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This paper presents a geometric approach to pitch estimation (PE) — an important problem in music infor-
mation retrieval (MIR), and a precursor to a variety of other problems in the field. Though there exist a
number of highly accurate methods, both mono-pitch estimation and multi-pitch estimation (particularly
with unspecified polyphonic timbre) prove computationally and conceptually challenging. A number of
current techniques, while incredibly effective, are not targeted towards eliciting the underlying mathemat-
ical structures that underpin the complex musical patterns exhibited by acoustic musical signals. Tackling
the approach from both theoretical and experimental perspectives, we present a novel framework, a basis
for further work in the area, and results that (while not state of the art) demonstrate relative efficacy. The
framework presented in this paper opens up a completely new way to tackle PE problems and may have
uses both in traditional analytical approaches as well as in the emerging machine learning (ML) methods
that currently dominate the literature.

Keywords: Pitch estimation; signal processing; geometry; visualization; music information retrieval

1. Introduction

Music information retrieval is increasingly gaining momentum as a cross-disciplinary field of
research (Muller et al. 2011), pulling together techniques and researchers from computer science,
cognitive science, musicology, and electrical engineering, amongst others. Despite this, many
problems that on the surface appear to be trivially solvable from a human perspective have proved
intractable for computers, and thus, have remained unsolved.

Pitch estimation is one such problem — the ability to take a musical signal as an input, and at
any given position in the signal, be able to ascertain what notes (pitch chroma/pitch height pairs)
are present. This is made difficult because of the sheer volume of timbres that could be present,
and notes that could be played with various amplitudes, amongst other things. The remark-
able variety that exists within music, especially with increasing levels of polyphony, render the
problem of multi-pitch estimation (MPE) incredibly challenging indeed.

Many approaches to pitch estimation are restricted to specific instruments (e.g. guitar tuning
devices) (Steinberger 1996; Bock and Schedl 2012; Schramm et al. 2017). As a result, researchers
are able to exploit certain properties and assumptions (pertaining to the specific context in which
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the methods will operate) to increase the accuracy of their approaches. This helps to circumvent
the greater difficulty of developing approaches that function from a more generalized perspective.

Relatively recently, there has been a notable influx of approaches to problems in music infor-
mation retrieval that utilize state-of-the-art machine learning techniques (Wu, Chen, and Su
2018; Kelz, Bock, and Widmer 2019). While the accuracy of such approaches has proved good,
the lack of ability to inspect (and further, understand), the inner workings of them has resulted in a
lack of deep insight, especially into the underlying mathematical structures that they are approx-
imating. This provides a strong motivation to develop novel algorithmic approaches (Goodman
and Batten 2018) in an attempt to discern the intrinsic models, perhaps even those that we, as
humans, exploit to perform these tasks.

In this paper, a novel geometric perspective and methodology for both mono- and multi-pitch
estimations is presented. Section 2 gives a broad overview of the related work, and a number of
inspirations for the paper, following which Section 3 introduces the model, which is then for-
malized in Section 4. Building on this, Section 5 examines the “edge cases” that arise in more
detail. Sections 6 and 7 present an approach to examine the prevalence of edge cases and apply
it to data sampled randomly from the total space. Moving on from the more theoretical perspec-
tive, Section 8 applies the model to real-world data, with Section 9 more closely analysing the
performance of simple algorithms working on the proposed model. Finally, Section 10 proposes
future direction for the work and a number of potential applications of the framework.

2. Related work

Over the past few years, a plethora of approaches have been taken to tackle the challenge of
pitch estimation, with methods utilizing the wavelet transform (Kumar and Kumar 2020), two-
dimensional spectra (Zhang, Chen, and Yin 2020), and visual information (i.e. by viewing the
physical instrument itself) (Koepke, Wiles, and Zisserman 2019), amongst others. Though var-
ied, much of the cutting-edge research is reliant on machine learning (ML) techniques, not
necessarily seeking to better understand the underlying structures present, and opting rather to
maximize efficacy of the respective approaches (Figure 1).

Elowsson (2020) proposed a method for MPE that relies on “deep layered learning” (Elowsson
and Friberg 2014; Elowsson 2018). It uses a multi-stage system of neural networks and process-
ing steps to elicit pitch contours — i.e. pitch information coupled with an onset and offset for
each distinct note. From the MPE side, they opted to create a “tentogram” (i.e. a tentative spec-
togram) through a spectral summation (their section IV-F), whitening, and logistic regression,
which provides a much cleaner basis from which to detect pitch peaks. A neural network is then
used to convert the Tentogram into a “pitchogram,” using parabolic interpolation to achieve a
1 cent resolution. From the pitchogram, “blobs” are then identified (Miron, Carabias-Orti, and
Janer 2014), with subsequent regions then merged (where related), and finally a peak ridge (1D
contour) is extracted. This method exhibited state-of-the-art performance on the MAPS (Emiya
et al. 2010), Bach10 (Duan and Pardo 2015), TRIOS, and MIREX Woodwind quintet data sets.

Kelz, Bock, and Widmer (2019) derive pitch contours from polyphonic audio specifically
from piano. Previous ML approaches tended to use many networks to extract various features,
but they instead use a shared representation (Ngiam et al. 2011) to simultaneously predict the
ADSR (attack, decay, sustain, release) aspects of each note. By approaching the problem in
this way, they are able to increase the potential for generalization to other instruments, as the
representations that prove useful to this task can be adapted to others. Further, rather than opting
to train another network to learn the ADSR envelopes of the input, they handcraft a hidden
Markov model (HMM) with states corresponding to each envelope, as well as an additional
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Figure 1. Demonstration of the progression from Spectogram to Tentogram, and then to Pitchogram (Elowsson 2020).

state to represent that a note is not currently sounding. Similarly to this approach, it could be
possible to use the proposed framework (Section 4) in a kindred manner (albeit from a different
perspective).

The autocorrelation function (ACF) of a signal {x(n)}ilvz_o] at lag m,

N—-1

re(m) =Y x(m)x(n — m),

n=m

has been widely used to elicit pitch information from time-domain signals (Rabiner 1977; Amado
and Vieira Filho 2008; Kraft and Zdlzer 2015). Recently, de Obaldia and Zolzer (2019) conducted
a study looking at the efficacy of the ACF on non-stationary sounds (to extract the fundamental
period) and presented a number of augmentations that allowed them to improve on the cur-
rent state-of-the-art approaches for monophonic pitch estimation. They achieve this by utilizing
musicological knowledge to construct a heuristic that identifies non-related jumps in the pitch
contour and subsequently modifying the signal to compensate for these. They report state-of-
the-art results on both speech (including PTDB-TUG Pirker et al. 2011) and musical signals
(including Bach10 Duan and Pardo 2015).

First described by Euler (1739), the Tonnetz (Figure 2) presents a way to spatially demon-
strate the relationship between chords. Each row corresponds to the circle of fifths, with each
subsequent row corresponding to the previous one with each element shifted from position 7,
to position (n 4+ 3) mod 12, and aligned such that the closest two notes diagonally upwards cor-
respond to a major third in one direction, and a minor third in the other. By identifying both
vertically and horizontally, it is clear that the Tonnetz is in fact toroidal in nature. It has proven
particularly useful in describing voice leadings in music, with distance between triangles (i.e.
chords) on the Tonnetz corresponding to musical distance between chords.
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Figure 2. A section of Euler’s original Tonnetz, taken from his 1774 paper De Harmoniae Veris Principiis.

In addition to his work on the generalized Tonnerz (Tymoczko 2012), Tymockzo posits a geo-
metrical treatment of music theory in his book A Geometry of Music (Tymoczko 2010), driven
by underlying musicological knowledge. Where Lewin (1987) tackled this kind of formalization
from a group-theoretical perspective, Tymockzo (while still basing his approach on symmetries)
employs a more geometric approach; considering pitch/chord spaces in such a way that proves
useful to composers and musicologists alike.

Tymockzo defines musical objects, which are essentially ordered collections of notes (e.g. (C4,
E4, G4)), and five “OPTIC” operations,

Octave : transposing individual notes by an octave;

Permutation : reordering (changing which voice has which note);

Transposition : uniformly shifting all notes in an object by a given offset (and direction);
Inversion : essentially reflection about a point in pitch space (i.e. pitches ordered chromatically
along a 1D line);

e Cardinality change : introducing a new voice that duplicates a note that is already present in
the object.

These describe transformations between musical objects. Further, he goes on to define a variety
of musical constructs (such as chords and scales) in terms of the set of OPTIC transformations
under which each construct remains invariant.

Building on this framework, he defines a two-note chord space, containing progressions
between dyads (e.g. (C4, E4)—(C4, Eb4)). By enumerating the whole space, and identifying
the edges with a twist (which is necessary as, when enumerated fully, the vertical edges of the
two-note chord space are the reverse of one another), the two-note chord space forms a Mobius
strip. The use of this space in analysis is then demonstrated practically by applying it to elicit
musical insights on pieces (such as Brahms’ Op. 116, No. 5) that would otherwise be obscure if
viewed in traditional notation. He goes on to provide a generalization of n-note chord spaces in
higher dimensions such as a three-note chord space forming a twisted triangular prism.

Inspired in particular by Tymockzo’s work, and historic algorithms such as the harmonic pitch
spectrum (HPS) (Noll 1970) and the YIN algorithm (De Cheveigné and Kawahara 2002), this
paper sets out to look at the problem of pitch estimation from a geometric point of view and
construct algorithms from the building blocks laid out herein.

3. Reaching a model

Consider a frequency-sorted (low to high) set of tones, e.g. {(C, 4), (C, 5), (E, 5)}. One can
imagine wanting to build up some representation of where each tone is likely to have originated.
Figure 3 shows the iterative construction of one such model, which is somewhat adjacent con-
ceptually to Markov chains. This could instead be viewed as a directed graph, with an edge from
each vertex to every other vertex that it could potentially be a harmonic of. Weights are chosen
from some vertex, B, to another vertex, A (of which B is potentially a harmonic) to be i, such
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Figure 3. The build-up of a simplistic probabilistic representation.

that B is the ith harmonic of A. Here, each weight corresponds to some measure of the likelihood
that a given tone is generated by another. For example, given the presence of C4, the probability
that C5 is a fundamental (i.e. generated by itself) may be 20%, whereas there may be an 80%
probability that it is instead a harmonic of C4. These are, of course, toy values, and it is more
than likely more realistic to readjust all weights following the addition of each tone, but the
underlying concept remains the same.

Further, one can imagine that trying to represent a large number of vertices (and therefore a
likely larger number of edges) renders this representation visually messy and hard to follow
or decipher. By placing each vertex into a grid (with the horizontal axis representing the pitch
chromas ordered according to the circle of fifths, and the vertical axis representing the pitch
height in octaves), and restricting the edges to only the first three harmonics, this is alleviated
(Figure 4). From here, it becomes clear that it is in fact possible to dispose of the notion of
this representation of a graph altogether: by removing the edges (the information from which
becomes implicit), and instead assigning a Boolean value to each cell, representing whether the
tone is audible or not (Figure 5).

The problem of pitch detection is then reduced to the problem of finding the decomposition
of the grid (into shapes) that corresponds to the tones played in the input signal. As becomes
apparent, this involves discarding a number of false positive cases from the interpretation. From
a graphical perspective, this is equivalent to identifying the vertices that correspond to funda-
mentals, removing them, and repeating the process until no more are present. Note that such
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v
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Figure 4. Visualization of the graphical structure overlaid onto the grid.
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Figure 5. Visualization of the final grid structure, where shaded cells represent a Boolean value of true.

methods are impacted by the presence of noise in the signal, the reduction of which is beyond
the scope of this paper.

For example, consider the graph in which (C, 3) and (G, 4) are sounding along with their
first three harmonics (Figure 6). By annotating each vertex, v, with its indegree (deg™ (v)) and
outdegree (deg™ (v)), some vertices present as sinks (i.e. with degree (n~,0) for some n~ >
0), and some as sources (i.e. with degree (0,n") for some n™ > 0). For the purposes of pitch
estimation, and because of the chosen edge direction (from harmonic to fundamental), a sink
with indegree 3 is always a fundamental with its first three harmonics present. Thus a simple (yet
somewhat effective) algorithm is to take each vertex with indegree 3 (for each distinct part of the
graph, as it may not be connected), categorize them as fundamentals, and remove all categorized
vertices. This can then be iteratively applied to the graph until no sinks with indegree 3 remain
(as shown in Figure 6). Clearly this algorithm is a vast oversimplification of the problem, but it
nicely illustrates the benefits of geometric approaches.

The following sections will build upon this grid-based model, proving some useful properties
about it, presenting some algorithms that utilize them.

(0, 5) 3 (0, 1) : (0, 3) (0, 1) : (0, 2) (0, 0)

D6 : a6 > D6 G6 D6

: 2/ : 2 /1
/ N y . / v
(1, 2) 2) :(l,l) (1, 2) Lo (1, 1)
G o) i GCh G5 5 ; C5 G5
1 o 2 /1 5 1 2
/ v NN L /
3, 1) (2, 0) (3, 0) T (2, 0)
G4 e G4 L4

Ut

(3, 0)

Figure 6. (left) A directed graph depicting C3 and G4 (and each of their first three harmonics sounding). The degrees
of each vertex are shown in parentheses. The following steps represent the steps of the simple algorithm described. The
bolded/underlined tone at each step is the one selected as a fundamental.
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Figure 7. Visualization of a sequence of interpretations (representing temporal slices), indexed by 7.

XI

4. The proposed model

As in Section 3, let XY be the set of pitch chromas, ordered by fifths: {C,G,D,A, ..., F}." Let
the grid, V- V._ XI x Z. That is, an element v;; € N- Visa pair (x;, j) representing a tone with
pitch chroma x; and pitch height j. N- Y forms the backbone of the model. As the circle of fifths
exhibits a feriodic nature, the left and right edges of the grid may be identified, or glued, to
realize N~ as a discretized infinite cylinder. Furthermore, let \V: O[I be the finite subset of N I,
consisting of the ‘sub-cylinder’ with octaves [0, 9]. This represents the human-audible spectrum
of sound. Further, define the predicate, Z, : N v _, B,

T if v;; is observed at T
Lo (vig) = {L if v;; is not observed at 7. M

This is called an interpretation (i.e. of N\ I) and can be seen as a single time slice of a signal,
indexed by an instantaneous point in time, t. By viewing a musical signal as a sequence of
temporal slices, we obtain an interpretation of the signal for any given T by the pair (N I,IT)
(Figure 7).

By viewing the ordered collection of pairs as a whole, one can uniformly stretch each slice and
identify the appropriate N Y faces to create a three-dimensional heatmap, with each tone now
represented by a cube as opposed to a square.> Thus the interpretations are now indexed by an
interval, where previously they had been indexed by an instantaneous point in time, that is,

WY, Z) — WY T o). )

In general, when referring to any interpretation henceforth, Z, may be replaced by Z for
simplicity.

By projecting onto hyperplanes parallel to the faces of the cuboid, one can consider the signal
from different perspectives — that is, with constant time, constant pitch chroma, or with constant
pitch height. For example, considering the projection with constant pitch height, one can elicit

! Note here that the exponent, Y, is a label representing that the set is ordered by fifths.
2 The importance of this becomes apparent in Section 8, in particular when considering the 3D heatmap.
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Figure 8. Demonstration of the I" and I shapes in N I.

a pitch contour representation of the signal. Further, by viewing the heatmap as a translucent
construction, it is possible to consider all aspects simultaneously.

Let f; denote the ith harmonic, with fy being the corresponding fundamental. Depending on
the pitch chroma, the second harmonic, f>, may or may not cross the octave boundary (i.e. be in
the next octave up from the first harmonic). For example, the first three harmonics of (Cf, n) are
f:(Cen+ 1), :(G,n+ 1), and f3 : (Ctl,n + 2), whereas the first three harmonics of (A, n)
are (A,n+ 1), (E,n + 2), and (A, n + 2). By considering each chroma in XI, it is clear that the
presence of {fy,f1./2./3} C N- Y make up one of two shapes; a turnstile shape, -, or a gamma
shape, I', depending on the position of the fundamental. Denote the set

x- ={C,Ct,D,Eb,E}, with xp = XY \ x- asits complement,3

and let 7, , 7, be the projection of N- Y onto the horizontal and vertical axes respectively. Then,
when 7, (fy) € x one observes the - shape, and I otherwise.

This is shown in Figure 8, where a fundamental is denoted by ¢ and its harmonics by x .

This model (particularly the use of XI as opposed to a chromatically ordered column set) is
chosen such that the pattern exhibited by a fundamental and its first three harmonics (i.e. = /T")
appears spatially compact. This serves to make these patterns more easily discernible and is also
of use when looking to decompose more complicated polyphonic signals into their constituent
parts.

The different cells, or tones, on the cylinder can be related to each other by considering a
group action on A\ YV Let § and w denote the generators of Zp, (the integers modulo 12) and
7, respectively. Then define a group action Z x Z O N- Y as follows. § and o induce maps on

NY by
6,12) : N 5> MY (1p,,0) : N > VY,
Vij > Vil Vij 7> Vij+1

where 17 and 17, are the identity elements in Z and Z,,, respectively. In other words, (8, 17)
acts on the cylinder by rotating it clockwise by one cell, while applying (1z,,, ) corresponds to

3 Recall that chromatically, (C, 1) directly follows (B, 0).
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a vertical shift of one cell downwards. Hence a map
Ty x Zx NE > N (8", @' vip) B Vipkgais (3

is achieved, where k,[ € Z, and §'*" for any integer n is the identity. For notational simplicity
(8, 17) is identified with §, and similarly for w. Note that this means that, relative to a reference
point, § translates the tone by a fifth, and w moves the tone up an octave.

In terms of this action,

o) =fi, wd(fy) =f, and &*(f) =f,

for 7, (fo) € x-, where w o § is identified with wd. For 7, (fy) € xr the above holds with the
exception of f, which in this case is given by

@8(fo) = .
Furthermore, using this action, the - and I" shapes may be written as
F={lLwwso’, T={Low’ o’ “

where it is understood that by applying all elements of I to a tone traces out the turnstile shape,
and similarly for I". In other words, considering the - case, for each fundamental which is
mapped to T by Z, there exist harmonics w(fy), w§(fy), and w? (fo) such that each of these are
also mapped to T by Z,

VUENY[(]:(“) ATt () € x) = (@) AL(@8() A L(@* ()], ®)

given that fi, f>, and f3 are observed (audible). Here F(v) is a predicate that returns T iff v is a
fundamental. Of course, such a construct does not exist in practice, but in essence, the end result
of a perfect pitch estimation algorithm is this function, such that it best describes the ground truth
of the signal. As before, the I case is equivalent under the replacement w8 > w?8.

By observation of the corresponding - and I shapes over the circle of fifths, it is noted that
three two-shape configurations exist — namely I'T", " |-, and - I". These are used to categorize a
number of properties of the model.

Definition 4.1 (Configuration) A configuration (denoted as I'", I" -, or F I'') represents the
shapes generated by fundamentals residing in two adjacent columns in - Y

While every fundamental, together with its first three harmonics, exhibit one of the two afore-
mentioned shapes (i.e. I' or ), the inverse statement is not true. Namely, the presence of a
F or ' shape does not imply that the tone concerned is a fundamental, as shown for the T’
case in Figure 9. A similar counterexample for -exhibiting tones can also be constructed.
Here, ® denotes a harmonic which presents as a fundamental. Such harmonics are called false
fundamentals.

Remark When referring to a false fundamental, ®, the second column of the configuration
always corresponds to that in which ® lies. Thus the first column corresponds to the preceding
one —i.e. 7, (67 1(®)).

Similar to how a fundamental and its first three harmonics corresponds to eitherat-oral’, a
given harmonic could only have arisen from a fundamental related to it by the inverse shape, i.e.
either -or L.
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Figure 9. Counterexample showing that not all I shape-exhibiting tones are fundamentals.

The inverse shapes may be written as

dA={oc"" o er} = {1, 0", (w8) ", w7 ?}, (62)
I={c"oel}={Lo ", @ " o2, (6b)

where o ~! is the inverse of o with respect to the group structure.
Additionally, define the function W (x;) for any x; € XI as

Foif xi € x-
I' otherwise.

W) = { )

Intuitively this function takes a given chroma (i.e. 7, (v) € XI) and returns the set of group
elements that trace out the corresponding shape when applied to a tone with this chroma.

The generator of a tone is defined as the fundamental that deposited the corresponding fre-
quency. Note that the generators of a tone may sit both in the same or proceeding column to
itself. This means then when enumerating the possible generators in most cases (i.e. not I'T"), it
is necessary to consider tones in - L . In many cases, there may be multiple generators for a
single tone.

Suppose an interpretation is given such that a false fundamental is present. By investigating
the possible positions for this tone in A I, there is a finite region containing the fundamentals
that could have created the false fundamental and its first three apparent harmonics. In any of the
possible positions for the false fundamental, this region is contained in the region given by O(®),
with 0 := {0’0|0’ € 4| Jd,0 € [T}, as shown in Figure 10. This holds by construction.*

Consequently, in order to check whether a tone could be generated by some other tone, it
is sufficient to search a 3 x 5 area centred on the tone. Though this proves sufficient from the
perspective of generators, there are a number of cases (i.e. false fundamentals) that will naively
result in false positives.

Hence, the problem of multi-pitch estimation is reduced to that of distinguishing between
fundamentals (¢) and harmonics masquerading as fundamentals (®).

4 Note that the shape traced out by O is really the union of three shapes — each obtained from tracing backwards from
a false fundamental (and its apparent harmonics) in one of the three configurations.
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Figure 10. Figure showing where a false fundamental and each of its apparent harmonics could have been generated
from, with colours tracing out - and L for each tone (overlaying both I" and - situations).

5. Fantastic edge cases (and where to find them)

This section considers only cases in which a single false fundamental (®) is present. In real-
ity, this is expected to be enough of a generalization as long as algorithms consider false
fundamentals sequentially, such that A\ GI is traversed along.

8'@ (v00)s  Vico...11)> Yie(o...9)5 (8)

that is, left-to-right, bottom-to-top, where vy is the bottom-leftmost element of N O(I

Definition 5.1 (Edge Case) An edge case is a set of fundamentals and their first three har-
monics, in which a tone that presents as a fundamental, is in fact not one. In other words,
let

®W) = (VGG\I’(T{X(U)) [I(GV)]) A =F (),

be the predicate that returns T iff v is a false fundamental. Then a set of tones, S, is an edge case
when

Foes[®(W)].

By considering I~ | J L for each constituent’ tone (similar to Figure 10), it is possible to con-
struct logical expressions for the generators of any edge case. Through knowledge of the specific
configuration (which is always known for a given tone), it is possible to use the appropriate
subset of - | JL. Then the sets of possible generators for a false fundamental and its apparent

5 Note that “constituent tone” refers to each individual v in ®(fo) — that is, the false fundamental, and its first three
apparent harmonics.
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Figure 11. A basic edge case in a - I" configuration — note that each of the harmonics associated to the constituent
tones of the false fundamental, ®, have a single generator.

harmonics are given by

fo:{o w2 x}, wherex= {i}a)i)g‘ll i)ftl\llégv)i(s(g,_l(@))) = (9a)
fit{w,w ', x), wherex = {‘(S;);)_l i)fﬂ:légas(i_l(@)) =t (9b)
f o {ws,8,x}, wherex = {Z;;S gﬂiﬁﬁf)) = (9¢)
£ {o,@%,x), wherex = {;‘)_‘S,l gﬂi Svﬁs(ffl@))) =r (9d)

Note the use of shorthand here — these actions are all relative to (and applied to) a false
fundamental, ®.
Further, it is possible to define the notion of a basic edge case;

Definition 5.2 (Basic Edge Case) A basic edge case is an edge case such that each constituent
tone has precisely one generator.

In other words, only one element in each of the sets (9) is a generator. See Figure 11 for an
example of a basic edge case.

Following from this, it is possible to enumerate every basic edge case for a specific configura-
tion, and ascertain the total number. Initially the answer for four choices, each with three options
would simply be 3* = 81. Due to overlap in which generators satisfy the constituent, however,
the actual result is significantly lower and can be enumerated with a simple counting method
(Table 1). Note that f, has been omitted as it has no overlap (and therefore, multiplying the end
result by 3 is sufficient).

The same holds true for the I'T" and I" - configurations, as although the composed actions are
different, there are still the same overlaps (fy/f; : ™', and f;/f; : @), and the same number of
overall choices.

One might be tempted to claim, therefore, that there are 24 x 3 = 72 basic edge cases. Though
technically this may be true, we instead define a number of basic edge types, similar to the
definition of cap types given by Davis and Maclagan (2003) for the card game SET. This
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Table 1. The enumeration of possible basic edge cases for the - I' configuration, with each basic edge case
corresponding to a row in the table.

Jo A bE]
w! - »?
wd™!
w2 0] -
s! »?
wd!
(w8)~! w -
5! »?
wd™!
Total 8 x 3=24

Note: A dash represents that a choice need not be made as a previous choice already satisfies the harmonic.

allows for comparisons to be made irrespective of configuration. Further, there are a number
of invariants that hold across all configurations, for each basic edge type.
Let

e NY S NY (10)

be the map sending a tone to its generating fundamental. While this could easily be multi-valued
for a generic interpretation — in particular the map gives subsets of (9) for edge cases — for basic
edge cases the map gives a unique generator, which is the situation in which we will consider
this map. Note that we assume that no inharmonic noise is present, meaning that all tones have
a defined generator. Hence the map (10) is well defined. As a demonstration, take the basic edge
case shown in Figure 11. Applying g to f;, for example, results in 0~ (®).

Further consider the triple g(fo,f1./3) = (g(fo), £(f1), g(f3)) constructed from applying g to a
false fundamental and its first and third apparent harmonics.6 It is not necessary to consider f> as
it has no overlap with the other constituent parts (as shown below, with the overlaps bolded for
clarity),

fo: o Lo (0! (11a)
fi: wwls! (11b)
fH: w?8,ws,8 (11c)
fi: w0’ w8 (11d)

Any basic edge case can be associated with such a triple, which corresponds to the generating
set of the false fundamental and its first and third apparent harmonics.

Definition 5.3 (Basic Edge Type) Two basic edge cases are of the same type iff their two
corresponding triples are related by

' Wfs!, ke (1,01} (12)

Remark Note that if the triple of a basic edge case is obtained from another through the replace-
ment §~! > @*8~!, then it is possible to move in the opposite direction using the inverse map
5l w ksl

6 Note here that f; is assumed to be a false fundamental, so g(fo.f1./3) # (€(fo), g(f0), 8(fo))-
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b1 a=6t—wd
/ b _ 5—1 — (W(S)_l
' b ¢ = 5t s!
Figure 12. Diagram showing the relationships between members of the same type between different configurations.

Table 2. Different types of basic edge case, together with their invariants, and elements (excluding f>).

Cases

Type 1871 € GS. IT/T - FT
I 0 2 fo=H#5 {07!, 0%}
I fo#Fh =5 {02, 0}
I 1 2 fo=hA#h {w 1,671} {w™!, w8~}
v fo#hHh =5 {07267, w} {(08) 7!, w}
A 3 fo#hH #5 {072, (w8) ™!, ?) {w 2,67 0
VI 2 3 fo#h#5H {02, (w)', 671 {02,867 ws™!)
VI {02571, (w8) 71, w?} {8,871, w?
VIII 3 3 fo#hA £ (w2871, (w8)~ 1,81} {(w8) 1,871, ws™ 1}

Total number of cases 8:-3=24

For any given type, there will be precisely three members — with precisely one being associated
to each of the three configurations. The members of each type (by configuration) are related as
according to Figure 12.

This becomes clearer following inspection of Table 2. Intuitively, the only difference between
the - and I" shapes is the shifting of f,. The f> in a I" shape is obtained from the corresponding
shape by acting w on its f>, and its inverse on the contrary.

LEMMA 5.1 Being of the same type is an equivalence relation.

Proof For equivalence, the relation must be reflexive, symmetric, and transitive. The reflex-
ive and symmetric properties may be shown by choosing k = 0, and letting k +— —k in
Definition 5.3, respectively. Further, transitivity holds by virtue of the diagram in Figure 12. W

Remark Note that the types of basic edge cases are independent of tone configuration.

Figure 13 visually represents the eight basic edge types shown in Table 2.

There are a number of invariants that hold within each type. These are properties which are
the same across each edge type, and provide information about their geometric structure. The
invariants considered are; back-8 count (|67!|), edge characteristic (¢), and generating structure
(GS.).

Definition 5.4 (back-8 count) The back-8 count, |§7'|, is a positive integer representing the
number of §~! occurring in a triple (g(fy), g(f1). g(f3)) associated to a given edge case.

Example The triple (g(fo), g(f1).2(f3)) = (0", ™', w6~") has back-8 count |§~'| = 1.
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Figure 13. The eight basic edge types represented visually. Each * represents a generator, with @ representing the
false fundamental, and the unfilled generators containing - or I" denoting the shape drawn out in the §~! column (i.e.
corresponding to W (1, (6~1(®))).

Definition 5.5 (Edge Characteristic) The edge characteristic, €, is given by the number of dis-
tinct fundamentals that are generators for the given tone. That is, the number of distinct elements

in (g(f0), 8(f1), 8(F3)).
Example The triple (g(fo), g(f1).2(f3)) = (™', 0!, w8") has edge characteristic € = 2.

In addition to |§~!| and €, another invariant is the “Generating Structure” (G.S.), which not
only considers the number of generating fundamentals but also which pairs satisfy overlap (i.e.
pairs generated by the same tone). Naively, there are five possible generating structures,’

O fo=hH=5,

A fo=hH #f
A fo=/ #h,
aAv) fo#hH =5,
V) fo#h #

Note that each of these really signifies that the generators of relevant harmonics are the same
—e.g. with I, g(fo) = g(fi) = g(f3). By construction, cases I and III can never occur. Hence, all
basic edge cases exhibit a generating structure of either II, IV, or V.

These invariants help to distinguish between different basic edge cases, and the invariants for
each class are enumerated in Table 2.

As can be seen in Table 2, there is only a single case in which the type is not uniquely deter-
mined by |67/, €, and G.S. — namely types 6 and 7. These can be distinguished by considering

7 Note that here, fi is shorthand for g(f;).
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the position of the generator that sits in the same column as the false fundamental. For type 6,
the generator sits below the false fundamental (w~2), whereas for type 7, the generator sits above
the false fundamental (w?).

Remark  As before, the multiplication by 3 in Table 2 is due to there being no restrictions on
the choice of generator for the second harmonic.

LEMMA 5.2 The second “harmonic” (f>) of a false fundamental (Q) must be generated from
the column directly to the right of the false fundamental (i.e. ¥ (17, (6(®)))).

Proof Assume that there exists some generator g; € N Y for /> that lies in the same column as
the false fundamental.® There are two possible cases:

Case 1: 1, (8i) € X

For g; to generate the f> at wé(®), it would have to lie at 1(®). Hence, ® would no longer be
a false fundamental.

Case 2: 7, (8i) € xr.

The same argument as Case 1, applying the map wé > w?$.

Thus, as a contradiction is reached in both possible cases, there can be no such generator
for f,. ]

PROPOSITION 5.1  There are 24 basic edge types.
Proof This follows from Table 2, and Lemmas 6.1.1 and 6.1.2. |

It is also possible to define restrictions on the presence of generators for a false fundamental
(with respect to the chroma configuration in which it sits). In order to do this, the minimum
number of generators that must fall in certain proximity (such as the von Neumann and Moore
neighbourhoods) to a false fundamental can be considered.

In terms of the operators w, &, the von Neumann- and Moore neighbourhoods of some tone v,
are the tones generated by acting the elements of the sets

{Sil,wil} and {8i1,wi1,wi15i1}, (13)

on v, respectively.

The problem of choosing basic edge cases with the least generators in these neighbourhoods
can be reduced to the problem of choosing some a, b, ¢, and d (corresponding to generators
for fo,...,f3) from Figure 14. This can be achieved by choosing generators according to the
following order:

(I Outside both neighbourhoods
(II) Inside Moore neighbourhood, outside of von Neumann neighbourhood
(IIT) Inside von Neumann neighbourhood (and .". inside Moore neighbourhood).

If multiple choices are available, it is sufficient to choose any one, without loss of generality,
as they have the same effect on the final count as one another. Table 3 shows the result-
ing (minimum) counts of generators in the neighbourhoods for false fundamentals of certain
configurations.

Though it may seem that choosing a generator that satisfies multiple parts (i.e. ®~" or w) may
reduce the overall counts, it is always possible in these cases to instead make choices that don’t
reside in the von Neumann neighbourhood.

1

8 Note that the only other choice would be the column directly to the right of .
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B-E B-E E-E
H-E - OE-E

Figure 14. The potential generators (a (fo), b (f1), ¢ (f2), d (f3)) for each configuration, and the von Neumann (red) and
Moore (coloured) neighbourhoods.

Table 3. Table showing the minimum generators in the von
Neumann (v.N.) and Moore neighbourhoods of a false funda-
mental given its chroma configuration.

rr FT I
a 02 (1) 02 (1) o2 ()
b (w8)~! () 1) (w8)~! (ID)
c 28 (I) 25 (I) 8 (IT)
d »? (D) ? (1) »? (D)
M 1 1 2
v.N. 0 1 0

Better understanding the occurrence of edge cases is an important step towards identifying
them in practice and gives a deeper understanding of the proposed model itself. Sections 6 and 7
go on to look at reduction of edge cases to potential basic cases, and the experimental prevalence
of basic edge types, and Sections 8 and 9 investigate the theoretical basis of the model from a
more experimental standpoint.

6. Reduction and reducibility of edge cases

In order to gain a better understanding of the occurrence of edge cases (and therefore the problem
of pitch estimation), it proves useful to be able to classify edge cases by which basic edge types
they are related to. In order to achieve this, it is necessary to reduce edge cases (i.e. remove
redundancy) by removing potential generators such that the false fundamental in question is still
preserved.

Given a set of generators, G, that lie in O(®) for some false fundamental, they are reducible
iff any part, f,, € {fo,f1,/2.f3} is satisfied more than once (i.e. non-basic), barring the exception
outlined below. Reduction (denoted as — ) takes G, and removes some given generator g € G
such that the false fundamental is still satisfied by G \ g,

Gg—¢G\0 (14)

Such a removal of a generator seeks only to remove its “fundamentalness” — it is entirely possible
that it could still be generated elsewhere. Indeed, this must be the case for any reduction via a
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Figure 15. A reduction removing a generator in k- [ J I". Note that g(f>) is omitted for brevity.
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Figure 16. An irreducible non-basic edge case.

generator in - |_J I, such as in Figure 15. Note that reduction is not unique; there may be multiple
valid reductions that can be applied to a given set of generators.’

It would be reasonable therefore to assume that any non-basic edge case can be reduced to
one of the eight basic edge cases (Table 2). On the contrary, however, there exists a case that is
both non-basic (i.e. at least one of its parts is satisfied more than once) and irreducible — that is,
that no potential generator could be removed while preserving the false fundamental (Figure 16).
However, this is the only irreducible non-basic edge case.

PROPOSITION 6.1  The only irreducible non-basic edge cases are those containing both w™!
and o.

Proof Let G, be the set of generators that generate f,,.

For the proposition to hold, it is sufficient to show that there exists an irreducible non-basic
case containing w~! and w, and that all other cases (i.e. those with neither generator, or those
with precisely one of them) reduce to a basic case. The former statement is shown in Figure 16.

Thus it remains to prove the latter. In addition, the case where both w~! and w are present,
together with other generators, is considered, and it turns out that such cases are either reducible
to a basic edge case, or to the irreducible non-basic case in Figure 16.

Note that a lack of overlap, i.e. |G;| N |G;| = @, for all i # j, implies that a case can always be
reduced to a basic edge case.

9 1t is worth further noting that one could reduce ‘globally’ (i.e. over N; OZI), or ‘locally’, considering just O(®). Because
false fundamentals generally need only be considered locally (as they can be generated solely by fundamentals within
0O(®)), it is only necessary to consider at most 3 x 5 = 15 possible tones to reduce, which renders the computational
complexity significantly lower than might be expected for reduction graphs with large numbers of fundamentals.
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Figure 17. An example of a reduction graph, with each step (arrow) showing a reduction in the set of generators. Note
that the special case of {w,w ™!, g(f>)} is denoted as “Type @,” and the configuration is T'T or " I-.

For all cases, an enumeration can be performed10 {a)’1 , w}, and the statement holds as required.
|

There are really three such cases, when taking into account the arbitrary choice of the generator
fOI‘fz.

Through repeated application of all possible reductions to the vertices (to which reduction is
yet to be applied), one may obtain a reduction graph for a given set of generators, G (Figure 17).
Given that no reduction could ever produce a set of generators larger than the input, this graph
will additionally be acyclic. Further, the terminal vertices (i.e. deg+(n) = 0, where n is a vertex)
of such graphs correspond to irreducible cases.!! Such a graph can, therefore, be used in order to
understand the potential basic edge types that correspond to a given set of generators.

7. Prevalence of basic edge types

As previously mentioned, it is important to understand the occurrence of false fundamentals, in
order to better differentiate them from genuine ones. One such way is to consider the prevalence

10 By considering G to contain each possible subset of
11 As there may be multiple terminal vertices in a given graph, it would be worthwhile to follow a unified algorithm if
traversing in a depth-first manner — for example, by always reducing by the bottom-leftmost option.
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of each type in practice. This can be achieved by constructing a reduction graph for sample
interpretations (from all combinatorial possibilities) with varying numbers of fundamentals (and
their first three harmonics).

In order to sample interpretations from the total sample space, it proves sufficient to construct
them by selecting »n unique tones, vo, vy, . .., v, from Naz, treating all such tones as fundamen-
tals, and thus adding them (and their harmonics) to the interpretation. For the charts in Figure 18,
a sample size of 1000 interpretations was taken for each number of simultaneous fundamentals
(0, 120], with each generated at random by choosing tones from ./\/O(I to act as generators until
n unique generators were selected. We made no effort to ensure each interpretation was unique
from the next as the chance of this occurring (bar for extraordinarily many or few generators) is
statistically improbable. For each of these interpretations, we applied a naive algorithm (simply
classifying all F and I'-exhibiting tones as fundamentals) and derived a reduction graph from
each ®, where the difference between the input set and the result of the naive algorithm is the set
of false fundamentals. Note that such a naive algorithm does not seek to remove fundamentals
in the same way that a more sophisticated algorithm may, and therefore the order of traversal is
unimportant. Instead, every tone in /\/'OlI that exhibits the expected shape is classified as a fun-
damental. From each of these reduction graphs, we classified all terminal vertices as either one
of the basic edge types, or as the special case, @. In cases where multiple terminal vertices were
present, we added a value to each tally such that the sum of all added values was 1.'?

Though 1000 interpretations may at first appear to be a relatively small sample size, it should
be noted that this corresponds to 120,000 interpretations sampled on the whole, with an average
of 15.75 (16) false fundamentals per interpretation. These are, as expected, concentrated around
the centre of the distribution (of total simultaneous fundamentals), as the number of total possible
false fundamentals peaks around the centre. Thus, on average, each set of 1000 interpretations
leads to 15,750 false fundamentals to classify, but with relatively sparse distribution to the tail-
ends (i.e. <10 simultaneous fundamentals), which resulted in <100 false fundamentals being
classified per 1000 interpretations. In order to ascertain a more reliable picture of the makeup of
false fundamentals — particularly with low numbers of simultaneous fundamentals, a significantly
larger sample size of 20,000 interpretations was used (Figure 19).

Looking at Figure 18, it is clear that not all basic edge types are equally common. Figure 18(a)
gives the overall occurrence of each type, with type III being the most common (along with the
other three-fundamental cases), and type V being the least common (along with the other four-
fundamental cases). The special case & appears to sit between the two, which intuitively coheres
with other observations, as it too is a three-fundamental case — albeit not basic. In general, it is
hard to draw meaningful insight from this, which incentivizes the use of Figure 18(c) — looking
at the trends of the prevalences as the number of fundamentals changes.

As Figure 18(c) shows, at low numbers of simultaneous fundamentals, the three-fundamental
cases are significantly more dominant than the four-fundamental cases — constituting almost
100% of the cases until around 16 simultaneous fundamentals. Beyond this point, the incidence
of four-fundamental cases increases significantly — particularly types 6 and 8 — with the special
case @ notably occurring increasingly less often. As before, it is hard to directly relate these
results to real-world data (i.e. recorded music), which is much more structured than the random
samples that were used, but a number of conclusions can still be drawn,

e With low numbers of simultaneous fundamentals (e.g. string quartet), cases 5—8 are incredibly
unlikely to occur.

12 Note that this could easily be reformulated to look at sets of types as opposed to single types.



0 2 50 7 100

Simultancous Fundamentals

(a) A pie chart showing the average (proportional) prevalence of (b) A graph showing the estimated average number of terminal vertices for
each edge type, and @. varying numbers of simultaneous unique fundamentals.
100% °
3 100% o

75% 4

50%
25
0% -

...,.....x.....,.muuunuuumm|||nulnHIIIII|I|||I|||||I|||IIIIIIIIHI||||I||||H|||||||||| .

0% —

Cumulative Proportion

Cumulative Proportion

waeg

EEEE]

—————— 0%

TEHSITINRSTENRLIENS

e

ml|[|"|"| -----

S

cwnmong

Simultaneous Fundamentals

(c) A stacked bar chart showing the change in proportional

RERBSYRNBERRIERLEE 8

Simultaneous Fundamentals

| &
| K
ms
m:
[ B

Non-Edge Case

prevalence of basic edge types and @ as the number of (d) Another stacked bar chart, mirroring subfigure 18¢c, but including the

simultaneous unique fundamentals changes. proportion

Figure 18. Charts depicting various properties relating to the prevalence of basic edge types with respect to the number of simultaneous unique fundamentals.

of non-edge cases.

DUSNPY PUD SOUDWIYIDIY JO [DUINOL

1C



Average (mean) Unique Reductions

Simulancous Fundamentals

(b) A graph showing the estimated average number of terminal vertices
for varying numbers of simultaneous unique fundamentals (0, 10] -
corresponding to the left hand side of Subfigure 18b. Note that contrary to
(a) A pie chart showing the average (proportional) prevalence of Subfigure 18b, 20000 sample interpretations were taken here, as opposed to
cach edge type, and @ for total simultaneous fundamentals (0, 10]. 1000.

100% — £l

5%

50%

Cumulative Proportion

25%

Simultaneous Fundamentals

(c) A stacked bar chart showing the change in proportional
prevalence of basic edge types and @ for (0, 10] simultaneous unique fundamentals.

Figure 19. Charts mirroring those in Figure 18, but considering only interpretations with (0, 10] simultaneous unique fundamentals.

(44

‘[e 10 ubwIpoon) ‘[,



Journal of Mathematics and Music 23

e From Figure 18(d), it is clear that even at large numbers of fundamentals, the accuracy of even
the naive algorithm on polyphonic music — with perfect noise removal, recording, playing, etc.
—is above around 75%.

Regarding Figure 18(b), graphs appear to have between three and five (of a possible nine)
terminal vertices, with the average broadly decreasing as the number of fundamentals grows.
The trend appears more turbulent towards the left tail, which is likely due to the low number of
samples for these numbers of fundamentals.

By combining this knowledge with a heuristic for the number of fundamentals at a given Z,,
it may be possible to more easily distinguish between fundamentals and false fundamentals by
comparing specific examples to the profile laid out above.

Figure 19 considers specifically the cases for which there are a low (<10) number of simul-
taneous fundamentals. In these cases, the total occurrence of four-fundamental basic cases is,
on average, 3.6%, with the majority of these weighted towards interpretations with >6 simul-
taneous fundamentals ( Figures 19a,b). Particularly interestingly, the most common case in this
subset of interpretations is the special case, @, with 20.4% of the total. Overall, the trend of
three-fundamental cases being more common remains, but the ordering within these groupings
change, most notably (beyond &’s jump) with type 5 cases being significantly more prevalent
than their counterparts compared to the data in Figure 18.

8. Experimental application

Though this model is useful theoretically, in practice, real-world applications are rarely so clear-
cut or clean, and will remain so unless there exists some perfect approach to noise removal,
amongst other preprocessing. Hence, it is prudent to look not at the discrete, but at the continuous
in interpretations, Z. Le. T : NY . BbecomesZ : NY s R,

Doing so effectively creates a heatmap, in which this additional dimension (perpendicular to
N I) represents an intensity of each tone — for example, their respective amplitudes in the fre-
quency domain.'? Even in this kind of construction, however, the -/T" shapes are very much
still prominent, as demonstrated when applied to some monophonic signals from the University
of Towa (Electronic Music Studios) (Fritts 2012) (Figure 20). Here, the intensity is visual-
ized through brightness, with brighter tones representing more prominent frequencies. Though
timbrally very different, all of the instruments shown clearly exhibit the I" shape as anticipated.

Despite this, there are clear differences in the prominence of these shapes between the various
instruments. Though flute and trumpet exhibit exceptionally clean examples, the clarity in the
piano and violin heatmaps is, while still interpretable, somewhat diminished. This is likely a
result of multiple media (in the case of piano and violin, strings) vibrating in sympathy to the
true fundamental, particularly given that the strings are housed in a shared body. Further, the
resonance of this body may also have contributed to the noise.

To build these models, we took sliding windows from the signal, with a length of 4096 sam-
ples, and a hop size of 1024. A constant-Q transform (Brown 1991) with a Hanning window
(Podder et al. 2014) (using the Librosa implementation (McFee et al. 2015)) was then applied to
achieve a frequency domain representation binned by the 120 semitones of the western musical
scale between CO and B9 inclusive. We then normalized these values across the signal (not just

13 This construction can be viewed as a real rank 1 trivial vector bundle, with A A as base manifold with trivial
topology. In this interpretation, a heatmap is a slice through the bundle.
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Figure 20. The tone G4 being played on a variety of instruments, all exhibiting the I" shape described in Section 4. For
flute, trumpet, and violin, the sample was taken from the stationary period, whereas the piano sample was from part-way
through the onset, as this resulted in a clearer image.

per window) and plotted them as a heatmap using matplotlib (Hunter 2007). Further, each win-
dow used here corresponds to a unique interpretation, Z,, where 7 is the start time index of the
window.

It is worth noting that the shapes that appear to mirror the fundamentals and their harmonics in
chromatically adjacent columns (i.e. Ff and G in the case of Figure 20) are a result of spectral
leakage, which has not been entirely nullified by the Hanning window. In practice, this could
likely be removed, or otherwise accounted for in specific algorithms and approaches.

Figure 21 — created using Python’s vpython module (Scherer, Dubois, and Sherwood 2000) —
shows the three-dimensional heatmap described in Section 4 (with each 7 indexed as Zj; ;11)). A
projection onto the Z, x t plane produces piano-roll notation. Algorithms working in this space
may be able to smooth the estimation in the temporal domain by better-exploiting the temporal
aspects of music; it is certainly a great oversimplification to treat each window (and therefore
each interpretation) as independent of one another.

Figure 22 shows the notable differences between heatmaps constructed from windows from
the onset, stationary period, and decay of a single tone. As expected, the shapes are clearest
during the stationary period, but in general this raises the more profound issue of choosing an
appropriate window, or windows, when given chunks of a signal, such as following onset detec-
tion. A simple yet effective heuristic is to consider both the total number of bins filled above
some threshold « (e.g. 3.25u (Goodman and Batten 2018), where u is the mean amplitude of a
tone in the window), and the total magnitude of all bins above this threshold in a given window.
That is,

ZVGN I(U)

R N=W|Z0) >a, ve NI} (15)
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Figure 21. Left: Side-on view of a 3D heatmap of the melody of Bach’s “Ach Gott und Herr” from the Bach10 data set
(Duan and Pardo 2015), with darker colours corresponding to greater amplitudes. Right: Projection of the heatmap onto
the Z12 x t plane, eliciting piano roll notation of the piece (albeit ordered by the circle of fifths, and not chromatically).
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Figure 22. A closer look at how heatmaps differ as the tone progresses from onset/attack, to stationary period, to
offset/decay (left-to-right).

effectively the average amplitude of an audible tone in the window described by Z. Doubtless
there are more sophisticated approaches, but this serves its purpose if nothing else but as a bench-
mark. Should time efficiency not be of particular concern, of course, it may be optimal to consider
all windows in a chunk (taking their average result), only discarding a handful of particularly
noisy or otherwise useless ones.

Figure 23 depicts an edge case built up of the tones D4, A5, and D6, all played on trumpet,
exhibiting the special case, @. Though masked somewhat by the spectral leakage on the right-
hand side of the image, it is clear to see how such edge cases fool the naive algorithm, even
when a threshold is utilized to cut out noise. Of course, the use of Algorithm 1 alleviates this
by attempting to remove inharmonic noise, but in doing so, may cause false negatives to arise.
Note that when using Algorithm 1 on real-world data, the same switch from B to R applies.
Appendix 1 lists the required modifications.

9. Evaluation

This section presents a brief evaluation of both a naive algorithm on monophonic music, and a
more sophisticated (albeit still simplified) algorithm on theoretical polyphonic samples, similar
to those utilized in Section 7. As noted beforehand, the intention of this paper (and investi-
gation on the whole) is not to achieve state-of-the-art results on MPE problems, but rather to
lay the foundations for more geometrical approaches to them. Thus the evaluation is brief, but
nonetheless provides insight, particularly regarding future work.

For monophonic signals, we used a naive algorithm that treats the relation between fundamen-
tals and H/I"-exhibiting tones as an equivalence. As shown in Section 4, this is untrue due to the
presence of edge cases, but nonetheless when only one fundamental is present, such cases can
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Figure 23. An edge case (specifically ©) being exhibited on real data (trumpet) — with D4, A5, and D6 (dots) as the
fundamentals, and D5 being the false fundamental, ®.

Table 4. Table showing the average accu-
racy of both the naive algorithm and the HPS
algorithm as a benchmark when applied to the
University of Jowa samples.

HPS Naive
Overall 58.36% 73.74%
No outliers 67.73% 88.27%
Chroma accuracy 77.61% 95.08%

never occur. In response to spectral leakage, we slightly modified the algorithm to take not only
the shape of the potential fundamental and its harmonics into account, but also the corresponding
shapes at §%°.

This was applied to a total of 1395 monophonic samples from the University of Iowa
data set, spanning 17 instruments in total (some of which were categorized into vibrato and
non-vibrato playing), resulting in a mean accuracy of 73.74%. Removing the outliers (vio-
lin/viola/cello/double bass (pizz.), and tuba), this average becomes 88.27%. When considering
just whether the pitch chroma is correct (i.e. disregarding octave errors), this increases to 95.08%.
Table 4 benchmarks this against an implementation of Noll’s harmonic product spectrum (HPS)
algorithm, also using a Hanning window.'*

Appendix 2 contains a table with a full breakdown of results, broken down by instrument (and
vibrato/non-vibrato playing).

While, as expected, this approach does not reach state of the art results, it still outperforms HPS
by a significant margin. Figure 24 consists of confusion matrices for each of the instruments (and
playing types), showing the algorithm’s input (vertical axis) against its output (horizontal axis).
Thus the diagonal is indicative of perfect accuracy, and deviations from this line correspond to
errors in the classification. Note that the axes are truncated to match the range of tones tested
on each instrument, with the vertical axis running chromatically upwards from bottom to top,
and the horizontal axis running chromatically upwards from left to right. Even at first glance, the
outliers are relatively clear, and this kind of visualization has the potential to elicit more profound

14 For more information on the HPS algorithm, or the data used, see Sections 2 and 8 respectively. In addition, note
that the raw data is converted into interpretations by way of Algorithm 1.
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Figure 24. Confusion matrices for each set of samples. From top-left to bottom-right: (1) Alto Flute (vib.); (2) Alto
Sax (non-vib.); (3) Alto Sax (vib.); (4) Bass (pizz. non-vib); (5) Bass (arco, vib); (6) Bass Clarinet (non-vib.); (7) Bass
Trombone (non-vib.); (8) Bassoon (non-vib.); (9) Bb Clarinet (non-vib.); (10) Cello (pizz. non-vib); (11) Cello (arco, vib);
(12) Eb Clarinet (non-vib.); (13) Flute (non-vib.); (14) Flute (vib.); (15) Oboe (non-vib.); (16) Soprano Sax (non-vib.);
(17) Soprano Sax (vib.); (18) Tenor Trombone (non-vib.); (19) Trumpet (non-vib.); (20) Trumpet (vib.); (21) Tuba
(non-vib.); (22) Viola (pizz. non-vib); (23) Viola (arco, vib); (24) Violin (pizz. non-vib); (25) Violin (arco, vib).
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Figure 25. Simulated accuracy for a naive approach (blue) (as described in Section 7), and simple algorithm (red)
when applied to sample polyphonic data.

understanding of how and where an algorithm is failing, and perhaps even (by extrapolation)
particular properties of certain instruments that make them more troublesome for pitch detection
approaches.

In addition, for polyphonic input, we used a simple extension to the naive monophonic
approach, whereby N-¥ is traversed left-to-right, bottom-to-top.'> This exploited the assump-
tion that, at least with acoustic music, there will be no undertones. Thus the bottom-leftmost
tone with amplitude above some cutoff will always be a fundamental (Goodman and Batten
2018). The naive algorithm is then applied to subsequent tones with the following extension:
for each potential fundamental, the possible generators for each of its harmonics are enumerated
and checked against the current list of perceived fundamentals (i.e. those that have already been
classified as such by the algorithm), and if two or more (of a maximum four) of the fundamental
and its generators have one or more harmonics that have already been classified as a fundamen-
tal, the tone is considered to be a false fundamental and is discarded. This choice of threshold
may seem somewhat arbitrary, but was chosen as there are a significant number of generators
that lie above or to the right of the tone being classified, most notably the harmonics themselves.
Thus, while they may themselves be fundamentals, it is unclear at this stage of the algorithm.
This choice was then tested empirically, with a value of two (from choices [1, 4]) resulting in the
best performance.

As in Section 7, 1000 sample interpretations were taken for each number of simultaneous
unique fundamentals. The accuracy of this simple approach is benchmarked against the accuracy
of the naive approach in Figure 25. Though there is a clear increase in accuracy, it is anticipated
that it will be possible to build on this simplistic approach using the analysis and techniques

15 It should be noted here, as below, that the polyphonic algorithm was tested on random interpretations, as in Section 7.
One major drawback of this evaluation is that it likely produces less edge cases than in, for example, consonant music, in

which it would be expected that fundamentals would be clustered somewhat closer to one another in N I. In the future,
this could be addressed by generating more realistic data, or indeed by utilizing polyphonic data sets such as Bach 10.
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outlined in Sections 5, 6, and 7, but the implementation of this is beyond the scope of this
paper.

10. Summary and future work

Moving forwards, there are a number of improvements and implementations that can be created
building upon this framework.

First, the simple polyphonic approach can be refined and extended using the characterizations
of edge cases outlined in Section 5. It may be possible to further imgove by combining the
approaches in Sections 6 and 7 to perform a “backward pass” over A=, working right to left,
top to bottom, and utilizing reduction to reconsider the likelihood of tones presenting as false
fundamentals. This could also utilize the working count of currently perceived generators as a
heuristic for the number of distinct simultaneous fundamentals, and similar forward—backward
approaches are a fundamental concept in probabilistic latent variable models — a notion which
itself aligns well with the problem of pitch estimation as set out in this paper.

In addition, it may prove useful to reformulate the problem as a decomposition of the total
heatmap into its constituent (albeit constructively overlapping) - and I' shapes, potentially
using spectrogram subtraction to represent this decomposition. This pivots the work towards
combinatorics rather than a necessarily more algorithmic perspective.

Furthermore, one could build on the three-dimensional model to create approaches that effec-
tively utilize the temporal aspects of music in their predictions. For example, the extraction of +
and I"-shaped prisms from the extended heatmap — representing the tone, or tones, sounding for
some period of time.

In conclusion, this paper presents a different perspective on approaching pitch estimation
problems, doing so from a more geometric viewpoint. To this end, we introduced an ideal-
ized model of fundamentals and their harmonics (and later adapted it to real-world scenarios).
Importantly, from a geometrical perspective in particular, this model results in spatially close
shapes, namely I and I'". Further, it provides a framework on which to approach pitch estimation
problems in this way, along with a thorough investigation into the edge cases that occur in this
model.

Though the simple algorithms outlined in Section 9 do not provide state-of-the-art results,
the intention is instead to provide a solid foundation on which to construct more sophisticated
algorithms — particularly utilizing the characterization of, and insight into, edge cases. This is
certainly a step towards more intuitive and innovative geometrical solutions in the field of pitch
estimation, and in music information retrieval on the whole.
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Appendix 1. Creation of an interpretation, Z

Algorithm 1 Creation of an Interpretation, Z, from a Sorted Set of Tones

Input: &, a chromatically sorted set of tones
Output: M, a (matrix) interpretation of the tones in ¢
M <«— zeroes(10,12)
for Vij € ® do
I/ Is v;j a harmonic of another tone?
fi «— Mli,j—1]
f<—0
if U(x;_1) = then
fo— Mli—1,j—1]
else
fre— Mli—1,j-2]
end if
o <— Mli,j—2]
if fi V2 Vf; then
Mli,jl =1
continue
end if

I Is v a potential fundamental?

¢] < Vi ed

¢2 <« 1

if U(x;—1) =F then
P2 <— Vir1j41

else
P2 <— Vi1 2

end if

¢y <— Vijy2 €D

if 1 A 9o A ¢35 then
M(i, j1 =1
continue

end if

b «— P \ Vij
end for
return M

A number of changes must be made for this to work for the reals, R as opposed to booleans, B:

o An additional parameter, «, is required to represent the minimum amplitude for a tone to be considered “audible

e Lines 13 and 27 should be replaced by M[i, j] = |v;;l, setting the amplitude of v;;, as opposed to a truth value.

o Finally, lines 12 and 26 should instead be the disjunction or conjunction respectively comparing whether the given
harmonics are above the threshold, «, for example, “if |fi| > @ V |[2| > « V |f3] > « then.”
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Appendix 2. Full results — naive algorithm (monophonic)

Table Al. Table showing the performance of the naive algorithm on monophonic samples from the University of Iowa
Electronic Music Studios data set, benchmarked against Noll’s HPS algorithm.

HPS Naive

Instrument Type 1 2 3 1 2 3
Alto Flute Vib 88.89% 88.89% 88.89% 97.22% 97.22% 97.22%
Alto Sax Nonvib 75.00% 75.00% 81.25% 100.00% 100.00% 100.00%
Vib 68.75% 68.75% 75.00% 100.00% 100.00% 100.00%

Bass Pizz Nonvib 20.19% - - 53.85% - -
Arco Vib 36.54% 36.54% 39.42% 71.15% 53.85% 72.12%
Bass Clarinet Nonvib 63.04% 63.04% 65.22% 100.00% 100.00% 100.00%
Bass Trombone Nonvib 0.00% 0.00% 29.63% 44.44% 44.44% 62.96%
Bassoon Nonvib 45.00% 45.00% 62.50% 75.00% 75.00% 95.00%
Bb Clarinet Nonvib 84.78% 84.78% 84.78% 97.83% 97.83% 97.83%

Cello Pizz Nonvib 18.00% - - 46.00% - -
Arco Vib 65.26% 65.26% 68.42% 88.42% 88.42% 88.42%
Eb Clarinet Nonvib 82.05% 82.05% 82.05% 94.87% 94.87% 94.87%
Flute Nonvib 94.59% 94.59% 94.59% 100.00% 100.00% 100.00%
Vib 94.59% 94.59% 94.59% 100.00% 100.00% 100.00%
Oboe Nonvib 77.14% 77.14% 97.14% 100.00% 100.00% 100.00%
Soprano Sax Nonvib 84.38% 84.38% 87.50% 90.63% 90.63% 90.63%
Vib 78.13% 78.13% 81.25% 90.63% 90.63% 90.63%
Tenor Trombone Nonvib 33.33% 33.33% 66.67% 78.79% 78.79% 100.00%
Trumpet Nonvib 51.43% 51.43% 82.86% 74.29% 74.29% 97.14%
Vib 51.43% 51.43% 82.86% 74.29% 74.29% 100.00%

Tuba Nonvib 18.92% - - 48.65% - -

Viola Pizz Nonvib 22.00% - - 28.00% - -
Arco Vib 88.00% 88.00% 91.00% 100.00% 100.00% 100.00%

Violin Pizz Nonvib 25.27% - - 38.46% - -
Arco Vib 92.22% 92.22% 96.67% 97.78% 97.78% 100.00%

Note: 1, 2, and 3 correspond to the whole data set, sans outliers, and chroma accuracy respectively.
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