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Abstract

Recently, we have developed the hierarchical Generative Topographic Mapping (HGTM), an inter-

active method for visualisation of large high-dimensional real-valued data sets. In this paper, we propose

a more general visualisation system by extending HGTM in 3 ways, which allow the user to visualise

a wider range of datasets and better support the model development process. (i) We integrate HGTM

with noise models from the exponential family of distributions. The basic building block is the Latent

Trait Model (LTM). This enables us to visualise data of inherently discrete nature, e.g. collections of

documents in a hierarchical manner. (ii) We give the user a choice of initialising the child plots of the

current plot in eitherinteractive, or automaticmode. In the interactive mode the user selects “regions

of interest”, whereas in the automatic mode an unsupervised minimum message length (MML)-inspired

construction of a mixture of LTMs is employed. The unsupervised construction is particularly useful

when high-level plots are covered with dense clusters of highly overlapping data projections, making

it difficult to use the interactive mode. Such a situation often arises when visualising large data sets.

(iii) We derive general formulas for magnification factors in latent trait models. Magnification factors

are a useful tool to improve our understanding of the visualisation plots, since they can highlight the

boundaries between data clusters.

We illustrate our approach on a toy example and evaluate it on three more complex real data sets.

Index Terms

Hierarchical model, Latent trait model, Magnification factors, Data visualisation, Document mining.

I. I NTRODUCTION

Topographic visualisation of multi-dimensional data has been an important method of data

analysis and data mining for several years [4], [18]. Visualisation is an effective way for domain

experts to detect clusters, outliers and other important structural features in data. In addition, it

can be used to guide the data mining process itself by giving feedback on the results of analysis

[23]. In this paper we use latent variable models to visualise data, so that a single plot may

contain several data clusters; our aim is to provide sufficiently informative plots that the clusters

can beseento be distinct rather than confining each model to a single cluster (as would be

appropriate for cluster analysis).

In a complex domain, however, a single two-dimensional projection of high-dimensional data

may not be sufficient to capture all of the interesting aspects of the data. Therefore, hierarchical
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extensions of visualisation methods [7], [22] have been developed. These allow the user to ‘drill

down’ into the data; each plot covers a smaller region and it is therefore easier to discern the

structure of data. Also plots may be at an angle and so reveal more information. For example,

clusters may be split apart instead of lying on top of each other.

Recently, we have developed a general and principled approach to the interactive construction

of non-linear visualisation hierarchies [27], the basic building block of which is the Generative

Topographic Mapping (GTM) [4]. GTM is a probabilistic reformulation of the self-organizing

map (SOM) [17] in the form of a non-linear latent variable model with a spherical Gaussian

noise model.

The extension of the GTM algorithm to discrete variables was described in [5] and a gen-

eralisation of this to the Latent Trait Model (LTM), a latent variable model class whose noise

models are selected from the exponential family of distributions, was developed in [14]. In this

paper we extend the hierarchical GTM (HGTM) visualisation system to incorporate LTMs. This

enables us to visualise data of an inherently discrete nature, e.g. collections of documents.

A hierarchical visualisation plot is built in a recursive way; after viewing the plots at a given

level, the user may add further plots at the next level down in order to provide more insight.

These child plots can be trained using the EM algorithm [10], but their parameters must be

initialized in some way. Existing hierarchical models do this by allowing the user to select the

position of each child plot in aninteractive mode; see [27]. In this paper, we show how to

provide the user with anautomaticinitialization mode which works within the same principled

probabilistic framework as is used for the overall hierarchy. The automatic mode allows the user

to determine both the number and the position of child LTMs in anunsupervisedmanner. This

is particularly valuable when dealing with large quantities of data that make visualisation plots

at higher levels complex and difficult to deal with in an interactive manner.

An intuitively simple but flawed approach would be to use a data partitioning technique (e.g.

[25]) for segmenting the data set, followed by constructing visualisation plots in the individual

compartments. Clearly, in this case there would be no direct connection between the criterion for

choosing the quantization regions and that of making the local low-dimensional projections. By

employing LTM, however, such a connection can be established in a principled manner. This is

achieved by exploiting the probabilistic nature of the model, which enables us to use a principled

minimum message length (MML)-based learning of mixture models with an embedded model
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selection criterion this approach has been used for Gaussian mixture models [11]1. Hence, given

a parent LTM, the number and position of its children is based on the modelling properties of

the children themselves – without any ad-hoc criteria which would be exterior to the model.

Previous experience has indicated that magnification factors may provide valuable additional

information to the user’s understanding of the visualisation plots, since they can highlight the

boundaries between data clusters. In [6], formulas for magnification factors were only derived

for the GTM. In this paper, we derive formulas for magnification factors in full generality for

latent trait models.

In the next section we briefly review the latent trait model. In Section III, a hierarchical latent

trait model is developed. Section IV presents the model selection criterion based on minimum

message length that we apply to mixtures of LTMs. Section V presents and discusses experimental

results and compares them with existing methods. We derive a general formula for magnification

factors in LTMs in Section VI. Finally, Section VII summarizes the key contributions of the paper.

II. T HE LATENT TRAIT MODEL (LTM)

Latent trait models [14] are generative models which are powerful and principled tools for

data analysis and visualisation. As a generalisation of the Generative Topographic Mapping

(GTM) [4], the latent trait model family [14] offers a framework which includes the definition

of appropriate probability models for discrete observations.

Consider anL-dimensionallatent spaceH, which, for visualisation purposes is typically

a bounded 2-D Euclidean domain, e.g. the square[−1, 1] × [−1, 1]. The aim is to represent

multi-dimensional data vectors{tn}n=1,...,N using the latent space so that “important” structural

characteristics are revealed. A non-linear function maps the latent space to the data spaceD =

<D. The latent plane (assuming a two-dimensional latent space) becomes a (non-linear) 2-D

manifold in the high dimensional data space.

For tractability, the latent space is discretized by introducing a regular array (or grid) ofK

latent pointsxk ∈ H, k = 1, . . . , K (which are analogous to the nodes of the SOM [18]). A

1This framework uses Jeffrey’s priors, which implies that the estimation of the model parameters is equivalent to a maximum

likelihood (ML) formulation. The MML criterion penalises overly-complex models but doesnot regularise the model parameters

themselves.
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uniform prior distribution is imposed over the latent pointsxk, leading to the following expression

for the unconditional data density of an observed data pointt ∈ <D

p(t) =
K∑

k=1

p(t|xk)p(xk) = K−1

K∑

k=1

p(t|xk). (1)

The conditional data distribution,p(t|xk), (conditioned on thekth latent space pointxk ∈ H is

modelled as a member of the exponential family in a parameterised functional form [2]

pB(t|xk,Θ) = exp {fΘ(xk)t −B(fΘ(xk))} p0(t). (2)

HereΘ is the parameter vector of the model,B(fΘ(xk)) = ln
∫

exp(fΘ(xk)t)p0(t) dt denotes

the cumulant generating function ofp(t|xk), and p0(t) is a factor independent ofΘ. Recall

that the exponential family includes the Gaussian and Studentt-distributions and also discrete

random variables such as the Bernoulli and multinomial distributions.

The functionf(·) represents a smooth mapping from latent to data space; in order to make

training fast,f has the form of a General Linear Regression model, and is defined byfΘ(xk) =

Θφ(xk), where Θ ∈ <D×M is a parameter matrix andφ(·) = (φ1(·), ..., φM(·))T , φm(·) :

H → <, is a fixed set ofM non-parametric nonlinear basis functions. These could be any

smooth functions; typically Gaussian radial basis functions are employed. A linear basis function

φ0(x) = 1,∀x, may be included to account for the bias term (which is set to the data mean).

The notationφk = φ(xk) will be used as a shorthand.

A latent trait model with fixed parametersΘ defines a density in the data space,

z : H → <D, z(xk) = b(ΘΦ(xk)) = b(Θf(xk)). (3)

This probabilistic interpretation is fundamental to our approach to constructing a hierarchy of

models. We refer to the manifoldf(H) as theprojection manifoldof the LTM.

LTMs are trained to maximize the likelihood of the training setζ = {t1, ..., tN} using an EM

algorithm [10], the M-step of which consists of solving the equation

TRTΦT = b(ΘΦ)GΦT (4)

for Θ, where the functionb(·) denotes the gradient of the cumulant functionB(·)2, Φ is an

M×K matrix with φk in its k-th column,T is the data matrix includingN data vectors{tn} as

2It is the inverse link function [21] of the noise distribution.
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columns,R = (Rkn)k=1,...,K,n=1,...,N andG is a diagonal matrix with elementsgkk =
∑N

n=1 Rkn,

whereRkn, computed via Bayes’ theorem in the E-step,

Rkn = p(xk|tn) =
p(tn|xk,Θ)p(xk)∑K

k′=1 p(tn|xk′ ,Θ)p(xk′)
, (5)

is the “responsibility” of the latent pointxk for generatingtn. The E-step and M-step are iterated

until the change in likelihood falls below a user-defined threshold.

Once trained, the LTM can be used for visualisation. To do this, the mapf has to be

‘inverted’ so that there is a point latent space corresponding to each data point. The latent

space representation of a pointtn is taken to be the mean of the posterior distributionp(xk|tn)

over the latent space. This can be computed using (5) and averagingRkn over k (because the

prior density for eachxk is equal).

III. G ENERAL FRAMEWORK FORHIERARCHICAL LATENT TRAIT MODELS

When dealing with large and complex data sets, a single global visualisation plot is often

not sufficient to get a good understanding of the relationships in the data. In order to represent

complex intrinsic information when visualizing large data sets, hierarchical visualisation systems

have been proposed and developed in the literature, [7], [27]. In [7], a locally linear hierarchical

visualisation system was defined. We have recently extended this system to hierarchies of non-

linear GTM projection manifolds in [27]. This paper showed that in many cases the use of a

non-linear latent space model significantly reduced the number of visualisation plots required to

get good inter-cluster separation and represent the data structure.

In this section we provide a general formulation of hierarchical latent trait mixture models.

The benefit of this to the user is that a wider range of conditional density modelspB(t|xk,Θ)

can be used. For example, binary data can be visualised using a Bernoulli distribution [14]. If

the data contains outliers, a Studentt-distribution may be more appropriate than the Gaussian

used in HGTM. Preliminary results of organising LTMs into a hierarchy have been encouraging

[15], and motivated the work described in this paper.

The hierarchical LTM arranges a set of LTMs and their corresponding plots in a tree structure

T . The Root is at level 1, children of level-` models are at level̀ + 1.

Each modelM in the hierarchy, except forRoot, has an associated parent-conditional mixture

coefficient, or prior,π(M|Parent(M)). The priors are non-negative and satisfy the consistency
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condition:
∑

M∈Children(N ) π(M|N ) = 1. Unconditional priors for the models are recursively

calculated as follows:π(Root) = 1, and for all other models

π(M) =

Level(M)∏
i=2

π(Path(M)i|Path(M)i−1), (6)

wherePath(M) = (Root , . . . ,M) is theP-tuple of nodes defining the path of lengthP in T
from Root to M.

The leaves(T ) of the tree are defined to be the set of nodes ofT without children. The

distribution defined by the hierarchical model is a mixture of distributions defined by the leaves

of T
P (t|T ) =

∑

M∈Leaves(T )

π(M)P (t|M). (7)

Non-leaf models have two roles in the hierarchy.

1) Every model is a leaf model at some point during the construction of the hierarchy.

2) Non-leaf models are useful for determining the relationship between sub-plots in the

hierarchy.

A. Training

The hierarchical LTM is trained using EM to maximize its likelihood with respect to the data

sampleζ = {t1, t2, . . . , tN}. Training of a hierarchy of LTMs proceeds in a recursive fashion.

First, theRootLTM is trained and used to visualize the data. Then the user identifies interesting

regions on the visualisation plot that they would like to model in a greater detail.

Having trained modelsN at level`, the expectation of the complete data likelihood of level-

(` + 1) is

< L`+1
comp > =

N∑
n=1

∑

N∈Nodes(l)

P (N|tn)

∑

M∈Children(N )

P (M|N , tn)

KM∑

k=1

RM
kn ln{π(N )π(M|N )P (tn,xMk )}

(8)

August 16, 2004 DRAFT



8

1) E-step: In the E-step, we estimate the posterior distribution of all hidden variables, using

the “old” values of LTM parameters. Given a data pointtn, we compute the model responsibilities

corresponding to the competition among models belonging to the same parent as

P (M|Parent(M), tn) =

π(M|Parent(M))P (tn|M)∑
M′∈[M] π(M′|Parent(M))P (tn|M′)

,
(9)

where

[M] = Children(Parent(M)). (10)

ImposingP (Root |tn) = 1, the unconditional (on parent) model responsibilities are recursively

determined by

P (M|tn) = P (M|Parent(M), tn)P (Parent(M)|tn). (11)

Responsibilities of the latent space centresxMk , k = 1, 2, ..., KM, corresponding to the compe-

tition among the latent space centres in each modelM, are calculated using (5).

2) M-step: In the M-step, we estimate the parameters using the posterior over hidden variables

computed in the E-step.

Parent-conditional mixture coefficients are determined using

π(M|Parent(M)) =

∑N
n=1 P (M|tn)∑N

n=1 P (Parent(M)|tn)
. (12)

ParametersΘ(M) of the LTM M are calculated by solving

TR(M)TΦT = b(Θ(M)Φ)G(M)ΦT , (13)

where R(M) = (RM
kn)k=1,...,K,n=1,...,N . RM

kn are scaled (by (11)) responsibilities (5),RM
kn =

P (M|tn)Rkn; G(M) is a diagonal matrix with elementsgMkk =
∑N

n=1 RM
kn.

When solving (13), if the link functionb(·) is the identity, one gets the closed form M-step

of HGTM3 [27], but in general a non-linear optimization algorithm is required. In the simplest

3Even though we treat GTM as a special case of LTM with spherical Gaussian noise model, (2) does not account for the

“width” parameter. We decided to use the simplified formulation (2), because it is sufficient for all other interesting noise models,

such as Bernoulli, Poisson, multinomial etc. In the case of spherical Gaussian noise model, solving (13) sets the means of the

Gaussians and the width parameter needs to be updated as in [27].
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case, we may employ a gradient-based inner loop M-step4:

∆Θ(M) ∝
{

TR(M)T − b(Θ(M)Φ)G(M)
}

ΦT . (14)

Training times are dependent on the dataset and the number of levels in the hierarchy. For

the examples presented in this paper (of up to 8000 data points), training times for the complete

hierarchy were in the order of 2–4 hours for a 1GHz Linux PC runningMATLAB . For data of a

fixed complexity, the algorithm scales linearly in the number of examples and the dimensionality

of the data space. Note that visualisation of a large dataset using a trained model is relatively

quick (less than a minute). Because our model can generalise, it is always possible to train it

on a smaller subset of the data and thus to tackle very large datasets in practice.

B. Model initialization

When initializing sub-models there are two things to determine: the number of sub-models

and the initial parameters of the sub-models. We view the problem of initializing sub-model

parameters primarily as one of locating which region of data space each sub-model should be

responsible for. To do this, regions of interest are defined by the user in the latent (visualisation)

space. The pointsci selected in the latent spaceH correspond to the “centres” of these regions.

These “centres” of the “regions of interest” are mapped back to the data space and Voronoi

compartments [1] defined by the mapped pointsz(ci) ∈ D, wherez is the map (3) of the corre-

sponding LTM, are calculated in the data space. In the case of a Gaussian noise model, the child

LTMs are initialized by local PCA in the corresponding Voronoi compartments [27]. When using

other noise models such as Bernoulli or multinomial distributions, the PCA-initialised LTMs are

in addition individually trained (section II) in their corresponding Voronoi compartments for 1

EM iteration. The EM iteration “settles” the component LTMs to their corresponding modelling

regions. Empirically, this initialisation strategy works very well. We perform this additional

initialization step when the PCA initialisation alone does not “match” the noise distribution

well, e.g. when the noise distribution is non-symmetric or the data space is discrete.

After the initialisation of each child model, the full hierarchical training described in section

III-A is used.

4In this partial M-step we could alternatively use iterative reweighted least squares [35].
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Fig. 1. An example of strongly overlapping clusters: visualisation of a collection of documents with a single Latent Trait

Model. The documents are classified according to the topic they cover. Each of10 topic classes is assigned a unique marker.

C. Plotting the projections

We adopt the strategy used in [7], [27] and take advantage of the probabilistic nature of our

model by plotting projections of all the data points on every plot, but modifying the intensity in

proportion to the responsibilityP (M| tn) (11) which each plot (sub-modelM) has for the data

point tn. Points that are not well captured by a particular plot will appear with low intensity.

IV. U NSUPERVISED LEARNING OF MIXTURES OFLTM S

In previous sections, we have developed a general framework for a visualisation hierarchy.

The user selects the “regions of interest” to select initial locations of child models and extend

the visualisation hierarchy. This method is powerful when the clusters are separated clearly in

the 2-D latent space. On the other hand, when facing a cluttered plot like that in Figure 1,

where thousands of data points are shown (with densely clustered and overlapping projections),

the user may be unable to determine where sub-models should be placed. In order to resolve

this problem, we have developed an alternative initialisation algorithm which decides both the

number of sub-models and their location automatically. As far as we are aware, there is no other

algorithm for automatic initialisation of sub-plots in a hierarchical visualisation model. In this

section we will focus solely on the algorithm for mixture models.
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A. MML formulation for unsupervised learning of mixture models

Given a setζ = {t1, t2, ..., tN} of data points, minimum message length (MML) strategies

select, among the models inferred fromζ, the one which minimizes length of the message

transmittingζ [28]. Given that the data is modeled by a parametric probabilistic modelP (ζ|θθθ),
the message consists of two parts – one specifying the model parameters, the other specifying

the data given the model: Length(θθθ, ζ) = Length(θθθ) + Length(ζ|θθθ).
The MML principle was first applied to unsupervised learning of mixture models in [29] and

was extended to hierarchical models in [8]. A computer program, Snob, that uses these principles

for both parameter estimation and model selection was described in [30]; this provides a flat

clustering model. The hierarchical model used in these papers differs from ours in three main

ways: firstly, only the leaf nodes define a probability density, while our hierarchy defines a density

at all levels; secondly, the earlier model has relatively simple distribution models for clustering,

while we allow more complex component models (LTMs) which support visualisation; thirdly,

a heuristic algorithm is used to train the hierarchy, while we use EM.

Recently, Figueiredo and Jain [11] have developed an MML framework for unsupervised

learning of mixture models; with the choice of a Jeffrey’s prior, the algorithm selects the

“appropriate” number of components while the parameters of each model are estimated by ML.

(A similar approach for other density models was formulated in [30] and [32]). The novelty

of their proposed approach is that parameter estimation and model selection are integrated in

a single EM algorithm, rather than using a model selection criterion on a set of pre-estimated

candidate models.

The particular form of MML criterion adopted in [11] is of the form̂θθθ = argmin
θθθ

L(θθθ, ζ),

where

L(θθθ, ζ) = − log P (θθθ)− log P (ζ|θθθ)+
1

2
log |I(θθθ)|+ c

2

(
1 + log

1

12

)
,

(15)

where I(θθθ) is the expected Fisher information matrix,|I(θθθ)| is its determinant, andc is the

number of free parameters, i.e. the dimension ofθθθ. This approach was first proposed in [33].

By imposing a non-informative Jeffreys’ prior [3] on both the vector of mixing coefficients

{π(M)} and the parametersΘ(M) of individual mixture components [11], the equation (15)
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becomes

L(θθθ, ζ) =
Q

2

∑

π(M)>0

log

(
N · π(M)

12

)
+

A

2
log

N

12
+

A(Q + 1)

2
− log P (ζ|θθθ),

(16)

where A is the number of mixture components with positive priorπ(M) > 0 and Q is the

number of free parameters of each individual mixture component. The use of a non-informative

prior is mathematically convenient, since it cancels out the Fisher information matrix termI(θθθ),

which is complex to analyse and very expensive to compute. However, such a prior is formally

equivalent to a Bayesian prior which favours parameter values around the values where the

model is most sensitive [31], which is less than ideal forp(Θ). We can justify the choice by the

very good empirical results that have been achieved [11] and by the fact that we will use this

criterion only for child model initialization and not for child model training. The Jeffrey’s prior

over mixing coefficients favours extreme estimates (0 or 1) more strongly than other priors (such

as minimum entropy and negative Dirichlet) but this stronger component pruning is beneficial

for this application.

Minimizing (16) with respect toπ(M) under the constraint that the priorsπ(M) sum to 1,

the following re-estimation formulas are obtained [11]:

π̂(M) =

max

{
0, −Q

2
+

∑N
n=1 P (M|tn)

}

∑
M′ max

{
0, −Q

2
+

∑N
n=1 P (M′|tn)

} , (17)

where component responsibilitiesP (M|tn) are determined by

P (M|tn) =
π(M)P (tn|M)∑
M′ π(M′)P (tn|M′)

, (18)

π(M) =

∑N
n=1 P (tn|M)∑A

M′=1

∑N
n=1 P (tn|M′)

(19)

Free parameters of the individual LTMs are fitted to the dataζ using the EM algorithm

outlined in section III applied to mixtures of LTMs5. This approach is not fully within the MML

formalism, since there is no regularisation of the LTM model parameters themselves: instead,

the mixing coefficients are regularised by (17). Note that LTMs corresponding to zeroπ̂(M)

become irrelevant and so (17) effectively performs component annihilation [11].

5A mixture of LTMs can be considered a two-level hierarchical LTM. Mixture components are children of theroot.
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B. The algorithm

Given the training dataζ = {t1, t2, ..., tN}, we use the MML approach to find the “appropriate”

number of mixture component LTMs that “explain”ζ in a probabilistic manner. LTMs that are

good probabilistic generating models of the data capture the data distribution well and hence

yield “good” visualisation plots6. To start the training process, we choose the maximum number

of componentsAmax we are willing to consider at the next level. This can be set to a large

value and the MML training procedure will select the optimal number of components no greater

than Amax. If more components are needed, then the child model can be further refined at

lower levels of the hierarchy. Then, the algorithm initialises the component LTMs by randomly

selectingAmax points fromζ and applying the method described in section III-B. The selected

Amax points act as centres of regions of interest in the data space. In other words, they play the

role of vectorsz(ci) from section III-B.

As in [11], we adopt the component-wise EM (CEM) algorithm [9], i.e. rather than simulta-

neously updating all the LTMs, we first update the parametersΘ(1) of the first LTM (13), while

parameters of the remaining LTMs are fixed, then we recompute the component responsibilities

{P (M|tn)} (18) and mixture coefficients{π̂(M)} (17) for all components in the mixture.

After this, we move to the second component, updateΘ(2) in the same way, and recompute

{P (M|tn)}, {π̂(M)}, etc., looping through all mixture components. If one of the component

LTMs dies (̂π(M) = 0), redistribution of its probability mass to the remaining components

increases their chance of survival. After convergence of CEM, we still have to check whether a

shorter message length can be achieved by using a smaller number of mixture LTMs (down to

A = 1).7 This is achieved by iteratively killing off the weakest LTM (with the smallestπ̂(M))

and re-running CEM until convergence. Finally, the winning mixture of LTMs is the one that

leads to the shortest message lengthL(θθθ, ζ) (16).

This training algorithm provides a very flexible approach to building a visualisation model.

The user can specify a different maximal number of child plots at each decision point, and there

6This is a non-trivial issue, since while we can measure the quality of probabilistic models e.g. via likelihood, there is no

universal quality measure for visualisation plots. But intuitively, good probabilistic properties of a LTM mean that the projection

manifold follows closely the data distribution and so the visualisation plot is a “good” representation of the data distribution.

7If we knew that the number of mixture components was no less than some numberAmin, we would stop atA = Amin

[11].
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is no upper limit to the total number of plots in the hierarchy. Different parts of the hierarchy

can be trained to different depths (i.e. there is no need for the tree to be balanced if that does

not provide information). In addition, because each level of the hierarchy forms a probabilistic

model of the data, it is possible for the user to ‘retract’ decisions; if a set of child plots does not

provide additional insight, that group can be removed, returning the tree to its previous optimal

state.

To demonstrate this algorithm, we did an experiment on a toy data set of 800 pointst =

(t1, t2, t3)
T lying on four two-dimensional manifolds (“humps”) (see Figure 2 (a)). We asso-

ciated the points in the four “humps” with four different classes,Ci, i = 1, 2, 3, 4, having

four different labels. After training8 (Amax = 10), a 6-component mixture was constructed.

Projection manifolds of the 6 LTMs are shown in Figure 2 (b). Note that 6 child plots provide

understandable subgroups of the data; and that the 6 projection manifolds closely approximate the

four “humps”of the original generating manifold. The corresponding hierarchy of visualisation

plots can be seen in Figure 3.

We stress that there is no contradiction between the number of components 6 in the final

mixture of LTMs and the dataset composed of four “humps”. There is no driving force in the

MML formalism to achieve this and this is not the point of our study. The important thing is

that the MML method finds a good number of subplots so that the overall probability of the

data set is high (good projections) and the mixture model is not too complex (unnecessarily

high number of subplots). At the same time, the MML methodautomaticallyfinds appropriate

positionsof the projection manifolds in the data space. Another advantage of using the MML

criterion with the EM algorithm is that training is less sensitive to model initialization [11]. The

criterion reduces the number of local optima in the error function (for example, removing the

pathological cases where the variance of a component collapses to zero) and so the fact that EM

(like all deterministic algorithms) only finds a local optimum is less of a problem.

V. SEMI-SUPERVISEDLEARNING OF V ISUALISATION HIERARCHIES

The procedure for unsupervised learning of mixture models discussed in section IV becomes

more complex for nodes (subplots) in hierarchical models at levels> 2. In this case, we should

8we used LTMs with Gaussian noise model
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(a) (b)

Fig. 2. (a) A two dimensional manifolds in data space; (b) Projection manifolds in data space of the second-level LTMs trained

on the toy data.

Class 1

Class 2

Class 3

Class 4

Fig. 3. Visualisation of the toy data constructed with unsupervised MML.
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consider model responsibilities of parent nodes for the data points and these are recursively

propagated as we incrementally build the hierarchy. So equations (9) and (11) are used in

hierarchical models instead of (18) used in the simple mixture case. Also (6) is applied in place

of (19).

The proposed system for constructing hierarchies of non-linear visualisation plots is similar

to the one described in [27]. The important difference is that now, given a parent plot, its

children are not always constructed in the interactive way by letting the user identify “regions

of interest” for the sub-plots. In densely populated higher-level plots with many overlapping

projections, this may not be possible. Instead, we let the user decide whether they want the

children to be constructed in an interactive or unsupervised way.

In the unsupervised case, we use the MML technique to decide an “appropriate” number and

approximate position of children LTMs. We collect data points fromζ for which the parent LTM

has responsibility higher than a threshold∆ (in our experiments∆ was set to9 0.9). We then run

MML-based learning ofmixturesof LTMs (section IV-B) on this reduced data set. The resulting

local mixture is viewed as aninitialization for the full EM algorithm for traininghierarchies

of LTMs described in section III-A. This way, an “appropriate” number of LTMs is determined

along with their initial locations.

It should be noted, that by using Jeffrey’s prior, the approach suggested in [11] implies an

improper Dirichlet prior (over the mixing coefficients) with negative parameters. As pointed

out in [31], the use of the non-informative Jeffrey’s prior in general raises problems from the

Bayesian point of view. For instance, improper priors may lead to inadmissible estimates [26].

However, such priors have been extensively used mainly due to mathematical convenience: we

do not have to compute the Fisher information matrix (typically a computationally expensive

step). Nevertheless, as we will demonstrate in the next subsection, we have experimentally found

that for mixtures of LTMs the use of Jeffrey’s prior leads to sufficiently good initial estimates to

be fed to the hierarchical EM described in section III-A. Moreover, the issue is less critical since

the MML-based model selection is used solely to initialize the child models at higher levels of

the hierarchy, while typically the user himself will refine the plots at lower levels of the hierarchy

9Other values for∆, e.g.∆ = 0.8, could have been used. However, the final local mixture of LTMs in the hierarchy is not

very sensitive to the exact value of∆, since this is just an initialization step, before running full EM for hierarchical LTM.
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as in [27]. The Jeffrey’s prior over the mixing coefficients favours strong component pruning,

which is beneficial for our purposes.

A. Experiments

In this section we illustrate the semi-supervised hierarchical LTM visualisation algorithm on

three “real-world” data collections.

Although the algorithm is derived in a general setting in which individual LTMsM in the

hierarchy can have different sets of latent pointsxMk , k = 1, 2, ..., KM, and basis functionsφj,

j = 1, 2, ..., MM, in the experiments reported here, we used a common configuration for all

models in the hierarchy. In particular, the latent spaceH was taken to be the two-dimensional

intervalH = [−1, 1]× [−1, 1], the latent pointsxMk ∈ H were positioned on a regular15× 15

square grid and there were 16 radial basis functionsφj centered on a regular4 × 4 square

grid. As usual in the GTM literature, the basis functions were spherical Gaussians of the same

width10 σ = 1.0. We account for a bias term by using an additional constant basis function

φ0(x) = 1, for all x ∈ H. If the noise model in LTM is Gaussian, we always consider only

spherical Gaussians, as in the original formulation of GTM [4]. Complete training equations for

hierarchical GTM can be found in [27].

Note that in the interactive mode, the “centres” of the regions of interest are shown as circles

labeled by numbers. These numbers determine the order of the corresponding child LTM subplots

from left to right.

1) Image segmentation data:As the first example we visualize image segmentation data

obtained by randomly sampling patches of 3x3 pixels from a database of outdoor images. The

patches are characterized by 18 continuous attributes and are classified into 4 classes:cement

+ path, brickface + window, grass + foliageandsky (see [27]). The final visualisation plot of

hierarchical LTM with Gaussian noise model can be seen in Figure 4. TheRoot plot contains

clusters of overlapping projections. Six plots at the second level were constructed using the

unsupervised MML technique (Amax = 10). Note that the second-level LTMs already separate

the four classes fairly well and are interpretable enough to be analysed further in the interactive

10The width of the basis functions is related to the “flexibility” of the generalized linear regression,fΘ(x) = Θ�(x), from

the latent space to the data space. For a discussion on appropriate values forσ see [4], [27].
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Cement + Path     
Brickface + Window
Grass + Foliage   
Sky               

1

2

1 2

3

4

Fig. 4. Hierarchical visualisation of the image segmentation data constructed in a semi-interactive way. Numbered circles

represent user-selected locations for sub-models.

mode. For example, we selected two and four “centres” for regions of interest (shown as circles)

in the second and fifth level-two plots, respectively.

2) Text data set:Since our system is based on the LTM, it can deal with discrete data sets. As

an illustration, we tested our system on a text-collection of 8000 documents formed by 10 topic

classes from a newsgroup11 text corpus. The documents were binary encoded over a dictionary

of D = 100 words. The initial pre-processing, word-stemming and removal of “stop-words”

was done using the Bow toolkit12. To match the binary encoding, a Bernoulli noise model was

employed, as a Gaussian would be inappropriate. Hence a hierarchy of LTMs was used instead

of HGTM.

The visualisation plot generated in a semi-interactive way is shown in Figure 5. TheRoot

11http://www.cs.cmu.edu/ t̃extlearning

12http://www-2.cs.cmu.edu/˜mccalum/bow
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is extremely densely populated with highly overlapping data projections. After using the un-

supervised MML technique (Amax = 10), a 4-component mixture of LTMs was obtained on

the second level. Sub-clusters in these four level-two plots are decipherable. The user can then

choose more detailed regions of interest by using the interactive mode. This is illustrated in the

Figure, but for complete class separation, more plots would be required.

As in [27], this system also includes the child-modulated ancestor plot technique, which can

visualise the regions captured by a particular child LTMM. This is done by modifying all the

ancestor plots up to theRoot, so that instead of the ancestor responsibilities, the responsibilities

of the modelM, P (M|tn), are used in every plot on the path fromM to Root. This improves

the understanding of the relationships among sub-plots in the visualisation hierarchy. In Figure

6, we highlight the visualisation plots which include the data points from the topic “sci.space”,

captured by the first model on the 4th-level.

3) Protein localization site data set:In the last experiment we visualise a data set of 1484

proteins encoded as real-valued vectors13. The 6-dimensional data points14 are classified into

10 classes (localization sites). The class names are shown in the legend of Figure 7. Here we

demonstrate the application of the unsupervised MML technique at a lower level in the hierarchy.

We trained a four-level hierarchy of LTMs (Gaussian noise model) on the protein data and the

resulting projections are displayed in Figure 7. Again, theRootplot looks cluttered. Two plots

at the second level were constructed using the unsupervised MML technique (Amax = 10). The

first level-two plot is legible enough for the user to select the ‘centres’ in the interactive mode (as

shown in the figure). We used the MML algorithm as an initialisation technique for constructing

child plots of the second level-two plot (Amax = 5). Two resulting child plots included readable

clusters.

Note that visualisation plots for this dataset do not provide a good separation, even at lower

levels of the hierarchy. It follows that the features used to describe the data are not very

discriminative with respect to the 10 binding site classes and the classes are highly overlapping.

Our system enables the user to detect such situations by understanding the underlying data

13The data set can be downloaded from the UCI Machine Learning page: ftp://ftp.ics.uci.edu/pub/machine-learning-

databases/yeast/

14The original data is 8-dimensional. Two of the dimensions are effectively constant and were removed.

August 16, 2004 DRAFT



20

al
t.a

th
ei

sm
   

   
   

 
m

is
c.

fo
rs

al
e 

   
   

  
sc

i.c
ry

pt
   

   
   

   
sc

i.e
le

ct
ro

ni
cs

   
   

sc
i.m

ed
   

   
   

   
  

sc
i.s

pa
ce

   
   

   
   

ta
lk

.p
ol

iti
cs

.g
un

s 
  

ta
lk

.p
ol

iti
cs

.m
id

ea
st

ta
lk

.p
ol

iti
cs

.m
is

c 
  

ta
lk

.r
el

ig
io

n.
m

is
c 

  

1

2
3

1
2

3

4

1

2

3

1

2

3

1

2

1

2

Fig. 5. Hierarchical visualisation of the document data constructed in a semi-interactive way.
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Fig. 6. Hierarchical visualisation of the document data constructed in a semi-interactive way. The set of points captured by

the first LTM at level 4 of the hierarchy is highlighted in the visualisation plots of all its ancestors.
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distribution. Our findings are confirmed by the poor classification results (around 55% accuracy)

obtained on this data set using various classification techniques [12].

B. Comparison

Although the primary focus of this paper is on automating the development of hierarchical

models, it is also useful to compare our results with another hierarchical visualisation technique.

Interest in visualisation of large multivariate datasets has been growing recently; as well as the

generative approach taken by [7], [27] and this paper, more heuristic methods have also been

developed [36], [19], [16]. We have selected the first of these, Interactive Hierarchical Displays

(IHDs), as a benchmark for two main reasons: it is recent work that unifies several features of

earlier techniques and it is the most closely related to our own in several respects. It also has

the advantage that an implementation is publically available15.

Like HGTM, IHDs are designed to tackle the clutter problem faced by traditional multivariate

visualisation techniques when analysing large datasets. The key strategy is to put fewer items on

the screen. This is achieved by first constructing a hierarchical cluster tree. The tree can then be

visualised at different levels of detail; the user specifies the point at which the tree is cut. Rather

than showing all the datapoints, each cluster is displayed. The cluster is summarised by its mean

with a band around it giving the minimum and maximum values in each variable of the cluster.

This can be depicted using any multivariate visualisation technique that shows all the variables:

[36] uses parallel coordinates [13], [34], star glyphs [24], scatterplot matrices and dimensional

stacking [20]. A band is assigned the colour of the cluster it represents. The strategy for this,

called proximity-based colouringmaps colours by cluster proximity based on the structure of

the hierarchical tree. The strategy has the following properties:

• sibling clusters have similar colours;

• a parent cluster has a colour within the range of its children’s colours.

To create this map, it is necessary to impose a linear ordering on all the clusters.

Figure 8 shows the result produced from hierarchical parallel coordinates when applied to

the image segmentation dataset. In current level,5 clusters are captured. The mean points of

individual clusters are mapped to a polyline across all the dimensions with a bind indicating the

15http://davis.wpi.edu/ ∼xmdv
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Fig. 7. Hierarchical visualisation of the protein data set constructed in a semi-interactive way.
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Fig. 8. Hierarchical parallel coordinates visualisation plot using the image dataset.

range of each cluster. This graph shows that it is difficult to see the shape of the clusters when

compared with the results from HGTM (see Figure 4). Figure 9 displays a hierarchical glyphs,

where the mean values are used to generate the basic shape. Although it suggests the shape of

each cluster, it is not clear which data points belong to it. In figure 10, a hierarchical scatterplot

matrix is presented. Again, the points shown in the figure are the mean points of individual

clusters. It is not clear which clusters are significant.

C. Discussion

IHDs are a useful means of visualising hierarchical clusters. In [36] controlled experiments

showed that most users could find more structure in datasets using IHDs rather than a single ‘flat’

plot. They are a generic approach in that they can be used with any hierarchical tree clustering

algorithm and any multivariate visualisation that uses all the original variables.

In contrast, our aim is more general: we want to represent the whole dataset in two dimensions

without loss of information. Only when this is not possible do we split the plot up. Consequently,

the hierarchical trees that HGTM generates are usually much shallower and simpler than those

produced by other hierarchical clustering methods. This allows the user to see thewholedataset
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Fig. 9. Hierarchical star glyphs visualisation plot using the image dataset.

Fig. 10. Hierarchical scatterplot matrix visualisaion plot using the image dataset.
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on a few plots which means they are less likely to get lost in multiple plots, but can still see

the global picture

Standard hierarchical clustering algorithms tend to perform poorly when there is a lot of noise

in the data or when, as is often the case, the data is not split into well-separated clusters. In

addition, they are usually based on heuristic distance measures. HGTM trees are a powerful

method of clustering data and do not suffer from these disadvantages. In particular, they provide

a probabilistic density modelfor the data, which brings many benefits (including principled

automation of structure selection using Bayesian methods, as demonstrated in this paper). The

fact that all the data is shown is also helpful; it allows the users to drill down into different regions

and find out more about thedataas well as theclusters. Users have expressed some concern that

the coordinate system in the plots does not correspond with any meaningful variables. However,

this drawback has been overcome by allowing them to specify regions where they can view the

data locally using parallel coordinates.

Another important benefit of HGTM is that it projects the data onto a lower dimensional space,

which makes the plots much easier to interpret. HGTM has been applied to drug discovery data

with more than 30 variables; at this size, multivariate visualisation techniques like glyphs are very

hard for users to understand. This two-dimensional representation also captures the relationships

between clusters (which is very important to develop real understanding of the data); IHDs use

a one-dimensional representation of inter-cluster relationships (the proximity-based colouring)

that is necessarily less rich in expressive power.

IHDs are a display technique, so the only time consuming aspect is the hierarchical clustering

algorithm. HGTM has an efficient EM algorithm: it takes 2–3 minutes to train a model for

a dataset of 1000 examples and c. 15 variables on a ‘standard’ 1GHz PC. The automated

initialisation algorithm takes somewhat longer since there is a need to train models of several

different structures at each level: the image segmentation and protein datasets required in the

order of 10 minutes to train. The text dataset, with 8000 examples and 100 variables, takes

rather longer: in the order of 2 hours. It is worth noting that these times are based on a program

written using theMATLAB mathematical toolkit; an implementation in a 3GL such as C would

normally be around twice as fast. Once the model is trained the user can interact with the plot

with no time delays.
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VI. L OCAL MAGNIFICATION FACTORS OF THELATENT TRAIT MANIFOLDS

In this section we first briefly review the notion of local magnification factors for the original

GTM [6]. We then re-derive the formula for computing magnification factors for the more general

LTM.

The term “magnification factor” [6] refers to the degree of stretching or compression of

the latent space when embedded into the data space. Previous experience has indicated that

magnification factors are a useful tool for interpreting 2-D non-linear visualisation plots. For

example, projections of well-separated dense clusters of data points will occupy compressed

regions on the visualisation plot (small magnification factors), separated by a band of highly

stretched area (high magnification factors).

Let us consider the Cartesian coordinate system defined on the latent space and the mapping

of this space to a curvilinear coordinate system defined on the manifold embedded in the data

space. The local magnification factor corresponding to a pointx0 in the latent space can be

defined as the ratio between the area of an infinitesimal rectangle in the latent Cartesian space

and the area generated by mapping it through (3) on the projection manifold. This ratio is equal

to
√
|S(x0)|, where|S(x0)| is the determinant of the metric tensorS = ΓTΓ, whereΓ denotes

the Jacobian of the mapping (3) atx0. For GTM, sinceb(.) is identity function,Γ evaluates as

ΘV , whereV is theM × L matrix
(

∂φm(x)
∂xl |x=x0

)
m=1,...,M,l=1,...,L

.

For the Latent Trait Models, we have

Γ =
∂z(x0)

∂x
=

∂b(Θφ(x0))

∂x
= F ΘV , (20)

where theD×D matrix F =
(

bd′ (y)

∂yd |y=Θφ(x0)

)
d′=1,...,D,d=1,...,D

is the Fisher information matrix

of the noise distribution. Indeed, if the noise model is Gaussian,F turns out to be the identity

matrix. With the choice of RBF nonlinearities forφ(·), the (l,m)-th element of the matrixV is

vl,m = −φm(x0)(xl − cm,l)σ
−2, wherecm,l denotes thel-th coordinate of the radial basis center

corresponding to them-th basis function andσ is the width of the RBF functions.

In summary, the magnification factor associated with a latent space pointx0 is
√
|V TΘT F T F ΘV |. (21)

It is easy to see, that this formula differs from the one derived in [6] for the original GTM in

the presence of the matrixF T F , which reduces to identity in the case of Gaussian noise. So the
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formula for computing magnification factors for GTM derived in [6] is recovered in the special

case of (21), when the noise is Gaussian.

Note also that in all independent noise models this matrix will be diagonal; therefore the

increase in computational complexity will not be significant. However, this is not the case for

the multinomial trait model (as can be seen in appendix I-C).

As an example we show in Figure 11 the magnification factor plots (log scaled) for the

projection hierarchy of the text data set in Figure 5. In general, dark bands in the plots indicate

well-separated clusters of points in the data space. For example, there is a dark band slightly

left of the center of the eleventh level-three model. The band divides different topics in the data

space. From the corresponding model in Figure 5, we see that the left region mostly involves

topic “talk.politics.misc”, and the right region contains a mixture of topics.

As an example of detailed analysis of magnification factors, we focus on the fourth level-

three LTM model in Figure 11. The corresponding projection plot in Figure 5 contains mostly

documents from a single topic, “sci.space”. An enlarged (locally scaled) view of the magnification

factor plot is presented in Figure 12. There is a dark band around the diagonal line of the plot.

Hence, we infer that documents on either side of the band correspond to different clusters and

that a change ofsub-topicoccurs. The list of 5 most probable dictionary words for each latent

space centre of the corresponding LTM is shown in Figure 13. With reference to Figure 12,

two clusters can be found on each side of the separating band. Key words for each latent space

centre inside the region bounded by the solid border are completely the same and have the same

ordering. They appear to refer to documents relating to space shuttle launches, while key words

inside the region with the dashed border seem to be associated with articles concerning space

orbits.

VII. C ONCLUSION

In this paper we have presented a general system for hierarchical visualisation of large data sets

which may be of either continuous or discrete type. We also derived formulas for magnification

factors in latent trait models. The proposed system gives the user a choice of initializing the child

plots of the current plot in eitherinteractive, or automaticmode. This latter feature is particularly

useful when the user has no idea how to choose the area of interest due to highly overlapping

dense data projections. We have evaluated this system on three real world datasets and compared
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Fig. 11. Plots of magnification factors (log2 scaled) in the hierarchy of LTMs fitted on the document data.
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Fig. 12. A rescaled visualisation plot of magnification factors for the 4th LTM at level 3 in the hierarchy shown in figure 11.

the results with an existing method for hierarchical visualisation. In many problems, particularly

where there are not clearly defined and separated clusters of data, hierarchical LTMs offer

significant benefits.

The system can be used in many different fields, such as document data mining, tele-communications,

bio-informatics, market-basket analysis or information retrieval. We are currently developing

this system further to provide more user feedback during the data exploration process and to

combine visualisation with localised modelling (for example, to predict properties of chemical

compounds).

APPENDIX I

QUANTITIES REQUIRED FOR COMPUTING MAGNIFICATION FACTORS IN THE REPORTED

EXPERIMENTAL SETTINGS

The exact form of the matricesF is dependent on the specific noise-model being employed.

These quantities require the computation of the first derivatives of the inverse link functionb().

In this appendix we will provide the expressions for those members of the exponential model

family which have been employed in the reported experimental settings.

A. Independent Gaussian noise model

The Gaussian model is the only member of the exponential family of distributions which is

characterised by a quadratic cumulant function

Bt(y) =
1

2
y2

t . (22)
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Fig. 13. The most probable words formed in each of the 15 by 15 latent grid points by the Bernoulli latent trait model obtained

in the experiments on text documents data.
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Therefore, it has a linear inverse-link function and higher derivatives vanish.

bt′(y) = yt′ , (23)

∂bt′(y)

∂yt

= 0. (24)

B. Independent Bernoulli noise model

In the case of the Bernoulli model, the cumulant function has the following form:

Bt(y) = log(1 + exp(yt)). (25)

The required derivatives are then computed as follows:

bt′(y) =
exp(yt′)

1 + exp(yt′)
, (26)

∂bt′(y)

∂yt

=





0 t 6= t′

bt(y)(1− bt(y)) t = t′.
(27)

It can be seen that for independent noise models, the Fisher information matrixF is diagonal.

C. Multinomial noise model

The multinomial distribution is identified by the following cumulant function:

B(y) = log

( ∑
t=1:T

exp(yt)

)
. (28)

Accordingly, the derivatives are given by

bt′(y) =
exp(yt′)∑T

t′′=1 exp(yt′′)
, (29)

∂bt′(y)

∂yt

=





−bt′(y)bt(y) t 6= t′

bt′(y)− bt′(y)bt(y) t = t′.
(30)
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[15] A. Kabán, P. Tǐno and M. Girolami, “A General Framework for a Principled Hierarchical Visualisation of Multivariate

Data”, IDEAL’02, pp.17–23, Lecture Notes in Computer Science, Springer Verlag, 2002.

[16] D. A. Keim, H. P. Kriegel and M. Ankerst. “Recursive pattern: a technique for visualizing very large amounts of data”,

Proc. of Visualization ’95, pp. 279–86, 1995.

[17] T. Kohonen, “The self-organizing map”,Proceedings of the IEEE, vol.78, no.9, pp.1464–1479, 1990.

[18] T. Kohonen,Self-Organizing Maps, Berlin: Springer-Verlag, 1999.

[19] Y. Koren and D. Harel,“A two-way visualization method for clustered data”,Proceedings of the ninth ACM SIGKDD

international conference on Knowledge discovery and data mining, Washington, D.C., ACM Press, pp.589–594, 2003.

[20] J. LeBlanc, M. O. Ward and N. Wittels. “Exploringn-dimensional databases”,Proc. of Visualization ’90, pp. 230–7, 1990.

[21] P. McCullagh and L. Nelder,Generalized Linear Models, Chapman and Hall, 1985.

[22] R. Miikkulainen, “Script recognition with hierarchical feature maps”,Connection Science, vol.2, pp.83–101, 1990.

[23] E. Pampalk, W. Goebl and G. Widmer, “Visualizing Changes in the Structure of Data for Exploratory Feature Selection”,

in P. Domingos, C. Faloutsos, T. Senator, H. Kargupta and L. Getoor,KDD 2003, pp. 157–166, 2003.

[24] W. Ribarsky, E. Ayers, J. Eble and S. Mukherjea. “Glyphmaker: Creating customized visualization of complex data.IEEE

Computer, vol. 27 (7), pp. 57–64, 1994.

[25] S. J. Roberts and C. Holmes and D. Denison, “Minimum-Entropy Data Partitioning Using Reversible Jump Markov Chain

Monte Carlo”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.23, pp.909–914, 2001.

[26] C. Stein, “Approximation of improper prior measures by proper probability measures”, Bernoulli, Bayes, Laplace Festschrift.

(J.Neyman and L. LeCam, eds.). Berlin: Springer, 1965, pp. 217–240.
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