
Learning Beyond Finite Memory in Recurrent

Networks Of Spiking Neurons

Peter Tiňo1 Ashley Mills1

School Of Computer Science, University Of Birmingham, Birmingham B15 2TT, UK
P.Tino@cs.bham.ac.uk, msc57ajm@cs.bham.ac.uk

Abstract. We investigate possibilities of inducing temporal structures
without fading memory in recurrent networks of spiking neurons strictly
operating in the pulse-coding regime. We extend the existing gradient-
based algorithm for training feed-forward spiking neuron networks (Spike-

Prop [1]) to recurrent network topologies, so that temporal dependencies
in the input stream are taken into account. It is shown that tempo-
ral structures with unbounded input memory specified by simple Moore
machines (MM) can be induced by recurrent spiking neuron networks
(RSNN). The networks are able to discover pulse-coded representations
of abstract information processing states coding potentially unbounded
histories of processed inputs.

1 Introduction

A considerable amount of work has been devoted to studying computations on
time series in recurrent neural networks (RNNs). Feedback connections endow
RNNs with a form of ‘neural memory’ that makes them (theoretically) capable
of processing time structures over arbitrarily long time spans. However, even
though RNNs are capable of simulating Turing machines [2], induction of non-
trivial temporal structures beyond finite memory can be problematic [3]. Finite
state machines (FSMs) and automata constitute a simple, yet well established
and easy to analyze framework for describing temporal structures that go be-
yond finite memory relationships. In general, for a finite description of the string
mapping realized by an FSM, one needs a notion of an abstract information
processing state that can encapsulate histories of processed strings of arbitrary
finite length. Indeed, FSMs have been a popular benchmark in the recurrent net-
work community and there is a huge amount of literature dealing with empirical
and theoretical aspects of learning finite state machines/automata in RNNs (e.g.
[4, 5]).

However, the RNNs under consideration have been based on traditional rate-
coded artificial neural network models that describe neural activity in terms
of rates of spikes1 produced by individual neurons. Several models of spiking
neurons, where the input and output information is coded in terms of exact
timings of individual spikes (pulse coding) have been proposed (see e.g. [6]).

1 identical electrical pulses also known as action potentials



Learning algorithms for acyclic networks of such (biologically more plausible)
artificial neurons have been developed and tested [1, 7].

Maass [8] proved that networks of spiking neurons with feedback connections
(recurrent spiking neuron networks – RSNNs) can simulate Turing machines.
Yet, virtually no systematic work has been reported on inducing deeper tem-
poral structures in such networks. There are recent developments along this
direction, e.g. [9, 10]. Such studies, however, usually make a leap in the cod-
ing strategy, shifting from the emphasis on spike timings in individual neurons
(pulse coding) into more space-rate-based population codings. Even though most
of experimental research focuses on characterizations of potential information
processing states using temporal statistics of rate properties in spike trains (e.g.
[11]) there is some experimental evidence that in certain situations the temporal
information may be pulse-coded [12].

In this study we are concerned with possibilities of inducing deep temporal
structures without fading memory in recurrent networks of spiking neurons. We
will strictly adhere to pulse-coding, e.g. all the input, output and state informa-
tion is coded in terms of spike trains on subsets of neurons.

2 Recurrent Spiking Neural Network

First, we briefly describe the formal model of spiking neurons, the spike response
model [13], employed in this study. Spikes emitted by neuron i are propagated
to neuron j through several synaptic channels k = 1, 2, ...,m, each of which
has an associated synaptic efficacy (weight) wk

ij , and an axonal delay dkij . In

each synaptic channel k, input spikes get delayed by dkij and transformed by a

response function εkij which models the rate of neurotransmitter diffusion across
the synaptic cleft. The response function can be either excitatory, or inhibitory.

Formally, denote the set of all (presynaptic) neurons emitting spikes to neu-
ron j by Γj . Let the last spike time of a presynaptic neuron i ∈ Γj be tai . The
accumulated potential at time t on soma of unit j is:

xj(t) =
∑

i∈Γj

m
∑

k=1

wk
ij · ε

k
ij(t− tai − dkij), (1)

where the response function εkij is modeled as:

εkij(t) = σkij · (t/τ) · exp(1− (t/τ)) · H(t− dkij). (2)

Here, σkij is 1 and −1 if the synapse k between neurons i, j is concerned with
transmitting excitatory and inhibitory, respectively. The decay constant τ gov-
erns the rate at which neurotransmitter released from the presynaptic membrane
reaches the post synaptic membrane. H(t) is the Heaviside step function which
is 1 for t > 0, and is otherwise 0, ensuring that the axonal delay dkij is enforced.
Neuron j fires a spike (and depolarizes) when the accumulated potential xj(t)
reaches a threshold Θ.



In a feed-forward spiking neuron network (FFSNN), the first neurons to fire
a spike are the input units. Spatial spike patterns across input neurons code the
information to be processed by the FFSNN, the spikes propagate to subsequent
layers, finally resulting in a pattern of spike times across neurons in the output
layer. The output spike times represent the response of FFSNN to the current
input. The input-to-output propagation of spikes through FFSNN is confined to
a simulation interval of length Υ . All neurons can fire at most once within the
simulation interval2. After the simulation interval has expired, the output spike
pattern is read-out and interpreted and a new simulation interval is initialized by
presenting a new input spike pattern in the input layer. Given a mechanism for
temporal encoding and decoding of the input and output information, respec-
tively, Sander, Bohte and Kok have recently formulated a back-propagation-like
supervised learning rule for training FFSNN, called SpikeProp [1]. Synaptic ef-
ficacies on connections to the output unit j are updated as follows:

∆wk
ij = −η · εkij(t

a
j − tai − dkij) · δ

j , (3)

where

δj =
(tdj − taj )

∑

i∈Γj

∑m
k=1 wk

ij · ε
k
ij(t

a
j − tai − dkij) · (1/(t

a
j − tai − dkij)− 1/τ)

(4)

and η > 0 is the learning rate. The numerator is the difference between the
desired tdj and actual taj firing times of the output neuron j within the simulation
interval.

Synaptic efficacies on connections to the hidden unit i are updated analo-
gously:

∆wk
hi = −η · εkhi(t

a
i − tah − dkhi) · δ

i, (5)

where

δi =

∑

j∈Γ i(
∑m

k=1 wk
ij · ε

k
ij(t

a
j − tai − dkij) · (1/(t

a
j − tai − dkij)− 1/τ)) · δj

∑

h∈Γi

∑m
k=1 wk

hi · ε
k
hi(t

a
i − tah − dkhi) · (1/(t

a
i − tah − dkhi)− 1/τ)

(6)

and Γ i denotes the set of all (postsynaptic) neurons to which neuron i emits
spikes. The numerator pulls in contributions from the layer succeeding that for
which δ’s are being calculated3.

Obviously, FFSNN cannot properly deal with temporal structures in the
input stream that go beyond finite memory. One possible solution is to turn
FFSNN into a recurrent spiking neuron network (RSNN) by extending the feed-
forward architecture with feedback connections. In analogy with RNN, we select

2 The period of neuron refractoriness (a neuron is unlikely to fire shortly after produc-
ing a spike), is not modeled, and thus to maintain biological plausibility a neuron
may only fire once within the simulation interval (see e.g. [1]).

3 When a neuron does not fire, its contributions are not incorporated into the calcu-
lation of δ’s for other neurons, neither is a δ calculated for it.



a hidden layer in FFSNN as the layer responsible for coding (through spike pat-
terns) important information about the history of inputs seen so far (recurrent
layer) and feed back its spiking patterns through the delay synaptic channels to
an auxiliary layer at the input level, called the context layer. The input and con-
text layers now collectively form a new ‘extended input layer’ of the RSNN. The
delay feedback connections temporally translate spike patterns in the recurrent
layer by the delay constant ∆,

α(t) = t+∆. (7)

Such temporal translation can be achieved using a FFSNN.

The RSNN architecture used in our experiments consists of five layers. The
extended input layer (input and context layers, denoted by I and C, respectively)
feeds the first auxiliary hidden layer H1, which in turn feeds the recurrent layer
Q. Within each simulation interval, the spike timings of neurons in the input
and context layers I and C are stored in the spatial spike train vectors i and
c, respectively. The spatial spike trains of the first hidden and recurrent layers
are stored in vectors h1 and q, respectively. The role of the recurrent layer Q is
twofold:

1. The spike train q codes information about the history of inputs seen so far.
This information is passed to the next simulation interval through the delay
FFSNN network4 α, c = α(q). The delayed spatial spike train c appears
in the context layer. Spike train (i, c) of the extended input consists of the
history-coding spike train c and a spatial spike train i coding the external
inputs (input symbols).

2. The recurrent layer feeds the second auxiliary hidden layer H2, which finally
feeds the output layer O. The spatial spike trains in the second hidden and
output layers are stored in vectors h2 and o, respectively.

Parameters, such as the length Υ of the simulation interval, feedback delay
∆ and spike time encodings of input/output symbols have to be carefully co-
ordinated. The simulation interval for processing of the nth input item starts
at

tstart(n) = (n− 1) · Υ.

Absolute desired output spike times for the nth input need to be adjusted with
the tstart(n). The initial context spike pattern, cstart, is imposed externally at
the beginning of training. The firing times of the recurrent neurons at the end
of simulation interval n, q(n), are translated in time by the delay FFSNN α to
give the state (context) inputs c(n+1) at the start of simulation epoch (n+1).
The simulation interval Υ needs to be set so that temporal proximity of c(n+1)
and the input firing times i(n + 1) at the start of simulation epoch (n + 1) is
achieved.

4 the delay function α(t) is applied to each component of q



2.1 Training – SpikePropThroughTime

We extended the SpikeProp algorithm [1] for training FFSNN to recurrent mod-
els in the spirit of Back Propagation Through Time for rate-based RNN [14],
i.e. using the unfolding-in-time methodology. We call this learning algorithm
SpikePropThroughTime.

Given an input string of length n, n copies of the base RSNN are made,
stacked on top of each other, and sequentially simulated, incrementing tstart by
Υ after each simulation interval. Expanding the base network through time via
multiple copies simulates processing of the input stream by the base RSNN.

Adaptation δ’s (see equations (4) and (6)) are calculated for each of the
network copies. The synaptic efficacies (weights) in the base network are then
updated using δ’s calculated in each of the copies by adding up, for every weight,
the n corresponding weight-update contributions of equations (3) and (5).

In a FFSNN, when calculating the δ’s for a hidden layer, the firing times
from the preceding and succeeding layers are used. Special attention must be
paid when calculating δ’s of neurons in the recurrent layer Q. Context spike
train c(n+ 1) in copy (n+ 1) is the delayed recurrent spike train q(n) from the
nth copy. The relationship of firing times in c(n + 1) and h1(n + 1) contains
the information that should be incorporated into the calculation of the δ’s for
recurrent units in copy n. The delay constant ∆ is subtracted from the firing
times h1(n+ 1) of H1 and then, when calculating the δ’s for recurrent units in
copy n, these temporally translated firing times are used as if they were simply
another hidden layer succeeding Q in copy n. Denoting by Γ2,n the set of neurons
in the second auxiliary hidden layer H2 of the nth copy and by Γ1,n+1 the set of
neurons in the first auxiliary hidden layer H1 of the copy (n + 1), the δ of the
ith recurrent unit in the nth copy is calculated as

δi =

∑

j∈Γ1,n+1
(
∑m

k=1 wk
ij · ε

k
ij(t

a
j −∆− tai − dkij) · (1/(t

a
j −∆− tai − dkij)− 1/τ)) · δj

∑

h∈Γi

∑m
k=1 wk

hi · ε
k
hi(t

a
i − tah − dkhi) · (1/(t

a
i − tah − dkhi)− 1/τ)

+

∑

j∈Γ2,n
(
∑m

k=1 wk
ij · ε

k
ij(t

a
j − tai − dkij) · (1/(t

a
j − tai − dkij)− 1/τ)) · δj

∑

h∈Γi

∑m
k=1 wk

hi · ε
k
hi(t

a
i − tah − dkhi) · (1/(t

a
i − tah − dkhi)− 1/τ)

(8)

3 Learning beyond finite memory in RSNN – inducing

Moore machines

One of the simplest computational models that encapsulates the concept of un-
bounded input memory is the Moore machine [15]. Formally, an (initial) Moore
machine (MM) M is a 6-tuple M = (U, V, S, β, γ, s0), where U and V are finite
input and output alphabets, respectively, S is a finite set of states, s0 ∈ S is
the initial state, β : S × U → S is the state transition function and γ : S → V
is the output function. Given an input string u = u1u2...un of symbols from
U (ui ∈ U , i = 1, 2, ..., n), the machine M acts as a transducer by responding
with the output string v = M(u) = v1v2...vn, vi ∈ V , computed as follows: first



the machine is initialized with the initial state s0, then for all i = 1, 2, ..., n, the
new state is recursively determined, si = β(si−1, ui), and the machine emits the
output symbol vi = γ(si).

Given a target Moore machine M , a set of training examples is constructed
by explicitly constructing input strings u over U and then determining the cor-
responding output string M(u) over V (by traversing edges of the graph of M ,
starting in the initial state, as prescribed by the input string u). The training
set D consists of N couples of input-output strings,

D = {(u1,M(u1)), (u2,M(u2)), ..., (uN ,M(uN ))}.

In this study, we consider binary input and output alphabets U = V =
{0, 1} and a special end-of-string symbol ‘2’. We adopt the strategy of inducing
the initial state in the recurrent network (as opposed to externally imposing it
– see [16, 17]). The context layer of the network is initialized with the fixed
predefined context spike train c(1) = cstart only at the beginning of training.
From the network’s point of view, the training set is a couple (ũ,M(ũ) of the
long concatenated input sequence

ũ = u12u22u32...2uN−12uN2

and the corresponding output sequence

M(ũ) = M(u1)γ(s0)M(u2)γ(s0)M(u3)γ(s0)...γ(s0)M(uN−1)γ(s0)M(uN )γ(s0).

Input symbol ‘2’ is instrumental in inducing the start state by acting as an end-
of-string reset symbol initiating transition from every state of M to the initial
state s0.

The external input spike train i is partitioned into two disjoint sets of firing
patterns: input neurons is coding the current input symbol, and reference neu-
rons ir which always fire at the same time relative to tstart in any simulation
interval. Conversion of input symbols into spike trains is is described in table 1.
We convert symbols into binary bitstrings and then encode each binary bit of
the bitstring as alternating high (6ms) and low (0ms) firing times.

Table 1. Encoding of inputs 0, 1 and 2 in the input spike train is.

input Bit1 Bit2

0 0 6 0 6
1 0 6 6 0
2 6 0 0 6

The network is trained using SpikePropThroughTime (section 2.1) to min-
imize the squared error between the desired output spike trains derived from
M(ũ) when the RSNN is driven by the input ũ. The RSNN is unfolded and Spike-
PropThroughTime is applied for each training pattern (ui,M(ui)), i = 1, 2, ..., N .



The firing threshold is almost always 50, and the weights are initialized to ran-
dom values from the interval5 (0, 10). We use a dynamic learning rate strategy
that detects oscillatory behavior and plateaus within the error space. The ac-
tion to take upon detecting oscillation or plateau, is respectively to decrease
the learning rate by multiplying by an ‘oscillation-counter-coefficient’ (< 1), or
increase the learning rate by multiplying by a ‘plateau-counter-coefficient’ (> 1)
(see e.g. [18]).

The network had one output neuron 5 neurons in each of the layers I, C,
H1, Q and H2 (1 inhibitory neuron and 4 excitatory neurons). Each connection
between neurons had m = 16 synaptic channels, realizing axonal delays between
1ms and 16ms. with delays dkij = k, k = 1, 2, ...,m. The decay constant τ in
response functions εij was set to τ = 3. The length Υ of the simulation interval
was set to 40ms. The delay∆ was 30ms. We used SpikePropThroughTime to train
RSNN. The training was error-monitored and training was stopped the network
had perfectly learned the target (zero thresholded output error). The maximum
number of training epochs (sweeps through the training set) was 10000.

First, we experimented with ‘cyclic’ automata Cp of period p ≥ 2: U = {0};
V = {0, 1}; S = {1, 2, ..., p}; s0 = 1; for 1 ≤ i < p, β(i, 0) = i+1 and β(p, 0) = 1;
γ(1) = 0 and for 1 < i ≤ p, γ(i) = 1. The RSNN perfectly learned machines Cp,
2 ≤ p ≤ 5. The training set had to be incrementally constructed by iteratively
training with one presentation of the cycle, then two presentations etc. We ex-
amined state information in RSNN coded as spike trains in the recurrent layer
Q. The abstract information processing states extracted by the network dur-
ing the training manifested themselves as groupings of normalized spike trains6

(q(n)− tstart(n)). We were able to use the emerging clusters of normalized spike
trains to extract abstract knowledge induced in the network in the form of MM,
but a detailed account of this issue is beyond the scope of this paper.

Second, we trained RSNN on a two-state machine M2: U = V = {0, 1};
S = {1, 2}; s0 = 1; β(1, 0) = 1, β(2, 0) = 2, β(1, 1) = 2 and β(2, 1) = 1; γ(1) = 0
and γ(2) = 1. Repeated presentation of only 5 carefully selected training patterns
of length 4 were sufficient for a perfect induction of this machine. Again, we
observed that the two abstract information processing states of M2 were induced
in the network as two clusters of normalized spike trains in the recurrent layer
Q.

We stress, that given that the network can only observe the inputs, the
above MMs would require an unbounded input memory buffer. So no mechanism
with vanishing (input) memory can implement string mappings represented by
such MMs. After training, the respective RSNN emulated the operation of these

5 The weights must be initialized so that the neurons in subsequent layers are suffi-
ciently excited by those in their previous layer that they fire, otherwise the network
would be unusable. There is no equivalent in traditional rate-based neural networks
to the non-firing of a neuron in this sense. The setting of initial weights and firing
thresholds used in this study follows that of [7].

6 The spike times q(n) entering the quantization phase are made relative to the start
time tstart(n) of the simulation interval



MM perfectly and apparently indefinitely – the networks had zero test (output-
thresholded) error over test sets having length of the order 104.

We experimented with more complicated forms of MMs, but did not succeed
to train them fully. However, the machines were at least partially induced, and
the nature of such partial induction could be understood by the cluster analysis
of the normalized recurrent spike trains, but, again, this issue is beyond the
scope of this paper.

4 Discussion

We were able to train RSNN to mimic target MMs requiring unbounded input
memory on only a relatively simple set of MMs. Spiking neurons used in this pa-
per produce a spike only when the accumulated potential xj(t) reaches a thresh-
old Θ. This leads to discontinuities in the error-surface. Gradient-based methods
for training feed-forward networks of spiking neurons alleviate this problem by
resorting to simplifying assumptions on spike patterns within a single simula-
tion interval [1]. The situation is much more complicated in the case of RSNN.
A small weight perturbation can prevent a recurrent neuron from firing in the
shorter time scale of a simulation interval. That in turn can have serious con-
sequences for further long-time-scale processing. Especially so, if such a change
in short-term behavior appears at the beginning of presentation of a long input
string.

The error surface becomes erratic, as evidenced in Figure 1. We took a RSNN
trained to perfectly mimic the cycle-four machine C4. We studied the influence
of perturbing weights w∗ in recurrent part of the RSNN (e.g. between layers I,
C, H1 and Q) on the test error calculated on long test string of length 1000. For
each weight perturbation extent ρ, we randomly sampled 100 weight vectors w

from the hyperball of radius ρ centred at w∗. Shown are the mean and standard
deviation values of the absolute output error per symbol for 0 < ρ ≤ 3. Clearly,
small perturbations of weights lead to large abrupt changes in the test error.

Obviously, gradient-based methods, like our SpikePropThroughTime have
problems in locating good minima on such error surfaces. We tried

– fast evolutionary strategies (FES) with (recommended) configuration (30,200)-
ES7, employing the Cauchy mutation function [19],

– (extended) Kalman filtering in the parameter space [20], and
– a recent powerful evolutionary method for optimisation on real-valued do-

mains [21]

to find RSNN parameters, but without much success. The abrupt and erratic
nature of the error surface makes it hard, even for evolutionary techniques, to
locate a good minimum.

We tried RSNNs with varying numbers of neurons in the hidden and recurrent
layers. In general, the increased representational capacity of RSNNs with more

7 in each generation 30 parents generate 200 offspring through recombination and
mutation



0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Absolute Perturbation Extent

P
er

 S
ym

bo
l E

rr
or

Weight Perturbation vs Error for a Simple Four−State Automata

Standard Deviation
Mean Over 100 Trials

Fig. 1. Maximum radius of weight perturbation vs test error of RSNN trained to
mimic the cycle-four machine C4. For each setting of weight perturbation extent ρ,
we randomly sampled 100 weight vectors w from the hyperball of radius ρ centred at
induced RSNN weights w∗. Shown are the mean (solid line) and standard deviation
(dashed line) values of the absolute output error per symbol.

neural units could not be utilized because of the problems with finding good
weight settings due the erratic nature of the error surface.

We note that the finite memory machines of [9] induced in feed-forward spik-
ing neuron networks with dynamic synapses [22] were quite simple (of depth 3).
The input memory depth is limited by the feed-forward nature of such networks.
As soon as one tries to increase processing capabilities of spiking networks by
introducing feedback connections, while insisting on pulse-coding, the induction
process becomes complicated. Theoretically, it is perfectly possible to emulate
any MM in RSNN. However, weight changes in RSNN lead to complex bifurca-
tion mechanisms, making it hard to induce more complex MM through a guided
search in the weight space. It is plausible that in biological systems, long-term
dependencies are represented using rate-based codings and/or a Liquid State
Machine mechanism [23] with a complex, but non-adaptable, recurrent pulse-
coded part.

References

[1] Bohte, S., Kok, J., Poutré, H.L.: Error-backpropagation in temporally encoded
networks of spiking neurons. Neurocomputing 48 (2002) 17–37

[2] Siegelmann, H., Sontag, E.: On the computational power of neural nets. Journal
of Computer and System Sciences 50 (1995) 132–150

[3] Bengio, Y., Frasconi, P., Simard, P.: The problem of learning long-term depen-
dencies in recurrent networks. In: Proceedings of the 1993 IEEE International
Conference on Neural Networks. Volume 3. (1993) 1183–1188



[4] Giles, C., Miller, C., Chen, D., Chen, H., Sun, G., Lee, Y.: Learning and extract-
ing finite state automata with second–order recurrent neural networks. Neural
Computation 4 (1992) 393–405

[5] Casey, M.: The dynamics of discrete-time computation, with application to re-
current neural networks and finite state machine extraction. Neural Computation
8 (1996) 1135–1178

[6] Gerstner, W.: Spiking neurons. In Maass, W., Bishop, C., eds.: Pulsed Coupled
Neural Networks. MIT Press, Cambridge (1999) 3–54

[7] Moore, S.: Back propagation in spiking neural networks. Master’s thesis, The
University of Bath (2002)

[8] Maass, W.: Lower bounds for the computational power of networks of spiking
neurons. Neural Computation 8 (1996) 1–40

[9] Natschläger, T., Maass, W.: Spiking neurons and the induction of finite state
machines. Theoretical Computer Science: Special Issue on Natural Computing
287 (2002) 251–265

[10] Floreano, D., Zufferey, J., Nicoud, J.: From wheels to wings with evolutionary
spiking neurons. Artificial Life 11 (2005) 121–138

[11] Martignon, L., Deco, G., Laskey, K.B., Diamond, M., Freiwald, W., Vaadia, E.:
Neural coding: Higher-order temporal patterns in the neurostatistics of cell as-
semblies. Neural Computation 12 (2000) 2621–2653

[12] Nadas, A.: Replay and time compression of recurring spike sequences in the
hippocampus. The Journal of Neuroscience, 19 (1999) 9497–9507

[13] Gerstner, W.: Time structure of activity in neural network models. Phys. Rev. E
51 (1995) 738–758

[14] Werbos, P.: Generalization of backpropagation with applications to a recurrent
gas market model. Neural Networks 1 (1989) 339–356

[15] Hopcroft, J., Ullman, J.: Introduction to automata theory, languages, and com-
putation. Addison–Wesley, Reading, MA (1979)

[16] Forcada, M., Carrasco, R.: Learning the initial state of a second-order recurrent
neural network during regular-language inference. Neural Computation 7 (1995)
923–930

[17] Tiňo, P., Šajda, J.: Learning and extracting initial mealy machines with a modular
neural network model. Neural Computation 7 (1995) 822–844

[18] Lawrence, S., Giles, C., Fong, S.: Natural language grammatical inference with re-
current neural networks. IEEE Transactions on Knowledge and Data Engineering
12 (2000) 126–140

[19] Yao, X.: Evolving artificial neural networks. Proceedings of the IEEE 87 (1999)
1423–1447

[20] Puskorius, G., Feldkamp, L.: Recurrent network training with the decoupled
extended Kalman filter. In: Proceedings of the 1992 SPIE Conference on the
Science of Artificial Neural Networks, Orlando, Florida. (1992)

[21] Rowe, J., Hidovic, D.: An evolution strategy using a continuous version of the
gray-code neighbourhood distribution. In et al., K.D., ed.: Proceedings of the Ge-
netic and Evolutionary Computation Conference (GECCO-2004), Lecture Notes
in Computer Science, Springer-Verlag (2004) 725–736

[22] Maass, W., Markram, H.: Synapses as dynamic memory buffers. Neural Networks
15 (2002) 155–161

[23] Maass, W., Natschläger, T., Markram, H.: Real-time computing without stable
states: A new framework for neural computation based on perturbations. Neural
Computation 14 (2002) 2531–2560


