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Abstract—Traditional methods for solving problems within
computer science rely mostly upon the application of handcrafted
algorithms. As however manual engineering of them can be
considered to be a tedious process, it is interesting to consider
how far internal mechanisms can be directly learned in an end-
to-end manner instead. This is especially tempting to consider
for metaheuristic and evolutionary optimization routines which
inherently rely upon creating abundant amounts of data during
run-time. To implement such an approach for these types of
algorithms, it effectively requires a pipeline to first acquire deran-
domized algorithm components in a domain-dependent manner
and secondly a mapping to select them based upon characteristic
features which unveil the black box character of an optimization
problem. While in principle, within our prior work we proposed
methods for extracting spatial features from metadata, these
unfortunately fail to acknowledge the time-dependent nature
of it. Thus, fail in scenarios when the inputs generated from
initial iterations are not expressive enough. For this reason we
specifically develop within this work architectures for spatio-
temporal data processing. Particularly, we find that our proposed
GCN-GRU and LSTM architectures, which take inspiration
from CNN-LSTMs originally proposed for activity recognition in
multimedia data-streams, demonstrate high efficiency and most
consistent performance on time series of variable length. Further,
we can also demonstrate that the class activation map (CAM) for
interpretable learning with time series data helps to understand
and reflects problem-dependent properties of the search behavior
of an optimization algorithm.

Index Terms—Representation Learning, Algorithm Selection,
Graph Neural Networks, Activity Recognition, Time Series Clas-
sification.

I. INTRODUCTION

Derandomization has been introduced with great success
within recent decades to metaheuristic and evolutionary al-
gorithms. While traditional classic variants rely mostly upon
uncorrelated stochastic noise for solving optimization prob-
lems, the concept of derandomization abandons this in favor
of allowing the dynamic adaption of an algorithm’s internal
mechanisms to a problem-structure during run-time [1]–[3].
Residing to fundamental research on the processes in de-
velopmental biology these algorithms are often based upon,
it has been well justified, that the variational mechanisms
underlying natural evolution can exhibit properties such that
to produce phenotypic variety in a focused and directed
manner through developmental biases [4]. However, these may

not only foster adaption to a specific environment, but may
exhibit a more broader learning capability. Such that they
are able to generalize performance gains to future unseen
environments [5]. Notably, this notion mirrors well the concept
of inductive biases within learning theory [6]. While one
might be therefore inclined to pragmatically build a single
monolithic algorithm, which simply learns the structures of
different problems it solves during its lifetime, the no-free-
lunch theorems [7] effectively set hard constraints to it.
Thus, the best one can do, is to learn algorithm components
in a domain-dependent manner, and recall them based upon
accessible problem characteristics. Essentially, this suggests an
end-to-end learning approach. But while this line of thinking is
being only recently popularized within traditional research [8],
it has been previously already established for the domain of
optimization. Particularly, algorithm selection and configura-
tion problems constitute metalearning problems [9]. Which
imply a functional separation between high-level model-free
and low-level model-based components [10], [11], where the
former are required to explicitly process any generated meta-
data such that to unveil the black box character optimization
problems often possess.
Our paper is therefore dedicated towards advancing the state
of methodology by putting an emphasis on processing the
time-dependent nature of the generated metadata. Therefore,
we review in Sec. II available literature towards end-to-end
learning approaches of optimization algorithms. Subsequently,
in Sec. III we elaborate on methods originally proposed for
activity recognition and time series classification and suggest
extensions to enable these for processing of spatio-temporal
metadata generated by population-based optimization algo-
rithms. Following this up, we investigate these proposed exten-
sions within in an experimental study in Sec. IV, specifically,
with a focus on evaluating their computational efficiency. We
end our paper with a discussion in Sec. V and give an outlook
on future potential directions to explore with the proposed
methodology.

II. RELATED WORK

Within traditional algorithm research, end-to-end learning
approaches are being currently popularized, which offer
possible new applications for e.g. minimum cut [8] or graph
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Fig. 1. The graph-based spatial feature extraction as proposed within our prior
work [12]. Based upon two graph convolutions [13] with 25 and 16 filters,
as well as graph pooling operations [14], structured data formats descriptive
of a solution distribution are processed such that to extract low-dimensional
features descriptive of search behavior.

recovery problems [15]. However, within metaheuristic and
evolutionary optimization, this notion has been already
established previously. Particularly, so called algorithm
selection and configuration have been identified to constitute
metalearning problems [9].
Though, traditional algorithm selection frameworks mostly
rely upon tedious pipelines to map a given problem instance
to a best known solver [16], [17], which may involve a
combination of handcrafted feature extraction methods [18]
and trainable predictive components. The advantage of
modern day pattern recognition methods is that it allows
in principle to directly short-cut any intermediate steps,
such that predictive models can be directly learned in an
end-to-end manner. Notable advances to this regard have
been particularly made for combinatorial optimization. For
instance, concerning the usage of long short-term memory
networks (LSTMs) for 1d bin-packing problems [19], [20], as
well as the use of convolutional neural networks (CNNs) [21]
and transformers [22] to predict optimal solvers for traveling
salesperson problems (TSP). Though, while a learned
predictive model might not always be able to fully substitute
handcrafted solvers, it may at times be able to generate higher
performing solutions [20], thus can be considered to be a
useful complementary [23]. The comfort of combinatorial
problems is that in principle the search spaces thereof are
well-structured and problem characteristics may often be
accessible in advance.

However, the situation is more elusive for continuous
optimization problems which often possess a black box
character. Thus, problem characteristics have to be either
explicitly calculated or require processing of metadata
generated during run-time. In principle, the latter constitutes in
most population-based algorithms the solution population Pg

over successive iterations g, i.e. a set Pg={p(g)
i |i = 1, · · · , µ}

with p
(g)
i = (x

(g)
i ,F(x

(g)
i )), for xi ∈ χ with search space

χ ⊂ R
d, µ = Pg and objective functions F : χ → R

N . Initial
work on harnessing this metadata explored the use of self-
organized maps (SOM) to model the structure of a solution
population [24]. However, in principle it is impractical for
application scenarios, as it requires the retraining of the map
at each iteration. More loosely based upon this work [25]

harness the SOM instead as a way to obtain a structured
representation of high-dimensional search spaces χ. Which
they use to convert solution populations Pg into a tensor
data format, from which subsequently characteristics can
be extracted using slow-feature analysis (SFA). It has been
alternatively demonstrated that a CNN can achieve comparable
results [26] while avoiding drawbacks of the SFA. However,
without taking explicitly further interest into distinguishing
different problems from metadata. Addressing some of
the short-comings of these previous works, we previously
introduced [12] graph-based representations of search spaces
in combination with novel graph neural networks (GNN) as
an alternative for processing metadata. Particularly, showing
that under the additional inclusion of a channel for fitness
values, these can effectively distinguish different optimization
problems and outperform more conventional methods.
However, these still neglect the time-dependent nature of the
retrieved metadata and thus perform only poorly in scenarios
where the inputs in the fitness channel are not informative.
Therefore, to further advance the state of methodology
and address this open issue, we specifically look in the
following into end-to-end architectures for spatio-temporal
data processing. While using the previously introduced
graph-based methodology for spatial feature extraction, we
take inspiration from methodology originally proposed for
activity recognition and time series classification, for temporal
data processing.

III. SPATIO-TEMPORAL DATA PROCESSING

A. Spatial Feature Extraction

In the following, we will use as mentioned for spatial
feature extraction graph-based approaches as introduced by
[12]. Besides graph-based data formats in the form of tu-
ples of adjacency matrices and feature matrices (A,X) with
A ∈ R

N×N and X ∈ R
N×F , the use of specialized

graph neural network [27], [28], particularly so called graph
convolutions (GCNs) [13] as defined by

H(n) = σ(n)(Â H(n−1)W(n)), (1)

is central to their method. Where W(n) ∈ R
F×F ′

is a weight
matrix, H(0) = X, as well as Â being an effective adjacency
matrix descriptive of the structure of the graph. While in
principle, different methods to perform convolution operations
on graphs exist (e.g. [28], [29]), the approach based upon
the operation by Kipf & Welling [13] is particularly elegant,
because in principle it is based upon a low-order heat diffusion
model. Thus, the first two multiplicative terms in Eq. (1) can be
interpreted as computing ’heat’ propagation within the graph
structure. Note, that due to this physical interpretation, these
convolutions do not take in account the importance which
difference node features might have.
To address this issue, we will consider within our work
additionally graph attention operations (cf. Fig. 2) as originally
introduced by [30] in which the elements of the effective
adjacency matrix are explicitly learned through a regression
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function Âij := f(hi,hj) during training. Where the regres-
sion function is given by

f(hi,hj) =
exp

(
LeakyReLU

(
[hT

i W||hT
j W]a

))
exp

(∑
k∈Ni

LeakyReLU([hT
i W||hT

kW]a)
) ,
(2)

where a ∈ R
2F ′

is a vector with trainable weights, || a
concatenation operation, Ni the neighborhood of a reference
node i inclusive of itself and hi,hj ,hk are row vectors of the
feature matrix X. To stabilize the training of a graph attention
network, [30] additionally suggest to use instead an average of
K individual attention operations, so called ’attention heads’,
such that Eq. (1) is modified to

H(n) = σ(n)

(
1

K

K∑
k=1

Âk H(n−1)W
(n)
k

)
. (3)

In principle, given the aforementioned graph convolution and
attention operations, we have all ingredients together to build
a variety of different graph neural networks for spatial feature
extraction.

B. Temporal Data Processing
1) CNN-based Time Series Classification: While a great

variety of different approaches have been proposed within
the literature [31], we focus in the following particularly on
discriminative deep network methods that can be trained in an
end-to-end manner [32]. Particularly popular to this regard are
architectures which are centered upon simple 1d convolution
operations. Given a multi-variate time series signal X ∈ R

T×d

with d dimensions of length T , with H(0) = X convolution
operations are then iteratively applied such that

Hij = σ(Σl,pH(i−1)×s+l,pWl,p) (4)

with non-linearity σ(·), s being a stride and the filter matrix
being given by W ∈ R

T×d. Note that, within this framework
the multi-variate nature of the time series is accounted for by
means of treating these as multi-channeled signals, while the
time dimension is kept being treated as 1-dimensional. For
our purposes, two particular CNN-based architectures are of
most interest. Where the first one has been dubbed within
the literature as Fully Connected Network (FCN) [33] and the
second one simply as Encoder (ENC) [34]. Both architectures
are high-performing for either multivariate or short-time series,
while at the same time lightweight in terms of trainable
parameters [32]. We refer the interested reader for more in-
depth details to available literature [33], [34].

2) ANN-RNN-based Spatio-Temporal Activity Recognition:
Combinations of ANNs for feature extraction and RNNs for
sequential processing have been established for applications
of activity recognition in multimedia data-streams [35], [36],
vehicle behavior prediction [37] and pre-miRNA classifica-
tion [38]. The most common instantiation is in the form
of a CNN-LSTM which is directly trained in an end-to-
end manner. Within our work, we specifically propose GNN-
RNN architectures for processing metadata generated by op-
timization algorithms. Particularly, using the aforementioned
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Fig. 2. Illustration of the difference between graph convolution [13] (left)
and graph attention operations [30] (right). While the graph convolution only
propagates node features based upon the number of neighborhood connections,
graph attention operations explicitly allow nodes with more important features
to be valued higher when features are propagated in a neighborhood.

GCN and GAT operations from Sec. III-A for spatial feature
extraction. The particular RNN we use is either a simple
recurrent neural network (sRNN), a gated recurrent unit (GRU)
or long short-term memory (LSTM). Considering an input
sequence x1, · · · ,xT , for T time-steps, a simple recurrence
can be formulated through [39], [40]

ht = tanh(b+Wht−1 +Uxt),

and ŷt = σ(c+Vht),
(5)

where ht is the hidden output and ŷ the predicted label for
input element xt, as well as b, c, W, V being bias vectors
and weight matrices and σ(·) an activation function. This
architecture transforming the entire input sequence into an
output sequence of equal length T is known as being many-
to-many. Neglecting the second equation and only calculating
the last hidden output hT , we retrieve an architecture which is
known as many-to-one. Within our implementation [41], we
will neglect the second equation and only use ht as output. In
comparison to this simple RNN (sRNN), the state-of-the-art
can be considered to be posed by the long short-term memory
(LSTM) network. The LSTM can be described in total six
update equations

ft = σ(Wf · [ht−1,xt] + bf ),

it = σ(Wi · [ht−1,xt] + bi),

C̃t = tanh(WC · [ht−1,xt] + bC ]),

Ct = ft ∗Ct−1 + it ∗ C̃t,

ot = σ(Wi · [ht−1,xt] + bo)

(6)

and at last the computation of the hidden state

ht = ot ∗ tanh(Ct), (7)

which can be used analogous to the second equation in (5)
to calculate the step-wise output. Note, that ∗ denotes a
component-wise product. A key difference of the LSTM to
the sRNN is the explicit introduction of gating mechanisms in
the first three lines of Eq. (6) through memory cells Ct. These
not only dynamically control the influence of past hidden
states on future ones, but are also an essential milestone in
enabling and mitigating problems with the training of RNNs
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Fig. 3. Simplified schematics of the end-to-end architectures used within our work. From left to right: Graph neural network under simple concatenation of
input graphs (GNN), graph neural network as spatial feature extractor with CNN-based time series classification architecture on top (GNN-FCN & GNN-ENC)
and at last GNN-based spatial feature extraction with recurrent network for temporal processing on top (GNN-RNN).

on datasets with long-term dependencies. However, due to
the large amount of parameters introduced, LSTMs cannot
always be considered to be a reasonable choice. To keep the
novelties introduced by LSTMs, but at the same time prune
their complexities, the so called Gated Recurrent Unit (GRU)
has been alternatively introduced. Defined by in total four
equations

zt = σ(Wz · [ht−1,xt] + bz),

rt = σ(Wr · [ht−1,xt] + br),

h̃t = tanh(Wh · [rt ∗ ht−1,xt] + bh),

ht = (1− zt) ∗ ht−1 + zt + h̃t,

(8)

the gated recurrent unit shares obvious similarities to Eq.(6),
however skips intermediate steps introduced by the calculation
of the memory cell Ct.

IV. EXPERIMENTAL STUDIES

A. Generation of Synthetic Metadata

As no agreed upon reference datasets exist of yet, we have
to reside in the following to explicitly create one by ourselves.
For this reason, we use in the following the symmetric opti-
mization function set from our previous study [12], which con-
sists out of the commonly used Ackley, Griewank, Rastrigin
and Sphere function (e.g. see for reference [42]) as illustrated
in Fig. 6, which either have exponential ∼ 1−exp(−|x|) or
quadratic ∼ x2 global symmetric funnel structure, different
periodicities superimposed on them, as well as a single global
optimum contained at the origin. As evolutionary search
algorithm (EA) we use the (µ+λ) Evolution Strategy [42]. We
initialize the start population only in the corner of the search
space defined by [sb/2, sb]

d, where sb is the upper boundary
and d = 3. As otherwise, the crossover operator will lead to
rapid convergence due to the central position of the global
optimum.
We configure the EA with µ = λ = 10, i.e. a population
size of 10, strategy parameter σ ∈ [0.1, 2.0] for a reference
size of sb = 5.12 and crossover and mutation probability

of 0.5. To convert metadata into a structured data format,
we explicitly use a graph-structure evolved using a growing
neural gas to map out the search space. Using the nodes of
this graph structure, a solution population Pg can then be
converted into a structured data format zg ∈ R

N×F by finding
the closest graph node to each solution in Pg , and summing
up solutions associated with them. Note, that we do not
consider a fitness channel within our study. Similar to [24], we
distinguish between growth and non-growth regions explicitly
by calculating for successive generations g → g + 1 the
vectors ∆zg and z∗g , where the first one encodes changes
in the solution distribution under application of the EA, and
the second one invariant parts. We explicitly use within our
experiments time-series generated from running the EA for 20
iterations, and generate 1000 samples for each benchmark. To
accommodate for the varying search space size, we rescale σ
by a factor sb/5.12 accordingly.

B. Network Configuration and Training

Because we will evaluate and compare in the following in
total 12 different neural networks architectures, we have to
ensure that they are configured and trained in a way such that
to enable a fair comparison. Though, admittingly our emphasis
is not on finding out which architecture is in theory the best,
but instead which one can be considered to be reasonably
efficient and performant under a fixed budget.
Therefore, at best we only minimally modify the previously
elaborated architectures. Within all experiments, we use a
GNN either based upon GCN or GAT operations for spatial
feature extraction. The architecture of the spatial feature
extractor is based upon the originally proposed one by [26],
however with the adjustments for processing graph data as
suggested within our previous study [12] (cf. Fig. 1) using
graph convolution and coarsening layers [14], [43], as well
as 10-d output features. For the GAT-based feature extraction,
we simply replace the convolution layers. Note, that GAT
architectures explicitly introduce the number of attention heads
K as a hyperparameter.
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Fig. 4. Critical difference diagrams for the comparison of all GCN and GAT architectures from Tbl. II and III on the 20 time-steps long dataset (top), as
well as the subset of GCN architectures on the 20 time-steps long dataset (center) and 10 time-steps long dataset (bottom). Note, that on the horizontal axis
the total number of achievable ranks is denoted, while the bent lines springing from the labels indicate the rank of the architecture. Architectures connected
by a thick black line are statistically indistinguishable in performance.

TABLE I
HYPERPARAMETERS AND TESTING RANGES FOR THE DIFFERENT

ARCHITECTURES. NOTE THAT FOR SIMPLICITY RNN* DENOTES SRNN, GRU
AND LSTM, AS WELL AS ARGS HIDDEN NODES AND ATTENTION HEADS.

Epochs Batches Learning Rate Args∗

Range - 2n q × 10z 2n n

GCN 300 256 0.001 - -
GAT 300 256 0.001 - 3

GCN-FCN 300 16 0.001 - -
GCN-ENC 300 12 0.00001 - -
GCN-RNN* 300 256 0.001 8 -

GAT-FCN 300 16 0.001 - 3
GAT-ENC 300 12 0.00001 - 3
GAT-RNN* 300 256 0.001 8 3

For temporal data processing, we either use a CNN or RNN-
based component as illustrated in Fig. 3. For training the
architectures, we set an upper fixed budget of 300 epochs and
use for all architectures the Adam optimizer [44]. We vary
the batch size according to 2n between 8 to 256. In principle,
the usage of large batch sizes of 256 can be justified for
most architectures. However, the FCN and ENC architectures
exhibit unstable training behavior when doing so. We therefore
can verify as previously suggested [32], that smaller batches of
size 16 and 12 exhibit significantly better training performance
for each. For the learning rate, we likewise can confirm the
suggestion for the ENC architecture by [32]. For the number
of attention heads in the GAT architectures, we consider K in
the interval [3, 8]. We find that K = 3 proves to be a good
choice. As the performance gain with more attention heads is
at best only minimal and mostly accompanied with significant
computational overhead. Noteworthy, the GAT architectures

may also benefit from smaller learning rates. However, in
the investigated range of q × 10z for q ∈ {0.5, 1.0} and
z = −5, · · · ,−3, this gain was at best only minimal. At last,
we tune the hyperparameter for the number of hidden nodes in
the RNN architectures in the range of 4 to 128. We find that the
usage of 8 hidden neurons exhibits the best performance. Note,
that this seems to somewhat reflect the product of number of
classes and node features #C ·F . All final hyperparameters
are listed in Tbl. I.

C. Statistical Performance Comparison

For performance comparison we reside in the following to
the validation accuracy after 300 epochs under consideration
of a 80-20 training to test data split and the estimated wall
clock time in reference to a NVIDIA Tesla V100-SXM2-16GB
provided as a cloud instance [45]. The latter is a necessity,
as even though if a particular configuration may exhibit high
training performance, it can be potentially rendered infeasible
for practical applications by the produced computational over-
head.
Because retrieved validation accuracies are subject to stochas-
tic variation, we therefore reside in the following towards
taking the median from in total 30 training runs. As however,
most of the the performance values are distributed non-
Gaussian, we further need to conduct additional statistical
testing. Particularly, we reside in the following to what one
may dub in analogy to [32] as a Kruskal-Wallis-Holm test,
meaning that we first use the Kruskal-Wallis test to reject the
null hypothesis, and subsequently perform tuplewise unpaired
Wilcoxon rank-sum tests, for which we additionally use the
Holm-Bonferroni correction.
To visualize the performance of the different architectures we

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 19,2024 at 15:49:05 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
COMPARISON OF ALL TESTED ARCHITECTURES IN TERMS OF RANK (R) OF THE PERFORMANCE DATA SETS, MEAN VALIDATION ACCURACY AND

ESTIMATED WALL CLOCK TIME (WCT) IN REFERENCE TO A CLOUD GPU INSTANCE CALCULATED FROM IN TOTAL 30 TRIALS EACH.

Architecture WCT (20) Accuracy (20) RΣ(20) RGCN(20) Accuracy (10) RGCN(10)

GCN ≈ 0.78 min 68.84% 4.84 2.86 62.53% 4.97
GAT ≈ 130.00 min 63.56% 10.01 6.10 62.51% 4.84

GCN-FCN ≈ 20.00 min 65.67% 6.83 4.04 62.22% 5.20
GCN-ENC ≈ 21.36 min 63.95% 9.81 5.97 64.05% 2.95
GCN-sRNN ≈ 8.75 min 65.82% 6.85 4.08 62.86% 4.48
GCN-GRU ≈ 6.25 min 68.42% 4.77 2.88 64.33% 2.62
GCN-LSTM ≈ 6.25 min 67.96% 3.44 2.08 64.03% 2.95

TABLE III
PERFORMANCE VALUES FOR THE GAT ARCHITECTURES IN IN TERMS OF

RANK (R), MEAN VALIDATION ACCURACY AND ESTIMATED WALL CLOCK
TIME (WCT) FOR IN TOTAL 30 TRIALS EACH.

Architecture WCT (20) Accuracy (20) RΣ(20) RGAT(20)

GAT-FCN ≈ 2600 min 67.50% 4.03 2.56
GAT-ENC ≈ 2400 min 62.13% 11.38 6.66
GAT-sRNN ≈ 2775 min 65.38% 7.48 4.47
GAT-GRU ≈ 2750 min 67.00% 4.82 3.02
GAT-LSTM ≈ 2460 min 67.68% 3.74 2.40

use critical difference diagrams. Meaning that, architectures
are ranked from 1 to M , where M is the total number of
compared architectures, and statistically similar architectures
are indicated by a connected line. To calculate the ranking
r(D) of a performance dataset D for each architecture, we
derived

r(D) = M − M − 1

|D|(N − |D|)|

|D|∑
i=1

Wi, (9)

in which we perform the sum over the total number of
observations of a performance dataset |D| with N being the
total number of measurements from all performance data sets,
further Wi being the number of observations a particular
observation i in D dominates in the remaining M−1 datasets.

D. Discussion of Results

Recorded performance values and critical difference di-
agrams are given in Tbl. II & III and Fig. 4. First of all,
the most obvious observation is that the GAT architectures
create a large computational overhead with an increase in
training time of up to ≈ 2800 mins in reference to the
GPU instance. Note however, that due practical reasons we
use for computations of the GAT architectures TPU instances
instead. Thus reducing the overhead by at least 50-70%.
Comparing the architectures with GCN and GAT as domain-
level feature extractors altogether, we find that the perfor-
mance increase in regards to mean validation accuracies is
at best only minimal. Ranging for the GAT-FCN up to 1.83%.
Overall, considering the large computational overhead and
the minimal performance improvement, the usage of GAT-
based architectures cannot to be justified. Thus, due to to their
high practicality, we therefore take in the following our GCN

architectures under closer scrutiny. We find that the GCN-
GRU and GCN-LSTM exhibit highest performance in the 10
and 20 time-steps long datasets, followed up by either the
GCN architecture for the long time-series or ENC architecture
for the short-time series. Interestingly, the ENC architecture
performs significantly worse on the long time-series dataset,
while the FCN architecture performs slightly better. This is
somewhat surprising, as we are dealing in both scenarios with
comparably short time-series. Though, somewhat reflecting
results from [32]. An interesting observation is also, that
the GCN architecture under input concatenation significantly
strives on longer time-series, while the input concatenation
with GAT layer performs in comparison in both scenarios
suboptimal.

E. Interpretation of the Learned Metadata Characteristics

A natural interest arising when dealing with learning tasks
involving complex datasets is to interpret what a predictive
method has actually learned. We therefore analyze obtained
feature spaces and time-dependent characteristics. A repre-
sentative feature space obtained using LDA and the GCN
architecture under input concatenation is plotted in Fig. 5.
Notably, the network learned to separate benchmark functions
according to whether they have globally a strong quadratic
funnel structure with ∼ x2 or not. While for instance, the
Rastrigin function in Fig. 6 has the same funnel structure,
it also features a strong periodicity superimposed on top of
it. Thus, significantly distorting the behavior of the EA on a
global level. Note, that this is unlike to the Griewank function,
which has a less pronounced periodicity.
At last, we use the so called class activation map (CAM) for
the GCN-FCN to peek into what parts of the time-series are
making the most important contribution for predicting a certain
class c. The CAM value for a class c is calculated with

CAMc(t) =
∑
m

wc
mAm(t), (10)

where Am(t) is the output of the m-th filter at time-step t
of the FCN architecture and wc

m is the weight connecting
the filter output with the output neuron zc of the SoftMax
classification layer. Note, that for this analysis we explicitly
remove intermediate hidden layers of the classification head
used in the prior experiments.
Overall, we find that the median CAM values in Fig. 5 reflect
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Fig. 5. Top panel: Visualization of learned features from the concatenated
GCN architecture for the 20 time-steps data set. Bottom panel: Median CAM
values learned for the different classes of benchmark functions for the 20
time-steps data set (Ackley, Griewank, Rastrigin & Sphere) from top left to
bottom right.

slope characteristics of the different benchmarks. Notably, for
the three functions with quadratic funnel structure ∼ x2, the
CAM assigns a high importance to the interval between the
2nd and 8th time-step which reflects fast convergence. This
phase is elongated to the 15th generation for the Rastrigin
function, which features significant distortions on a global
level. While for Griewank, which is globally similar to Sphere,
the local distortions become only important around the 12th
step due to the algorithm becoming stuck. Note, that for the
Ackley function with a flat and concave funnel structure of
∼ 1−exp(−|x|), the early regions of the time-series have
higher importance.

V. CONCLUSIONS & OUTLOOK

In conclusion, we found that among our proposed archi-
tectures GCN-GRUs and LSTMs demonstrate most consistent
performance on variable time series lengths and high efficiency
in terms of accuracy and training time. Further, we also
demonstrated that the CAM for interpretable learning with
time series data can help to understand as well as reflect global
properties of the different problem-dependent search behaviors
of the optimization algorithm. Note, that while we could have
used different algorithms to this regard, we would expect them
to behave vaguely similar on the chosen benchmarks.
For future studies, we suggest to consider alternatives to GAT
for learning spatial anisotropies, as well as the development of
a CAM for RNNs. The goal in a future study would also be to

Fig. 6. Slope topologies of the different benchmarks with global optimum in
the bottom corner of which we analyze the learned metadata characteristics
by the FCN architecture of the problem-dependent search behavior with the
CAM. From top left to bottom right: Ackley, Griewank, Rastrigin & Sphere.

explicitly predict an algorithm or configuration within an early
classification scenario [46]. Though, noteworthy the flexibility
of RNN architectures could also foster the integration of
agent-environment models from reinforcement learning. To
conclude our paper, we emphasize that essential convergence
theorems of evolutionary optimization algorithms are formu-
lated in terms of spatio-temporal relationships arising within
the algorithm-problem interaction [47]. Thus, the learning
of spatio-temporal relationships not only fosters insight into
the problem-dependent behavior of optimization algorithms
in a goal and reward-oriented manner [48], but can also be
considered to be based upon theoretical first-principles. It is
interesting to consider what it means to extrapolate this to
scenarios concerning open-endedness [49] and dynamically
changing objectives.
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New Evolutionary Computation, pages 75–102. Springer, 2006.

[3] Nikolaus Hansen. The CMA Evolution Strategy: A Tutorial. arXiv
preprint arXiv:1604.00772, 2016.

[4] Tobias Uller, Armin P Moczek, Richard A Watson, Paul M Brakefield,
and Kevin N Laland. Developmental bias and evolution: A regulatory
network perspective. Genetics, 209(4):949–966, 2018.

[5] Loizos Kounios, Jeff Clune, Kostas Kouvaris, Günter P Wagner, Mihaela
Pavlicev, Daniel M Weinreich, and Richard A Watson. Resolving the
paradox of evolvability with learning theory: How evolution learns
to improve evolvability on rugged fitness landscapes. arXiv preprint
arXiv:1612.05955, 2016.

Authorized licensed use limited to: UNIVERSITY OF BIRMINGHAM. Downloaded on July 19,2024 at 15:49:05 UTC from IEEE Xplore.  Restrictions apply. 



[6] Tom M Mitchell. The need for biases in learning generalizations. Tech-
nical Report CBM-TR-117, Laboratory for Computer Science Research,
Rutgers University, 1980.

[7] David H Wolpert and William G Macready. No free lunch theorems for
optimization. IEEE Transactions on Evolutionary Computation, 1(1):67–
82, 1997.
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