian
and Rotating Chekerboard datasets. The prequential
error rate [46] with a decay factor 0 < λ < 1 1 at
timestamp i is defined as

Ei =
Si

Bi
=
L(yi, ŷi) + λSi−1

1 + λBi−1
,

where L(yi, ŷi) is a classification 0-1 loss function,
S1 = L1 and B1 = 1. The performance-based de-
tectors automatically outputs classification results for
each instance. For distribution-based detectors HCDT
and HRDS, a simple detected-then-retrain technique
is adopted. Each time a detection is raised, the clas-
sifier is retrained based on the most recent 160 data
instances, which is also the minimum length of retrain-
ing set for reconfiguring all detectors. Experiments are
carried out with two classifiers, an SVM and a decision
tree.

On the 6D Multivariate Gaussian dataset, Fig. 10
clearly shows that HRDS helps to achieve a lower
classification error rate for both SVM and decision
tree classifiers. Recall that the first two drifts are
virtual. The classification task actually became easier
as the classes moved further away from each other.
Performance-based detectors do not detect such drifts.
However, even in these cases, HRDS, which accurately
detects all types of drifts, leads to an even lower error
rate than the performance-based detectors. This sup-
ports the hypothesis that when the optimal decision
boundary has shifted but performance is not deterio-
rated, retraining the classifier can still be beneficial.

On the Rotating Chekerboard dataset, HRDS also
leads to lower prequential classification error rate
comparing with the other methods. This is very clear

1. λ is set to 0.999

in Fig. 11a. In Fig. 11b, the classification error rate
with EDDM appears to converge slightly quicker than
HRDS on 2 out of the 5 concepts. Referring to the plots
in Fig. 9, it can be seen that EDDM raises many FP
detections. Hence, the respective classifier is almost
being regularly retrained on the most recent data,
so it adapts the new concept quicker. However, the
unnecessarily frequent retraining of the classifier and
the detector results in a high computational burden.
Therefore, this is not an optimal outcome in practice.
In contrast, the failure of data distribution-based de-
tector HCDT in detecting drifts affecting the labelling
mechanism only resulted in much higher classification
error rate than the performance-based detectors.

Overall, HRDS can help in reducing classification
error rate regardless of the drift type. For both real and
virtual drifts, incorporating HRDS in a classification
model can achieve a lower or at least comparable
classification error rate than both performance-based
and distribution-based detectors.

Experiment 4: Real-world scenarios

In the above experiments, synthetic data streams
are used to better understand the functionality, ef-
ficiency and effectiveness of HRDS. For real-world
data streams, there is no ground truth regarding the
existence or location of drifts. Therefore, the perfor-
mance metrics used for synthetic datasets cannot be
employed. Here we report the number of detections
and prequential classification error rate to compare
the methods. We also compare the error rate with the
situation where no detector is adopted. A classification
system that achieves the lowest number of detections
as well as the lowest classification error is the most
desirable.
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(a) Linear SVM as the base classifier (b) Decision tree as the base classifier
Figure 12: Detection and classification performance for the Electricity data stream. The bar plot represents the number
of detections each method raised, and the line plot records the prequential classification error rate at the end of the
data stream.

Electricity [47] is a dataset collected from the Aus-
tralian New South Wales Electricity Market. It contains
45,312 instance and each example is described by 8
features. The class label identifies the change of the
price relative to a moving average of the last 24 hours.
(i.e., up and down). We note that there has been a
dispute regarding the usage of this dataset for concept
drift detection analysis due to the temporal correlation
within the data [48]. Nonetheless it is still one of the
most commonly used real-world data streams in this
area of research [49].

Number of detections and the classification error
rate obtained by the methods concerned are presented
in Fig. 12. From the line plot representing the error
rate, it can be seen that adding a drift detector always
help reducing the classification error rate since all
methods lead to lower error rate when comparing
with the no detector situation. From the bar plot
representing the number of detections, it can be seen
that HRDS always ranked first with only 5 detections
regardless of the choice of base classifier, meaning
that it bears a very low computational burden from
retraining. In contrast, its competitors all raise over
100 detections, causing a much higher overhead cost.
Although HRDS requires the least number of retrain-
ing, it still helps to maintain a satisfying classification
error rate. In Fig. 12a where an SVM is used as the
base classifier, the error rate obtained by HRDS ranked
third and is only 2% higher than that obtained with
the first-place detector EDDM. Meanwhile, EDDM
requires 174 more times of classifier and detector re-
configuration than HRDS. In Fig. 12b where a decision
tree is adopted, HRDS and EDDM both ranked first
in terms of classification error rate, but the difference
between their required numbers of reconfiguration is
as high as 133. Examining the number of detections
and error rate simultaneously, we may conclude that
in summary, HRDS achieves a better trade-off between
classification performance and computational cost on
this real-world data stream.

Table 7: Average runtime for each reported detection (s.).

Dataset HRDS HCDT HLFR EDDM DDM

4D Gaussian 0.2496 0.1044 49.0637 0.2645 2.1117
6D Gaussian 0.6129 0.2989 63.3693 0.5735 3.0722
Rotating Checkerboard 0.2004 0.4088 36.2308 1.1619 6.9635

Computational time complexity analysis

DDM [6] and EDDM [7] have a constant time com-
plexity (O(1)) at each time point, since they monitor
a single error-rate based statistics. Although the base
detector LFR [10] in HLFR [43] also has complexity
(O(1)), the validation layer requires extra training of
P classifiers (P=1000 in the original paper). Assum-
ing O(K) is the computational complexity of training
a new classifier, the time complexity for HLFR is
O(KP ), which is usually much higher than (O(1)).
HCDT [26] adopts a univariate test on each dimension
in the detection layer and one offline test in the valida-
tion layer. If the complexity of the base detector (e.g.,
ICI-based CDT) is (O(1)), the complexity of the overall
framework is (O(d)) where d is the dimensionality
of input space. HRDS has a similar structure but
adopts a univariate test on each dimension of the low-
dimensional feature space for each class in the detec-
tion layer. The time complexity is (O(rQ)) (r = 1 and
Q = 2 in this paper so (O(rQ)) is close to (O(1))). For
multivariate data streams of higher dimensionality,
the advantage of HRDS will become more significant
since the number of classes is usually much lower than
the number of dimensions. The average time for a
reported detection for 4D Multivariate Gaussian, 6D
Multivariate Gaussian and Rotating Checkerboard
is summarized in Table 7. It is worth noting that
performance-based detectors generally have longer
runtime since they also include a classifier training
procedure which data distribution-based detectors do
not. Practitioners should take this into consideration
when choosing the appropriate detector depending on
the application scenario.
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5 CONCLUSION

We have proposed a data distribution-driven and
class-based hierarchical change detection framework
(HRDS) for multivariate supervised data streams. The
proposed framework first maps the data to a lower
dimensional space and then detects drifts in that space
relevant to the given classification task. It utilizes
information from both marginal input distribution and
class-conditional distributions of the supervised data
stream. Based on the effect of drift on each class,
a novel reconfiguration scheme aiming to maintain
as many as possible relevant instances for retraining
is incorporated within the algorithm. HRDS detects
both real and virtual drifts, regardless of their effects
on classification. HRDS is capable of detecting sub-
tle drifts which can hardly be captured by existing
distribution-based detectors. It is also computation-
ally light and efficient when operating on higher-
dimensional data streams. The proposed approach
outperformed others by achieving a better recall-
precision trade off within the given acceptable delay
length when compared with the latest distribution-
based and performance-based detectors in the litera-
ture.

The framework can be used with different types
of base change detectors. Currently the HRDS frame-
work is only tested on bi-class data streams with
abrupt drifts. The framework can be easily extended
for applications with multi-class data streams, or sce-
narios with gradual drifts by switching the tool of
dimensionality reduction and the base detector. More-
over, since HRDS utilizes class-conditional distribu-
tions, modification to accommodate imbalanced-class
data streams is also worth investigation.
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