
Computational Intelligence in Astronomy –

A Win-Win Situation
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Abstract. Large archives of astronomical data (images, spectra and
catalogues of derived parameters) are being assembled worldwide as part
of the Virtual Observatory project. In order for such massive heteroge-
neous data collections to be of use to astronomers, development of Com-
putational Intelligence techniques that would combine modern machine
learning with deep domain knowledge is crucial. Both fields - Computer
Science and Astronomy - can hugely benefit from such a research pro-
gram. Astronomers can gain new insights into structures buried deeply
in the data collections that would, without the help of Computational
Intelligence, stay masked. On the other hand, computer scientists can get
inspiration and motivation for development of new techniques driven by
the specific characteristics of astronomical data and the need to include
domain knowledge in a fundamental way. In this review we present three
diverse examples of such successful symbiosis.

1 Introduction

The field of Computational Intelligence is not only concerned with the theoretical
basis of intelligent data processing and machine learning, but it has also made
substantial contributions to a wide variety of disciplines, with new subject areas
emerging from these interactions (e.g. bioinformatics, computational finance),
with their own dedicated journals, conferences etc. In the field of Astrophysics,
some of the fundamental research problems involve the discovery of unusual
sources or patterns in multivariate data, where dimensionality is high and, due
to the heterogeneous ways of acquisition, significant portions of the data might
be in the form of limits (“censored data”) or missing altogether.

Large archives of astronomical data (images, spectra and catalogues of derived
parameters) are being assembled worldwide as part of the Virtual Observatory
(www.ivoa.net), to be made available to the wider community over the com-
ing decade. This necessitates the development of fast automated techniques for
feature extraction, classification and outlier detection for very large datasets.
Computational Intelligence will enable the visualisation of the structure of high
dimensional and structured data, as well as flexible extraction and study of rel-
evant patterns and substructures. As with experimental data in other branches
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of the physical sciences, the quantifiable systematic and random errors of mea-
surement inherent in the data have to be taken into account in most problems
[33].

One of the earliest areas of Astrophysics in which machine learning methods
were used was in the morphological classification of galaxies, where the norm
has been that of visual classification by experts, till the number of galaxies re-
quired to be classified for the purposes of the study of galaxy evolution exceeded
104. Artificial neural networks [19,1] or support vector machines [36] have been
popular in studying the nature of galaxy evolution from photometric images.
In recent years, with the availability of optical spectra of > 106 galaxies, the
study of individual stellar populations within galaxies have been helped by in-
corporating independent component analysis and other data-driven techniques
[21,22].

In this review, we give examples from three areas of astronomical problems
where our computational intelligence research has provided unique solutions,
which, informed by the knowledge of physics, have helped understand the un-
derlying astrophysical phenomena.

2 Automated Calibration of Galaxy Disruption
Simulations [38]

In the hierarchical growth of structure of the Universe, galaxies grow by merging.
A giant galaxy, like the Milky Way, grows predominantly by minor mergers (i.e.
involving smaller dwarf galaxies or satellites). When a satellite merges with a
giant galaxy, it gets tidally disrupted in the process and eventually is completely
assimilated in the giant galaxy [20]. Deep observations of the nearby Universe
have revealed many examples of such tidal streams that resulting from tidal dis-
ruptions. Detailed studies of these tidal streams and debris can provide valuable
insight into the detailed mechanism of galaxy formation and evolution.

Other than the satellite system of our own galaxy (Milky way), the most-
studied system of streams involves the closest (spiral) galaxy M31, where struc-
tures such as shells and streams of stars have been discovered in abundance in
its vicinity. These exciting discoveries have led astronomers to investigate the
possibility that such structures are in fact remnants of disrupted smaller satel-
lite galaxies [8]. Models involving dark matter and stars are use simulate the
process of satellite galaxy disruption in the vicinity of a large galaxy [8]. There
are models with a large number of particles, representing groups of stars. The
simulation space is 6-dimensional (“phase space”), three describing the spatial
position of each particle, the other three describing the velocity along the spa-
tial coordinates. The particle evolution is governed by gravitational dynamics
and hydrodynamics. To track the evolution process starting from a particular
initial condition, the state of the simulation (values of all six phase space param-
eters) are recorded successive evolution stages. Hence, the disruption process is
captured in a series of simulated datasets.
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In these simulations, the observed low-dimensional structures evolve along
with the satellite galaxy, differing slightly from pone simulation to another ac-
cording to the different initial conditions. It makes that the low-dimensional
structure in these simulated datasets looks very similar, but not identical. The
observational astronomer, however, observed only one snapshot in time, i.e., the
current state of the evolution. The ultimate goal of astronomers is to identify
the most plausible set of initial conditions leading to the distribution of stars
currently observed by the astronomers.

One possible way of learning the most plausible set of initial conditions is to
identify the simulated stars having the most similar distribution to that of the
currently observed stars. Obviously, it is impossible to compare the particles in
simulation to the real observations on a point by point bases, but the observed
density of stars can be compared with that of the simulated particles. In [38]
we reported first results from an ongoing work concentrating on measuring the
‘similarity’ between the simulated datasets and the observation dataset through
non-parametric probability density estimation.

The approach stands and falls on the quality of density models on the simu-
lated data. Unfortunately, parametric density estimation cannot be used, as the
disrupted satellites can produce complex low-dimensional manifolds along which
the stars are organized (tidal streams, shells). Semi-parametric approaches such
as Gaussian mixture modelling, fitted in the maximum likelihood framework via
EM algorithm, are not capable of capturing such complex density structure be-
cause of the high sensitivity to initialization. Unless we provide good estimates of
the positions and shapes of low dimensional structures floating in the cloud of
high dimensional points, already before the mixture fitting, there is no hope
of finding a satisfactory density estimate.

Non-parametric density estimation methods seem like a plausible approach -
unfortunately they cannot be directly used since they typically put a local density
kernel on each observation and the number of simulated particles makes such an
approach computationally prohibitive. To reduce the computational cost, several
algorithms have been devised to either reduce the sample size, or to reduce
the amount of components (kernels) in the original complex Parzen Windows
model. The latter approaches, introduced recently, have proved successful in
several applications [11,40,39]. The idea is to simplify a complex model (Parzen
Windows in density estimation) while minimizing the distance between the new
model and the target function. However, this process usually has complexity of
O(N2) or larger, where N is the size of the dataset. Compared with considering
fewer points in the estimation, optimizing the simplified density model by using
all of the available observations could avoid sacrificing useful information, but
it also loses the simplicity of the non-parametric density model. On the other
hand, the limitation of Parzen Windows could also be noticed when the data
points distribute along, or partially along, low dimensional structures [35]. In
such cases, spherical smoothing kernels are not optimal.
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In [38], we proposed a simple new algorithm to reduce the computational cost
of PW, but also to keep the simplicity of the nonparametric model by avoiding
complex model construction procedures. The main idea was to cover the entire
data space by a set of hyper-balls of fixed (carefully chosen) radii. For each hyper-
ball, the local density was captured by a full covariance Gaussian kernel. Our
model is formed by a mixture of such locally fitted Gaussians with appropriately
set mixing priors.

The densities fitted in the 6-dimensional simulation can be projected into the
observation space (typically two spatial coordinates + the line of sight velocity)
and the likelihood given the real observations calculated. We tested the approach
on 22 simulation sets representing 22 stages of galaxy disruption in a single
simulation run. Each set had 32, 768 data points (particles).

In the first set of experiments we used 10-fold cross-validation in each simu-
lation data set to measure the quality of the estimated density models. The av-
erage log-likelihoods (ALL) on each individual set estimated by Parzen Window
(PW), our approach - Fast PW (FPW) and Simplified Mixture Model (SMM)
[40] are plotted in figure 1. We actually used two versions of FPW: (1) a sim-
ple ‘hard’ FPW (FPW-H) which estimated local means and covariances solely
on the points within the covering hyperballs; (2) a ‘soft’ version (FPW-S) in
which local means and covariances are estimated in a soft manner by position-
ing Gaussian weighting kernels in the hyperball centers. The hyper parameters
were estimated through 10-fold cross validation within the training folds. The
X-axes indicates the simulation set index (numbered from 0 to 21), the Y-axes
shows the ALLs estimated by the models. Both FPW versions show a superior
performance relative to both PW and SMM estimators.

In the second set of experiments, we investigated how reliably a stage in the
galaxy disruption process can be detected, based on ‘observations’ not used in
the model building process. We run a rolling window of size 3 over the series
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Fig. 1. Average log-likelihood on 22 simulation sets
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of 22 simulation data sets, obtaining a set of 20 simulation set triplets (f, g, h),
starting with simulation sets (f, g, h) at stages (0,1,2) and ending with the triplet
(f, g, h) containing simulation set for stages (20,21,22). For each triplet of con-
secutive simulation sets (f, g, h), we estimated 3 models, one on 90% of data from
f , one on 90% of data from g, and one on 90% of data from h. We also compared
with Gaussian Mixture Model initialized randomly from the data (GMM) or ini-
tialized with K-means (GMMk). To make experiments computationally feasible
only 10% of the data was used to estimate the GMM models. All the models
were then tested on the 10% hold-out set from g. In this way we could determine
how well could the ‘true’ source density g be distinguished from the densities at
the nearby stages f and h. This process was repeated 10 times.

We stress that the task is quite complicated as the densities corresponding to
the nearby stages of galaxy disruption can be quite ‘similar’ and obtaining an
accurate density model is essential for further investigations by the astronomers.
As an illustration, we present in figure 2 two sets of 3-dimensional projections of
the simulation data for the triplet (f, g, h) = (20, 21, 22). The first projection is
onto the spatial coordinates, the second is onto the leading 3 eigenvectors found
by the Principal Component Analysis of the merged f, g and h sets.

All the models constructed on the set g have the highest hold-out ALL in
each of the 20 triplets (f, g, h). However, the margin with which the set g was
proclaimed the ‘winner’ was quite different across the models. The margins of the
two FPW versions were almost the same and the variations in in the margins due
to different experimental runs were negligible. The FPW methods outperformed
the classical PW estimation and showed performance levels very similar to those
of GMM, but with much less computational effort. The number of components
in FPW-H and FPW-S varied from 150 to 850 and 700 to 4000, respectively.
Note that the number of components in PW estimates was ≈ 30, 000.

3 Time Delay Estimation in Gravitationally Lensed
Signals [4,5]

Time delay estimation between arrival times of two signals that originate from
the same source but travel along different paths to the observer is a real-world
problem in Astronomy. Signals to be analysed can represent repeated measure-
ment, over many months or years, of the flux of radiation (optical light or radio
waves) from a very distant quasar - a very bright source of light usually a few
trillion light-years away. Some of these quasars appear as a set of multiple nearby
images on the sky, due to the fact that the trajectory of light coming from the
source gets bent as it passes a massive galaxy on the way (the “gravitational
lens”). As a result, the observer receives the light from various directions, re-
sulting in the detection of several images [16,32]. This phenomenon is called
gravitational lensing. It is a natural consequence of a prediction of the General
theory of Relativity, which postulates that massive objects distort space-time
and thus cause the bending of trajectories of light rays passing near them.
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Fig. 2. 3-dimensional projections of the simulation data for the triplet (f, g, h) =
(20, 21, 22). The first projection (1st column) is onto the 3 spatial coordinates, the
second (2nd column) is onto the leading 3 eigenvectors found by the Principal Com-
ponent Analysis of the merged f, g and h sets.

Quasars are variable sources, and the same sequence of variations is detected
at different times in the different images, according to the travel time along the
various paths. Crucially, the time delay between the signals depends on the mass
of the lens, and thus it is the most direct method to measure the distribution of
matter in the Universe, which is often dark [31,16].

In this context, the underlying temporal pattern of emitted radiation fluxes
from a quasar gets delayed, and the process of observation adds all kinds of
noise. Moreover, like all astronomical time series measurements, they are also
typically irregularly sampled with possibly large observational gaps (missing
data) [24,29,23,15]. This is due to practical limitations of observation such as
equipment availability, weather conditions, the brightness of the moon, among
many other factors [7]. Currently, over a hundred systems of lensed quasars are
currently known and about a dozen of these have been monitored for long peri-
ods. In some of these cases, the measurement of a time delay has been claimed.
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In [5,4] we introduced a model based technique for estimating time delays in
fluxes from gravitationally lensed objects (such as quasars). The main idea of the
method was to impose an internal model on the quasar variability in time and
then expect that the multiple images will follow that model, up to observational
noise and time delays. We formulated the internal model of quasar variability
in the framework of kernel regression (with free parameters determined from
available data). Our approach was compared with currently popular methods
of estimating time delays from real astronomical data: (1) Dispersion spectra
method [26,27,25], and (2) the structure-function-based method (PRH, [30]).
Two versions of Dispersion spectra were used; D2

1 is free of parameters [26,27]
and D2

4,2 has a decorrelation length parameter δ involving only nearby points in
the weighted correlation [27,25]. In the case of PRH method, we used the image
A from the data to estimate the structure function [30].

For experimental (observational) data, we focused on Q0957+561, the first
multiply-imaged quasar to be discovered [37]. This source, which has a pair of
images (that we refer to as A and B), has been monitored for over twenty years
(in both radio and optical range). In figure 3 we show an example of real optical
data measured from Q0957+561. The optical fluxes observed from images A
and B are given in the astronomical unit of magnitude (mag m), defined as
m = −2.5 log10 f , where f is the flux measured when observed through a green
filter [18] (g-band). The measurement errors are shown as error bars. The source
was monitored nightly, but many observations were missed due to cloudy weather
and telescope scheduling. The big gap in Fig. 3 is an intentional gap in the nightly
monitoring, since a delay of about 400 days, the pattern, was known ‘a priori’ –
monitoring programs on this quasar started in 1979. Therefore, the peak in the
light curve of image A, between 700 and 800 days, corresponds to the peak in
that of image B between 1,100 and 1,200 days.

Despite numerous claims, a universally agreed value for the time delay in
the Q0957+561 system has not emerged [18,5]. Indeed, a major problem with
time delay estimation in astrophysics literature has been that these estimates
are routinely produced for individual quasars, for which we have no idea what
the ‘true’ time delay is (e.g. [30,28,3,7,13]). The uncertainty bounds in the re-
ported estimates are mostly due to assumed noise model on the observations -
the estimation has been repeated in a series of Monte Carlo experimental data
generated from the measured flux values, under the noise model. However, for
an unbiased comparison of alternative methods, before they are employed to the
analysis of real data, they should be subjected to a large data collection in a
controlled experimental setting where the time delay is externally imposed and
known.

In [4] we generated a large number of flux times series resembling fluxes from
real quasars. Three data generation mechanisms were considered:

– We simulated optical observations as in [24]. The data sets were irregularly
sampled with three levels of noise and observational gaps of different size.
50 data set realisations per noise level were generated, yielding 38,505 data
sets
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Fig. 3. Optical observations of the brightness of the doubly-imaged quasar Q0957+561,
in the g-band, as a function of time (Top - Image A; Bottom - Image B). The time is
measured in days (Julian days–2,449,000 days).

– Data streams were generated by Gaussian process, following [30], with a
fixed covariance matrix given by a structure function according to [29]. The
data was highly sampled with periodic gaps [7], simulating a monitoring
campaign of eight months; yielding 61 samples per time series. We imposed
seven ‘true’ delays and 100 realisations for each value of true delay [5].

– The data was generated from a Bayesian model [13], simulating three levels
of noise with 225 data sets per level of noise (there were 3 levels of noise).
The data were irregularly sampled with 100 observations per time series.

It is remarkable how the imposition of a unifying smooth internal model in our
method stabilized the delay estimation. After tests for statistical significance, the
machine learning based method employing kernel regression emerged as a clear
overall winner in the large set of controlled experiments on synthetic data with
known time delay. We stress that this method was able to sometimes outperform
even methods that were used to generate the data sets themselves (Gaussian
process or the Bayesian model of [13]).

In terms of real data from Q0957+561, the best (smallest estimated error)
time delay quotes were 417±3 [18] and 419.5±0.8 [6]. Our results were consistent
with these findings. However, we speculate that the estimate of 417±3 days
constitutes an underestimate. For the quasar Q0957+561, the latest reports also
give estimates around 420 days by using other data sets [24]. The delay estimates
should be robust across the wavelength range since the gravitational lensing
theory predicts that the time delay must be the same regardless of the wavelength
of observation [31,16,32].
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4 Clustering and Topographic Mapping of Light Curves
from Eclipsing Binary Stars [9]

A binary is a gravitationally bound pair of stars that orbit a common centre
of mass. Astronomical observations suggest that almost half of the stars are in
binary systems [12]. Thus, the study of such systems is a crucial element for
understanding a significant proportion of stars. Amongst other reasons, binary
stars are important to astrophysics because they allow calculation of fundamen-
tal quantities such as masses and radii. The increasing number of binary star
discoveries provides samples for testing theoretical models for stellar formation
and evolution. Also, by measuring their fundamental parameters they can serve
as distance indicators to galaxies. Moreover, the study of binaries has led to the
discovery of extrasolar planets. A particular subclass of binary stars are eclipsing
binary stars. The luminosity of such stars varies over time and forms a graph
called light curve. Light curves are important because they provide information
on the characteristics of stars and help in the identification of their type. It is
therefore of great importance for the astronomers to have tools for automated
analysis of large repositories of light curves from binary systems, e.g. tools for
grouping and topographic mapping of such systems.

While clustering of a data set is mainly concerned with finding natural groups
of data items e.g. according to some ‘similarity’ measure, topographic mapping
is concerned with the construction of low-dimensional maps of the data where
the distances on the map between data items reveal the structure of their rela-
tionships. Both approaches can provide valuable tools in initial mining complex
data sets. The Self-Organizing map (SOM) [17] and its extensions are examples
of tools for topographic map construction.

Several probabilistic analogues of SOM have been proposed, seeking to address
some of the limitations of SOM1 (e.g. [2]). One formulates a mixture of Gaussian
densities constrained on a smooth image of a low-dimensional latent space. Each
point in the latent space is mapped via a smooth non-linear mapping to its
image in the high-dimensional data space. This image plays the role of the mean
of a local spherical Gaussian noise model capturing data points in its vicinity.
Due to the smoothness of the mapping, when latent points are mapped to the
high-dimensional data space, they retain their local neighborhood structure. The
model is trained by maximizing the model likelihood for the given data. Once
the model has been trained, each data item is represented in the latent space by
a point given as the mean position of latent points weighted by their posterior
probabilities (responsibilities) given the data item.

Such approaches provide a framework that is readily extensible to structured
data by adopting alternative formulations of noise models in the place of Gaus-
sian densities. Such extensions have been proposed in [34] for the visualization
of symbolic sequences and in [10] for the visualization of tree-structured data,
where hidden Markov models and hidden Markov tree models play the role
of local noise models respectively. In the same spirit, in [9] we formulated a

1 E.g. the absence of a principled cost function.
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generative probabilistic model for clustering and topographic mapping of light
curves from eclipsing binary stars. We adopted a specialized noise model based
on the physical Kepler model that describes the generation of such light curves.

The core of the noise model is given by the basics of two-body gravitational
dynamics, i.e. the Kepler model parametrized by the masses of the two stars
(primary mass + mass ratio), the eccentricity of their relative orbit and other
dynamical parameters, plus the geometry of viewing, i.e., the inclination of the
orbit to the line of sight, as illustrated in figure 4. The overall model - a con-
strained and unconstrained mixture of such parametrized probabilistic models
of fluxes from binary star models - can then be readily used for clustering and
topographic mapping of binary systems, respectively. Since all the parameters
are physically interpretable with universally known priors, the overall models
were fitted in the MAP (maximum a-posteriori) framework.

The methodology was applied to a dataset of light curves from two resources:

(1) The Catalog and Archive of Eclipsing Binaries at http://ebola.eastern.edu/
which is a collection of light curves of the brightest eclipsing binary stars in the
sky, compiled from the literature, based on several decades of photometric data;
(2) All Sky Automated Survey at http://archive.princeton.edu/∼asas/. This is a
survey of the brightest stars visible in the sky in the Southern hemisphere from
a dedicated telescope in Chile.

Figure 5 presents clustering of the fluxes into 6 clusters. For each cluster, we show
all lightcurves assigned to it. The clusters represent a natural grouping of binary
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systems into 4 groups according to their physical properties. The first three
clusters group binaries with low eccentricity (symmetrical normalized fluxes).
Cluster 2 represents binary systems with smaller primary and secondary stars
and well-separated systems with large semi-major axis. On the other hand, clus-
ter 3 groups binary systems with larger primary and secondary stars and systems
with small separation between the primary and secondary stars. Cluster 1 rep-
resent binary systems in between the extremes characterized by clusters 2 and
3. Cluster 4 collects binaries of higher eccentricity. The binaries in cluster 4 have
smaller primary and secondary stars and/or a large semi-major axis. Clusters 5
and 6 play the role of “garbage collectors” and collect binary systems that are
either ‘atypical’ or represent low frequency binary star types in the data set that
could not be naturally grouped together based on the given data.
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Fig. 5. Lightcurves belonging to each of the 6 clusters ordered from top left to bottom
right

Visualization of the binary systems through their topographic mapping is
shown in figure 6. The 2-dimensional manifold of binary star models (visualiza-
tion space) is represented by the regular grid of fluxes generated at the corre-
sponding positions on the visualization space. Superposed on this grid are some
projections of the fluxes from real binary systems. A detailed discussion of this
visualization is beyond the scope of this paper, we only mention that to the best
of our knowledge, our methodology represents the first fully principled approach
to physics based data driven automated clustering and topographic mapping of
binary complexes.
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Fig. 6. Topographic mapping of a set of binary systems

5 Conclusions

In view of the assembly of large (petabytes) astronomical data archives, as in
the Virtual Observatory, where observations across the electromagnetic spec-
trum (i.e. radio, infrared, optical, X-rays etc) of planets, stars and galaxies, the
need has arisen for the application of computational intelligence to the auto-
mated analysis of these large multivariate datasets. These data will be in the
form of images and spectra, and the combination of a large number of obser-
vations of the same parts of sky will give rise to measurements of variability
in the form of multivariate time series, as well as various catalogues of derived
parameters, whether directly derived from the observations or through detailed
physical modelling of the observations.

Fast automated methods of classification, parameter extraction, characterisa-
tion and visualisation of multi-dimensional and multi-type datasets are necessary
for advances in this field, and they have to be tailored to the particular prob-
lems with the help of the knowledge of the domain. One particular requirement
of astrophysics is the handling of systematic and random errors introduced by
the process of measurement as well as the inherent diversity of various systems.
Learning algorithms are essential is characterising the inputs of experts, since
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many sub-fields still depend on visual characterisation of features in the observed
morphology, spectra and time-series acquired in astronomical datasets. In this
review, we have shown three diverse examples where such methods have been
successful in understanding the physical problem, which in turn have helped in
the development of new approaches in computational intelligence.
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