
Still Alive: Extending Keep-Alive Intervals in P2P
Overlay Networks

Richard Price and Peter Tino
School of Computer Science
University of Birmingham

Birmingham, United Kingdom
Email: {R.M.Price, P.T ino}@cs.bham.ac.uk

Abstract—Nodes within existing P2P networks typically ex-
change periodic keep-alive messages in order to maintain net-
work connections between neighbours. This paper investigates a
number of algorithms which allow each individual connections to
extend the interval between successive keep-alive messages based
upon the likelihood that a corresponding node will remain in the
system.

Several studies have shown that older peers are more likely to
remain in the network longer than their short-lived counterparts.
Therefore using the distribution of peer session times and
the current age of peers as key attributes, we propose three
algorithms that increase the interval between successive keep-
alive messages as nodes become more reliable.

By prioritising keep-alive messages to nodes that are more
likely to fail, our algorithms reduce the expected delay between
failures occurring and their subsequent detection. Failed con-
nections can incur expensive lookup timeouts and increases the
network’s vulnerability to partitioning. We extensively analyse
the properties of these algorithms and compare them to the
standard periodic keep-alive mechanism using simulations based
upon measured network data.

I. INTRODUCTION:

Peer-to-peer (P2P) networks share computer resources or
services through the exchange of information between partic-
ipating nodes. These nodes form a virtual network overlay
by creating a number of connections with one another. Two
connected nodes are often referred to as neighbours, with each
node’s list of neighbours being called it’s routing table. Due to
the transient nature of nodes within P2P systems any connec-
tion formed should be monitored and maintained to ensure the
routing table is kept up-to-date. Without maintenance routing
tables gradually deteriorate and the efficiency of the resulting
network’s structure declines as new nodes join the network
and existing nodes leave.

While joining a P2P network necessitates contacting other
nodes, leaving a network does not. Nodes may leave a P2P
overlay ungracefully, i.e without informing their neighbours.
Therefore all connections are typically both monitored and
maintained in unstructured networks; such as Gnutella [1] and
BitTorrent [2] and structured networks such as Chord [3],
Pastry [4] and Bamboo [5]. Typically P2P networks predefine
a fixed keep-alive period k, a maximum interval in which
connected nodes must exchange messages. If no other message
has been sent within this interval then keep-alive messages are

exchanged to ensure the corresponding node has not left the
system.

P2P systems maintain links according to a fixed periodic
interval to detect node failures in a predictable and timely
fashion. Keep-alive messages act as a proactive recovery
mechanism replacing broken connections before they are
needed by the network. However, defining a suitable interval
between keep-alive messages is dependant upon the rate of
churn, the collective effect of many nodes joining and leaving
a network in parallel. Churn itself is a poorly understood
process resulting in the interval between keep-alive messages
often being determined by rules of thumb. Although each
keep-alive message is relatively small, around 40 bytes, they
may be sent as frequently as once every 30 seconds for each
connection a node maintains. Keep-alive messages can be seen
as the cost of connections whilst they are inactive.

We propose extending these intervals gradually as connec-
tions between nodes age. Studies have shown the more time a
node has spent in the network the more likely it is to remain in
the system in the future. Therefore as the estimated reliability
of nodes increases we seek to reduce the traffic overhead of
each individual connection.

However, extending the intervals between maintenance mes-
sages alone may causes failures to mount up, reducing the
efficiency of the overall network and increasing the chance
of partitioning. When failures do occur, connections need to
be replaced in a timely fashion to avoid being forcefully
disconnected from the network. This paper investigates these
trade-offs by comparing two alternative maintenance strategies
using a simulation based upon measured network data.

The contributions of this paper are:
• We analytically derive the probability of nodes remaining

online according to the time they have already spent in
the network given the distribution of session times.

• Accordingly we propose three alternative algorithms that
reduce the number of keep-alive messages sent to nodes
as they become more likely to remain in the system.

• We evaluate the proposed algorithms using real network
data from the RedHat9 BitTorrent distribution and net-
work data from LegalTorrents1. Using our trace driven

1We would like to thank Matson Systems for providing us fully anonymized
data from the LegalTorrents.com community trackers.



simulation platform we compare our algorithms to the
standard periodic approach commonly used throughout
P2P networks.

The rest of the paper continues as follows. Section two
provides an overview of existing work relating to techniques
commonly used to maintain connections within P2P overlays.
Section three explains the well established standard keep-alive
mechanism, details how we can predict the remaining session
time of nodes and we introduce our Probabilistic, Predictive
and Budget based keep-alive algorithms. Our experimental
methodology is described in section four. Section five presents
the results of the simulated experiments, comparing our al-
gorithm with the standard keep-alive algorithm. Finally, we
conclude in section seven.

II. RELATED WORK:

While research often focuses upon making P2P network
overlay’s flexible, efficient and robust [3], [4], [5], the research
community has identified reducing the cost of maintenance
as an open problem that is important in terms of overall
performance [6].

The simplest alternative to periodic maintenance is to not
send any keep-alive messages at all and reactively recover
from failed connections as network messages timeout. This
solution is ineffective as failures are only detected when
connections are needed.

The designers of Bamboo [5] highlight the benefits of
periodic maintenance, showing reactive recovery may add to
network congestion by creating a positive feedback loop and
exacerbating existing problems. Bamboo also calculates the
expected round-trip timeout (RTTO) for each neighbour based
upon previous observations of round-trip times. If an keep-
alive acknowledgement is not received once the RTTO has
expired a neighbour is considered to have failed.

In [7], the authors propose an adaptive keep-alive mech-
anism and show how it can be applied to the Chord DHT
[3]. Using an artificial exponential distribution to model node
failure their algorithm allows each node to measures the rate
of churn in the network and adjusts the frequency of mainte-
nance accordingly. However, as exponential distributions are
memoryless they cannot be used to predict remaining uptime
based upon current uptime as we do in this paper.

Work by Dedinski et al [8], effectively reduces the overhead
of keep-alive messages through cooperation between nodes
with mutual neighbors. Although the frequency of keep-alive
messages remains the same, instead of nodes responding to all
it’s neighbors in parallel, they propose that each node coordi-
nates it’s own keep-alive messages so they are sent in sequence
by it’s common neighbors. Our approach is complimentary to
the cooperative-keep-alive algorithm but does not rely on the
cooperation of a group of nodes.

In [9] So and Sirer formally analyse the tradeoff between
resource consumption and detection latency when creating
multi-node failure detectors. They produce two optimal algo-
rithms, given that the average session time of each neighbour
is known. Their first algorithm minimises the failure detection

delay which given a bandwidth budget achieves the smallest
average delay between failures occurring and their subsequent
detection. While their second bandwidth minimising algorithm
will ensure a specified delay target is reached whilst consum-
ing as small amount of bandwidth as possible.

The prediction mechanism in [9] relies on the strong cor-
relation between a node’s previous session time(s) and it’s
next session time. However knowledge of each individual
node’s previous session time(s) may not available and may
be impossible to learn as nodes may be unlikely to reconnect
to one another especially in unstructured networks. Whereas
the prediction mechanism used in this paper relies upon
knowledge of a population, or subset of the population’s,
previous session times and current node uptime which are
likely to be more readily available in most networks.

The authors of [10] compare the performance of five
distributed failure detectors empirically. They show nodes
can reduce the average delay between failures occurring and
subsequently being detected by sharing information with one
another. The study compares four alternative sharing algo-
rithms with the standard keep-alive algorithm which we also
use as a baseline. Unlike in this paper, none of the distributed
failure detectors examined in [10] are predictive.

In [11], Castro et al. examine the cost of maintaining
structured P2P overlay networks presenting a self-tuning al-
gorithm that adapts itself to the environment. By estimating
the number of nodes in the network and the failure rate of
these nodes; suitable maintenance rates can be set to meet
reliability requirements. However, unlike in [11] our proposed
algorithms are not limited to specific topological structures
and can be applied to any kind of network.

Past work has investigated selecting neighbours that are
likely to be the most reliable to improve the performance of
P2P networks [12]. By selecting the oldest available nodes
as neighbours, Bustamante and Qiao [12] show that these
connections tend to last longer and therefore need to be
replaced less often producing more robust networks.

Recently work by Li et al in [13], proposed a DHT
based protocol called Accordion which allows each node to
expand and contract it’s routing table dependent on a internal
bandwidth budget. By learning of new connections via lookups
and evicting existing connections that are likely to have failed,
the Accordion protocol can find a suitable trade off between
the performance of lookups and the incurred bandwidth cost
of many connections. Although Accordion does utilise the
standard keep-alive mechanism it does adapt it’s behaviour
according to the probability of nodes being online.

III. APPROACH:

In this section we first describe the standard approach of de-
tecting failures used by many P2P networks, then analytically
show how the distribution of node session times can be used
to predict the likelihood of nodes remaining online. We then
use this analysis to propose two algorithms that send fewer
keep-alive messages as the expected time a node will remain
in the network increases as nodes age.



(a) A node’s session time Si = di = ai, where Di is
the delay period

(b) The average delay period is k/2

Fig. 1. The standard keep-alive algorithm

A. The Standard Keep-Alive Algorithm:

The Standard Keep-Alive (SKA) algorithm is widely used to
detect the departure of ungraceful nodes. Ungraceful nodes do
not inform their neighbours upon leaving the network, leaving
any incoming connections ignorant to the change in network
topology. Typically two connected nodes each assume the
other to be ’alive’ in the network for a duration of time defined
by the keep-alive period, k. This keep-alive period defines
the maximum interval that a connection between two nodes
should remain inactive. If no message has been exchanged
within a keep-alive period, keep-alive messages are exchanged
to ensure the connection is still alive.

Nodes that are part of the network respond to a received
keep-alive message by returning an acknowledgment message.
As nodes that have left the network do not respond this
allows any failed connection to be detected and subsequently
replaced. In practice unacknowledged keep-alive messages are
re-sent multiple times at short intervals. This minimises the
risk of false positives where a sent or acknowledged keep-alive
message has been somehow lost in the underlying network.

Many existing P2P systems send keep-alive messages ac-
cording to a fixed periodic interval, this interval is typically
determined by the application developer and therefore uniform
across all nodes in a network. The designers of BitTorrent [2]
for example have set the default keep-alive period to k = 120
seconds. Not only is this strategy simple to implement, it is
also simple to calculate the number of keep-alive messages
sent during a given period. In a network of N nodes with D
being the average node degree, there are (N · D) · 2 keep-
alive messages sent and subsequently acknowledged every k
seconds.

Figure 1a illustrates node i arriving in the network at time
ai and leaving at time di, it’s session time Si = di − ai. At
time tv node v connects to node i and begins sending periodic
keep-alive messages with an interval of k seconds. At time di
node i departs the network ungracefully, node v does not learn
of this departure until the subsequent keep-alive that is sent but
goes unacknowledged. As a result there is period Di during
which node v falsely believes that node i is still present within
the network. We call this period the failure detection delay.

The size of the failure detection delay period is directly
proportional to the keep-alive period k. As neighbour selection
is typically not dependent upon current session times and
nodes must select nodes already present within the network
as neighbours, the join time tv can occur at any point during

a nodes session time with equal probability. Therefore the
leave time di of neighbours falls uniformly at random within
any single keep-alive interval. The average delay between a
node leaving a network and subsequently being detected is
k/2 using a periodic keep-alive mechanism as illustrated in
Figure 1b.

A fixed periodic interval can be viewed as a centralised,
static and deterministic mechanism; maintaining overlays in
an predictable, reliable and non-adaptive fashion. While the
periodic interval can be manually adjusted in response to
network conditions, in practice this may be difficult to do. Not
only would all nodes in the network have to be individually
contacted, defining a suitable interval is dependent on many
factors such as current network conditions which may be
difficult to obtain and furthermore may change rapidly.

B. Predicting a Node’s Online Status:

Although early studies of popular P2P networks reported
node session times could be modeled by an exponential
distribution; more recent studies have shown they can be more
accurately described by Pareto or Weibull distributions [14],
[15], [12].

Importantly exponential distributions are well-known to be
memoryless, meaning the probability of a node being online
is not dependent on the time a node has already spent in the
network. However studies such as [14], [15], [12] have shown
nodes that spend longer in the network become more likely to
remain in the network for longer durations. In this paper, we
analyse how this widespread property of P2P networks can be
used to reduce the number of maintenance messages needed
as nodes age.

In any reasonable node session time distribution; as the
amount of time since a node has been last observed Tsince
increases, the probability Ponline that the node is still online
decreases. In other words, the longer it has been since we last
contacted a node the more likely it is that node has left the
network.

Accordion introduced in [13], calculates this probability
explicitly by assuming each node’s session time is drawn from
a heavy-tailed Pareto distribution as reported by [16]. The
’freshness’ of each entry in a node’s routing table is then
estimated, replacing entries that are deemed likely to have
failed; thereby expanding and collapsing the size of a node’s
routing table.

Li et al in [13] highlight that Ponline is dependent not only



Tsince, but also conditional upon Talive, the time a node has
already spent alive in the network as shown in (1):

Ponline = P (session > (Talive + Tsince)|session > Talive)
(1)

Although a heavy-tailed Pareto distribution is limited by
having a minimum possible value determined by the scale
parameter β, these short-comings can be overcome by using
a shifted Pareto distribution as highlighted by [17].

Importantly Pareto distributions are heavy-tailed, as a result
as Talive grows the less dependent Ponline becomes on Tsince.
In other words, the longer a node has been online in the
system the more likely it is to remain online in the future.
Such distributions can be characterised as UBNE (used-better-
than-new-in-expectation) as older peers tend to remain longer
in the network than their younger counterparts.

The recent study by Stutzbach et al in [15], explains how a
Weibull distribution can be used to better describe the session
times of nodes in multiple BitTorrent networks. Due to their
centralised tracker, BitTorrent networks can provide highly
accurate data to the nearest second regarding the time that
individual nodes join a network, the duration of their stay and
when they depart. This gives researchers a valuable insight into
the poorly understood process of churn; the collective effect
of many nodes joining and leaving a network in parallel.

A Weibull distribution, as shown in (2), are commonly
used to model lifetimes in reliability engineering due to
their flexibility and versatility. The shape α and and scale λ
parameters can be used to describe exponential distributions
when α = 1.

P (session < t) = 1− e−(t/λ)α (2)

As nodes spend longer in the network the probability of
them remaining online increases allowing us to reduce the
number of keep-alive messages being sent. Rather than using
the limited Pareto distribution we utilise the more flexible
Weibull distribution, consequently the probability that a node
remains online, after being online Talive and observed Tsince
seconds ago, is:

Ponline =
e−((Talive+Tsince)/λ)α

e−(Talive/λ)α
(3)

The basic idea of this work is to regularly examine each
connection a node maintains and only send keep-alive mes-
sages once these connections are likely to have failed. We
therefore propose three solutions with this aim in mind.

C. ProbKA: The Probabilistic Keep-alive Algorithm:

Similar to the standard keep-alive algorithm, the Proba-
bilistic Keep-Alive (ProbKA) algorithm specifies a regular
interval k for all connections. Although the interval k is the
same size for all connections, each connection is maintained
independently. Once this interval has expired the ProbKA
algorithm examines the individual connection and determines

the likelihood that the corresponding neighbour remains on-
line. With probability Poffline = 1−Ponline (where Ponline is
given by (3)) a keep-alive message is sent to the corresponding
node to determine it’s online status.

The ProbKA algorithm has several advantages over the stan-
dard keep-alive algorithm. Firstly it is adaptive; as nodes spend
more time in the network the likelihood of them remaining in
the network gradually increases. Keep-alive messages are sent
stochastically causing fewer to be sent as nodes age and are
perceived to become more reliable. Secondly it can be easily
tuned to network conditions by using suitable parameters λ
and α which define the distribution of node session times.

However by extending the intervals between keep-alive
messages we are also potentially extending the delay between
a failure occurring and it’s subsequent detection. While the
SKA algorithm can guarantee that all failures will be detected
after at most k seconds the ProbKA algorithm as it stands does
not. As Tsince grows the probability of not sending a keep-
alive message grows increasingly small but is always non-
zero. To ensure the failures do not go undetected a maximum
interval should be set after which a keep-alive message must
be sent.

Furthermore, the ProbKA algorithm in it’s simplest form has
no lower bound on the probability that keep-alive messages
should be sent. It’s likely that application designers may wish
to specify a minimum likelihood of a neighbour being online
by setting a threshold Pthresh. Once the probability that a node
remains online drops below Pthresh a keep-alive message is
then sent to ensure it’s still alive.

D. PredKA: The Predictive Keep-alive Algorithm:

The second proposed algorithm, the Predictive Keep-alive
(PredKA), gradually increases the size of keep alive period
based upon the likelihood of nodes being online in the
system increasing as nodes age. While the ProbKA algorithm
examines each connection at regular intervals and determines
whether a keep-alive should be sent, the PredKA algorithm
defines the size of the next interval after which a keep-alive
must be sent.

An advantage of the PredKA algorithm over the ProbKA
approach is that it does not rely on a stochastic process to
determine when the next keep-alive message is sent. The
disadvantage is once a connection has failed the interval until
the next keep-alive message may be very large, while the
ProbKA algorithm has regular intervals at which a keep-alive
message may be sent.

Using the Weibull distribution as described by (2) and
probability of nodes remaining online given by (3) as a basis;
we can ensure that any network message sent between two
connected nodes will be delivered with probability of at least
Ponline, whilst adjusting the keep alive period according to
value of Tsince as given by:

Tsince = (Tαalive − λα · log(Ponline))1/α − Talive (4)



Using (4), the PredKA algorithm defines a time in the future,
Tsince seconds away, to send the next keep-alive message. The
PredKA algorithm explicitly calculates the size of the interval
until the next keep-alive message based upon the time a node
has spent in the network Talive and the target likelihood that
the corresponding node will remain in the network Ponline. As
this likelihood increases as Talive increases node send fewer
keep-alive messages to their longer-lived neighbours.

However, the PredKA algorithm also suffers from the same
limitation as the ProbKA algorithm described earlier. To en-
sure failures do not go undetected beyond a certain acceptable
threshold a maximum interval size needs to be defined.

E. BudgetProb: Probabilistic Keep-alives with a Budget:

The third algorithm we propose is the Budget probabilistic
algorithm (BudgetProb), which maintains the connections of
each node according to a bandwidth budget β. While the SKA
algorithm can be thought of as dividing bandwidth equally
amongst all connections, the BudgetProb algorithm divides the
bandwidth budget proportionality to each connection depen-
dant on the likelihood of individual connections failing. The
BudgetProb algorithm allocates connections that are likely to
fail more of the overall bandwidth budget. These connections
therefore benefit by having smaller keep-alive intervals result-
ing in a reduction in the average failure detection delay.

In this paper we experiment with several values of the
bandwidth budget β, equivalent to the bandwidth consumed
by the standard periodic approach using a range keep-alives
intervals.

At a regular interval r each node calculates for each
neighbour P ioffline the probability of neighbour i failing after
the next r seconds. The BudgetProb algorithm specifies the
interval for each connection according to (5), where p is the
packet size of keep-alive message:

k =
(p ∗ 2)
β

/
P ioffline
N∑
j=1

P joffline

∀i, 1 ≤ i ≤ N (5)

F. Gossiping Failures:

To further reduce the failure detection delay we augmented
our ProbKA and PredKA algorithms with a simple gossip
mechanism. This mechanism shares information regarding
node failures with their mutual neighbours.

Each time that node X sends a probe to node Y it also
learns of all Y ’s neighbours n(Y ). If node X discovers Y
has failed it then informs other neighbours in n(Y ) of this
event. These mutual neighbours then immediately probe Y
themselves to ensure news of the failure is correct without
informing others of the outcome. Although node X may have
an outdated view of n(Y ), nodes that are not informed of Y ’s
failure will eventually detect it themselves. Further examples
of alternative and more complex sharing-based, gossip-based
and flooding-based mechanisms are evaluated in [10], [8].

While gossip-based and similar mechanisms reduce the
failure detection delay this comes at the cost of increased

Fig. 2. The median time remaining in the network increases as nodes spend
longer in the network.

control overhead. Additional messages are required to inform
mutual neighbours, who themselves check a node has failed.
The next section details our experimental methodology which
we use to analyse and compare the algorithms described above.

IV. EXPERIMENTAL METHODOLOGY:

In order to accurately evaluate and compare the mechanisms
described above our simulations are based on real data from
a P2P network. Using a publicly available [18] and well
researched BitTorrent tracker log [15], [19], we simulate the
peers of the RedHat9 BitTorrent network as they appear during
a portion of the five month logged period. Furthermore we also
use real network data covering a thirteen day period in March
2009 from LegalTorrents.com.

At the time the RedHat9 torrent was released BitTorrent
clients only supported single file downloads, which may
suggest that node session times would be similar across all
nodes, with each node downloading the same file and leaving
the network shortly afterwards. However this is not the case,
the RedHat9 tracker log contains statistics for over a 180, 000
individual peers in total, with a large proportion of these
being short-lived sessions with just 19% of sessions eventually
completing the file transfer [19]. Many studies have shown
short-lived peers tend to make up a large proportion of sessions
in many different P2P networks [15], [20], [21]. To further
avoid any bias we also utilise the LegalTorrents data that
includes nearly 3,000 file distributions with over 100,000
individual sessions using almost 50 unique clients.

Although the trace data contains a small number of gaps
greater than four minutes, the largest continuous measured
period is over 79 days. Figure 2 shows how the median time
remaining in network increases as nodes spend longer in the
network during this period.

Stutzbach et al. in [15] highlight that while current uptime
is on average a good predictor of remaining uptime it exhibits
high variance. The consequences of inaccurately predicting a



node’s remaining session time in this context may result in
an increased delay in detecting a failed node. The cost of
this increased failure detection delay is application-specific.
Applications that cannot afford messages to timeout, due to
latency requirements or the shear size of message, should not
purely use uptime as the basis of their maintenance algorithms.
However, applications that are more resilient to latency and
churn can afford to increase the potential failure detection
delay and reduced bandwidth spent on maintaining inactive
connections.

A BitTorrent tracker acts as a centralised rendezvous point
for a BitTorrent network, with nodes contacting the tracker
upon joining, sending periodic updates and, if they leave
gracefully, informing the tracker upon their departure. As the
tracker logs all this data it provides us with the arrival and
departure times of actual peers to the nearest second. This
enables us to model the process of churn both accurately and
realistically.

The accuracy of BitTorrent tracker logs often compares
favorably to other sources of network data, especially crawler
based traces that periodically probe a subset of nodes within
a network at regular intervals. As crawlers must progressively
probe the network; the more nodes a crawler incorporates
increases the interval between successive probes, this interval
currently ranges anywhere between four and thirty minutes
[15], [11], [16]. Crawler based techniques cannot accurately
capture session times smaller than the granularity of the
network trace. As a result, BitTorrent tracker logs are amongst
the most extensive and realistic sources of peer session times
currently available.

By processing the tracker logs we can determine when
any graceful node joins and subsequently leaves the network
during the torrent’s lifetime. Although the tracker cannot detail
the departure time of ungraceful nodes, as nodes update their
progress periodically at thirty minute intervals we can assume
they leave at most thirty minutes after their last update. We
do not exclude ungraceful nodes from our simulation, instead
we add a uniformly random time of at most thirty minutes
since they last updated their progress in order to determine
when they leave the simulated network. We also utilise a fail-
stop model in which all nodes graceful and ungraceful do not
inform their neighbours upon departing the network.

As this work solely focuses upon maintenance messages
the model does not replicate any P2P lookup, routing or file
distribution algorithms. Instead we simulate an unstructured
network containing the nodes as they appear in Redhat9
BitTorrent network during a portion of the five month period
contained in the tracker log. We use the tracker log solely
to specify when each node joins the simulated network and
subsequently leaves.

The tracker log does not provide us with the connections
each node creates and maintains while part of the network.
Whilst online each node creates and maintains a fixed number
of connections D with other existing nodes selected at random,
all our experiments set D = 30. As we only simulate
maintenance messages we believe this work is general enough

to be applied to any type of P2P network overlay regardless
of it’s structure.

Our experiments simulate the first five days of the Legal-
Torrents data and the largest continuous measured period of
RedHat9 BitTorrent network. The simulation begins cold, i.e
without any peers. The first twelve hours of the network
then act as a warm-up period as nodes populate and leave
the network according the events given by the trace. Once
the warm-up period is finished each node then creates D
connections with existing nodes and we report the maintenance
of these connections over the subsequent four and a half sim-
ulated days. The results we present below are averaged over a
series of ten experiments each. Furthermore, all our algorithms
Ponline is estimated by (3) using parameters α = 0.39 and
λ = 3962 the RedHat network data and α = 0.41 and
lambda = 2632.25 for the LegalTorrents data.

V. RESULTS:

We evaluate each mechanism based upon three main criteria
cost, the average failure detection delay and maximum failure
detection delay. The failure detection delay is time that elapses
between a failure occurring and subsequently being detected.
The cost of each strategy equates to the average bandwidth
consumed per node per second online. Formally the cost C is;
the number of keep-alive messages sent s and acknowledged
a, multiplied by the size of each keep-alive message p which
is then divided by the sum of all node session times T as
given in (6). These performance metrics have also been used in
other evaluations of failure detection algorithms including [9],
[10]. We set the cost of a single keep-alive message to be 40
bytes, which is equivalent to header of a IP packet containing
a TCP segment of size 0. The higher the cost value the more
bandwidth each node is consuming while part of the network.

C =
(s+ a) · p

T
(6)

Figure 3a compares the cost incurred by our probabilis-
tic keep-algorithm (ProbKA) with a probability threshold
Pthresh = 99% and the widely used standard keep-algorithm
(SKA). The results shows our ProbKA algorithm significantly
reduces the cost in terms of bandwidth each node incurs
while part of the network. By only sending a keep-alive
message when a node is likely to be offline the ProbKA
algorithm reduces the number of messages sent and therefore
acknowledged. As the PredKA algorithm has no keep-alive
period k parameter it cannot be compared side-by-side to the
SKA algorithm in this fashion.

Nodes actually gain very little information from acknowl-
edged keep-alive messages. They only serve to inform a
node that it’s neighbour was online at the time of receipt.
It does not guarantee that node will remain online or that
the connection will still be active if data is sent along it. An
acknowledged keep-alive message merely informs the SKA
algorithm that a connection does not currently need to be
replaced. While an acknowledged keep-alive message also
updates the information regarding the time a node has been



(a) (b) (c)

Fig. 3. Performance comparison of strategies in terms of cost and delay.

online, Talive, and resets the time since we last observed a
node, Tsince for the ProbKA and PredKA algorithms. This
information is then used to calculate the probability of a node
still being alive in the future and reduce the number of keep-
alive messages sent.

As would be expected, by doubling the size of the keep-
alive interval the cost incurred by the SKA algorithm is
reduced by half. As the ProbKA algorithm does not send
a keep-alive period unless a node is likely to have left the
network, increasing the keep-alive interval does not have a
dramatic effect on reducing the number of messages sent. By
not sending keep-alive messages the ProbKA and PredKA
algorithm also reduce the number of messages each peer
has to respond to, thereby reducing the number of required
acknowledgment messages.

However, by extending the interval between successive
keep-alive messages we are making an inherent trade-off
between the cost of maintenance and the potential delay
between a failure occurring and it’s subsequent detection. To
investigate this trade-off further we measured the average and
maximum delay using both the SKA and ProbKA algorithms
with a range of interval sizes. The average delay is simply the
average time it takes for a failed connection to be detected,
whilst the maximum delay is the longest time it takes for a
failed connection to be detected during the entire simulation.
The latter can be seen as the worst case scenario.

Figure 3b shows the average failure detection delay incurred
by the SKA and ProbKA algorithms. The SKA algorithm
by regularly checking each connection ensures node failures
are detected and replaced consistently. As illustrated earlier
in Figure 1b the average delay is very close to k/2 as node
failures can occur uniformly at random within the interval of
k. The ProbKA algorithm by extending these intervals also
extends the average delay. Lower values of Pthresh where also
tested but resulting in lower costs and higher delays.

Figure 3c shows the maximum delay, the longest time it
takes for a failed connection to be detected during the entire
simulation. This can be used as an worst case scenario, the
SKA algorithm performs particular well and should always
detect a node failure within k time steps. With no upper bound

on the interval between keep-alive messages the ProbKA
algorithm can incur a significantly higher maximum delay in
comparison, although such large delays are rare.

While the ProbKA algorithms increase the interval between
successive keep-alive messages, the self-organising nature of
the network further facilitates the extension of these intervals.
Stutzbach et al showed [14] that as networks age, long-lived
peers tend to become connected to one another. This forms a
stable core of long-lived peers in unstructured networks. This
stable-core occurs via self-organization, peers only replace
connections upon failure and connections with short-lived
peers are replaced relatively quickly compared to connections
with long-lived peers. Therefore long-lived peers by simply
replacing failed connections, by forming new connections with
existing peers selected at random, will eventually find other
long-lived peers. Long-lived peers in our trace-driven exper-
iments will also tend to eventually connect with other long-
lived peers. The ProbKA and PredKA algorithms subsequently
send fewer keep-alive messages as these nodes are likely to
remain online for longer. However, when long-lived peers
eventually fail the time until the next keep-alive message is
likely to be an extended interval which reduces the incurred
cost but also causes the average delay to be increased.

We also examined the behaviour of the ProbKA algorithm
as the network ages. Our observations showed as the simulated
network begins to age the cost of maintenance per node
gradually decreases while the average failure detection delay
remains largely the same. Further experiments also show the
PredKA algorithm behaves in a similar fashion.

As detailed earlier, several studies have shown that as nodes
spend more time in the network they are more likely to remain
in the network longer. This can be explained intuitively, a
node that has spent ten hours in the network is more likely
to remain in the network for an additional hour than a node
that has only been in the network five minutes. Our ProbKA
and PredKA algorithms exploit this behaviour by extending the
interval between successive keep-alive messages as nodes, and
therefore the connections between nodes, age. As the simula-
tion progresses and the network ages, the connections between
nodes also age; causing fewer and fewer keep-alive messages



(a) (b)

Fig. 4. Mean and median performance versus cost comparison of the SKA, ProbKA and PredKA algorithms

to be sent and as a result needing to be acknowledged. The
SKA algorithm however has a fixed periodic interval and does
not adapt it’s behavior in an aging network resulting in the
average cost per node remaining constant.

However Figure 3 does not clearly illustrate the how the
ProbKA and SKA algorithms compare against one another.
Figure 4 shows a cost versus performance comparison in
log-log scale of the SKA, ProbKA and PredKA algorithms
allowing a direct analysis to be made. Figure 4a shows
that ProbKA and PredKA algorithms consistently reduces the
average failure detection delay when compared to the SKA
algorithm at similar cost levels. Figure 4a also shows the
median delay incurred by the ProbKA and PredKA algorithms
is even further reduced when compared to the SKA algorithm.
As the failure detection delay is uniformly distributed within
the keep-alive period when using the SKA algorithm the mean
and median delays are the same. This indicates the mean
failure detection delay incurred by the ProbKA and PredKA
algorithms is skewed by a small number of relatively large
failure detection delays as shown in Figure 3c.

Undetected failed connections may incur expensive timeouts
as lookups are forwarded through them, reducing the network’s
efficiency. Furthermore, the larger the delay between failures
occurring and being detected increases the likelihood of a node
being forcefully disconnected from the network. A Forced
disconnect occurs when all a node’s neighbours fail without
being replaced. A node that is no longer connected to any
other online node is effectively disconnected from the network.
There are a number of approaches that can be taken to reduce
the number of forced disconnections. In order to reduce the
likelihood of all a node’s neighbours leaving the network we
could simply increase the number of connections each node
maintains. Alternatively, node’s can maintain each connection
more frequently to ensure any node failures that do occur are
then detected and replaced with as small a delay as possible.

Furthermore, Figure 4 shows the performance of the
PredKA algorithm is comparable to ProbKA algorithm but

is very sensitive to adjustments to the Ponline parameter. The
results shown set Ponline = 0.97, 0.98 and 0.99 from left to
right respectively. As the PredKA algorithm is deterministic
it will always send a keep-alive message at the end of
each keep-alive period. Whereas the ProbKA algorithm is
stochastic, it may send a keep-alive message at the end of
each keep-alive period based upon the likelihood of a having
failing occurred. Furthermore, the keep-alive period is fixed
for ProbKA algorithm. Despite these differences the ProbKA
and PredKA algorithm perform around a similar level with the
ProbKA algorithm being slightly more flexible.

Figure 4b shows that augmenting the SKA, ProbKA and
PredKA algorithms with a gossip mechanism causes the
average detection delay to be significantly reduced without
significantly increasing the cost. As nodes inform mutual
neighbours of any failures that are detected news of a failed
node travels fast. Furthermore, the increased overhead of gos-
sip mechanism is relatively small, typically just 0.01 bytes per
node per second in all experiments. This includes the cost of
the additional messages triggered by gossip mechanism. When
failures are detected, by using a simple gossiping mechanism
as described earlier, nodes cooperate and quickly inform their
mutual neighbours who then detect it for themselves. The vast
majority of used bandwidth is spent sending and successfully
acknowledging keep-alive messages, relatively few failures are
detected compared to the number of keep-alive messages sent
and acknowledged. As the additional overhead of the simple
gossip mechanism is so low we retain the overall reduction in
terms of cost and delay of ProbKA and PredKA algorithms
when compared with the SKA algorithm. These results show
that our approach complements other optimisations to the
standard keep-alive mechanism [10], [8].

However, even with the gossip mechanism the maximum
delay by our probabilistic mechanism is relatively high. As
the gossip mechanism allows nodes to inform a potentially
outdated set of mutual neighbours nodes that are interested in
a failure may not be informed. These nodes have to discover



Fig. 6. Mean and median performance versus cost comparison of the SKA,
ProbKA and PredKA algorithms using network data from LegalTorrents.

the failure for themselves which may incur long detection
delays. More advanced gossip mechanisms such as a flooding
mechanism used in [8] or epidemic based approaches studied
in [10] could be used to minimise, but not eliminate, the
likelihood of outdated neighbourhood sets. An alternative,
effective and simple response is to define a maximum interval
size after which a keep-alive message must be sent.

Figure 5 compares the BudgetProb and SKA algorithms
with and without gossip side-by-side. The main advantage
of the BudgetProb algorithm is that allows a keeps the cost
of maintenance within a the bandwidth budget. Again our
adaptive approach consistently reduces the mean and median
failure detection delay without increasing the maintenance
cost. Figure 5a shows our adaptive BudgetProb approach re-
duces the median delay over 20% on average. When combined
with the simple gossip mechanism our BudgetProb algorithm
performance increases, Figure 5b shows the mean and me-
dian delay is reduced by 35% on average. By prioritising
connections that are more likely to fail our budget based
approach shortens the keep-alive interval for younger nodes
whilst extending the intervals for older nodes. Shorter keep-
alive intervals for younger peers results in more failures being
detected earlier whereas the standard keep-alive algorithm sets
all intervals to a uniform length.

Finally, Figure 6 shows the performance of all three adaptive
algorithms upon the LegalTorrents network data which con-
tains the session data of nodes over numerous file distributions.
The results not only show our approach is applicable to
other network data but also that the mean and median failure
detection delay is even further reduced in the LegalTorrents
data than in RedHat9 distribution. The BudgetProb algorithm
reduces mean and median failure detection delay by 14%
and 30% respectively. The ProbKA algorithm performs well
at higher cost levels but it’s performance degrades as the
bandwidth consumed is reduced. Nodes from LegalTorrents
data appear to remain longer in the network when compared

with the RedHat9 session times. One possible explanation for
this behaviour is some BitTorrent clients now allow downloads
to be automated via RSS (Really Simple Syndication) feeds.
Nodes controlled by such automated clients will generally
remain in the network until a pre-defined upload to download
ratio has been reached and therefore may stay longer than
user-controlled clients.

VI. FUTURE WORK:

We have examined one purpose of keep-alive messages;
to check if the connection between two peers is still alive.
However, keep-alive messages are also used to minimise
the risk of external devices such as a routers, NATs and
firewalls dropping connections due to extended periods of
inactivity. Such devices may operate with limited resources
and often utilise a Least-Recently Used algorithm to ensure
idle connections are not kept for prolonged periods. However
the behaviour of these devices not only vary greatly from
one another but also over time. Current solutions are often
ad-hoc depending upon rules of thumb or crude estimations.
We are currently exploring alternative keep-alive algorithms
that can flexibly handle the behaviour of these devices whilst
minimsing the number of keep-alive messages sent.

The creation of an adaptive keep-alive algorithm which
requires no prior knowledge also remains a priority. Although
the PredKA, ProbKA and BudgetProb algorithms can be
adapted to specific node session time distributions by adjusting
the α and λ parameters, an algorithm that learns from node
failures as they occur could potentially be deployed in any
P2P overlay network to reduce the overhead of maintenance.

Further investigation is also needed to fully understand how
strategies can best cope with massive node failure that occur
suddenly. Designing effective responses to sudden widespread
failure may lead to interesting and new network recovery
mechanisms. We would also like to more thoroughly in-
vestigate the self-organising behaviour of P2P networks and
specifically focus on how this affects their performance across
several distributions of node session times.

VII. CONCLUSION:

This paper presented three new algorithms based on the
principle that nodes become more reliable as they age, these
algorithms reduce the average failure detection delay when
compared directly to the widely deployed standard periodic
approach. In doing so they reduce the mean and median failure
detection delay by as much as 35% while operating at a similar
level of cost.

Using a trace-driven simulation based upon measured net-
work data we empirically evaluated both of the proposed
algorithms against the widely deployed standard keep-alive
algorithm. With a BitTorrent tracker log as the basis of the
simulation platform we ensured the complex process of churn
was modeled both accurately and realistically.

We also showed, our approach can complement other keep-
alive mechanisms. By adding a simple gossip mechanism
the average failure detection delay can be further reduced



(a) (b)

Fig. 5. Performance versus Cost comparison of budget based algorithms.

without expending substantial additional bandwidth. Although
the ProbKA, PredKA and BudgetProb algorithms reduce the
mean and median delay the maximum failure detection delay
is potentially increased. However, by defining a maximum
interval size the failure detection delay can be limited to a
suitable upper bound.

Overall, setting an appropriate keep-alive period is a trade-
off between the incurred bandwidth and the failure detection
delay. All of our adaptive algorithms increase the interval
between successive keep-alives as nodes age and their esti-
mated reliability increases. As short-lived peers constitute a
large proportion of sessions and by prioritising connections
that are more likely to fail the average failure detection
delay is reduced. Furthermore, as a side-effect of our adaptive
algorithms nodes that remain in the network longer receive and
have to respond to fewer keep-alive messages. In conclusion
this paper has shown that predictive mechanisms can be
successfully used to reduce the average failure detection delay
whilst limiting traffic overhead of maintenance protocols and
there is significant potential for further work.

REFERENCES

[1] “The gnutella protocol specification v0.4,” World Wide Web,
http://www9.limewire.com/developer/gnutella protocol 0.4.pdf.

[2] I. BitTorrent, “Bittorrent,” World Wide Web, http://www.bittorrent.com/.
[3] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan,

“Chord: A scalable Peer-To-Peer lookup service for internet applica-
tions,” in Proceedings of the 2001 ACM SIGCOMM Conference, 2001,
pp. 149–160.

[4] A. I. T. Rowstron and P. Druschel, “Pastry: Scalable, decentralized object
location, and routing for large-scale peer-to-peer systems,” in Proc. of
the IFIP/ACM Int. Conf. on Distributed Systems Platforms Heidelberg.
Springer-Verlag, 2001, pp. 329–350.

[5] S. Rhea, D. Geels, T. Roscoe, and J. Kubiatowicz, “Handling churn
in a dht,” in ATEC ’04: Proceedings of the annual conference on
USENIX Annual Technical Conference. Berkeley, CA, USA: USENIX
Association, 2004, pp. 10–10.

[6] S. El-Ansary and S. Haridi, “An overview of structured overlay net-
works,” in Theoretical and Algorithmic Aspects of Sensor, Ad Hoc
Wireless and Peer-to-Peer Networks, 2005.

[7] G. Ghinita and Y. M. Teo, “An adaptive stabilization framework for
distributed hash tables,” in IPDPS, 2006.

[8] I. Dedinski, A. Hofmann, and B. Sick, “Cooperative keep-alives: An
efficient outage detection algorithm for p2p overlay networks,” in P2P
’07: Proceedings of the Seventh IEEE International Conference on Peer-
to-Peer Computing. Washington, DC, USA: IEEE Computer Society,
2007, pp. 140–150.

[9] K. C. W. So and E. G. Sirer, “Latency and bandwidth-minimizing failure
detectors,” SIGOPS Oper. Syst. Rev., vol. 41, no. 3, pp. 89–99, 2007.

[10] S. Zhuang, D. Geels, I. Stoica, and R. Katz, “On failure detection algo-
rithms in overlay networks,” in Proceedings IEEE INFOCOM 2005. 24th
Annual Joint Conference of the IEEE Computer and Communications
Societies, vol. 3, 2005.

[11] R. Mahajan, M. Castro, and A. Rowstron, “Controlling the cost of
reliability in peer-to-peer overlays,” in In IPTPS, 2003.

[12] F. Bustamante and Y. Qiao, “Friendships that last: Peer lifespan and its
role in P2P protocols,” in Proc. of IWCW. Springer, 2003.

[13] J. Li, J. Stribling, R. Morris, and M. F. Kaashoek, “Bandwidth-efficient
management of dht routing tables,” in NSDI’05: Proceedings of the 2nd
conference on Symposium on Networked Systems Design & Implemen-
tation. Berkeley, CA, USA: USENIX Association, 2005, pp. 99–114.

[14] D. Stutzbach, R. Rejaie, and S. Sen, “Characterizing unstructured
overlay topologies in modern p2p file-sharing systems,” in In Proc. of
Internet Measurement Conference (IMC), 2005.

[15] D. Stutzbach and R. Rejaie, “Understanding churn in peer-to-peer
networks,” in IMC ’06: Proceedings of the 6th ACM SIGCOMM on
Internet measurement. New York, NY, USA: ACM Press, 2006, pp.
189–202.

[16] S. Saroiu, K. P. Gummadi, and S. D. Gribble, “Measuring and analyzing
the characteristics of napster and gnutella hosts,” Multimedia Syst.,
vol. 9, no. 2, pp. 170–184, 2003.

[17] D. Leonard, V. Rai, and D. Loguinov, “On lifetime-based node fail-
ure and stochastic resilience of decentralized peer-to-peer networks,”
in SIGMETRICS ’05: Proceedings of the 2005 ACM SIGMETRICS
international conference on Measurement and modeling of computer
systems. New York, NY, USA: ACM, 2005, pp. 26–37.

[18] M. Izal, “Bittorrent traces and tools,” World Wide Web, March 2009,
http://mikel.tlm.unavarra.es/ mikel/bt pam2004/.

[19] M. Izal, G. Urvoy-keller, E. W. Biersack, P. A. Felber, and A. A. Hamra,
“Dissecting bittorrent: Five months in a torrents lifetime,” 2004, pp. 1–
11.

[20] S. Saroiu, P. Gummadi, S. Gribble et al., “A measurement study of peer-
to-peer file sharing systems,” in Proceedings of Multimedia Computing
and Networking, vol. 2002, 2002, p. 152.

[21] K. P. Gummadi, R. J. Dunn, S. Saroiu, S. D. Gribble, H. M. Levy,
and J. Zahorjan, “Measurement, modeling, and analysis of a peer-to-
peer file-sharing workload,” in SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles. New York, NY,
USA: ACM, 2003, pp. 314–329.


