
Model-Coupled Autoencoder for Time Series Visualisation

Nikolaos Gianniotisa, Sven D. K̈uglera, Peter Tǐnob, Kai L. Polsterera
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Abstract

We present an approach for the visualisation of a set of time series that combines an echo state network with an autoencoder. For
each time series in the dataset we train an echo state network, using a common and fixed reservoir of hidden neurons, and use
the optimised readout weights as the new representation. Dimensionality reduction is then performed via an autoencoder on the
readout weight representations. The crux of the work is to equip the autoencoder with a loss function that correctly interprets
the reconstructed readout weights by associating them witha reconstruction error measured in the data space of sequences. This
essentially amounts to measuring the predictive performance that the reconstructed readout weights exhibit on their corresponding
sequences when plugged back into the echo state network withthe same fixed reservoir. We demonstrate that the proposed visual-
isation framework can deal both with real valued sequences as well as binary sequences. We derive magnification factors in order
to analyse distance preservations and distortions in the visualisation space. The versatility and advantages of the proposed method
are demonstrated on datasets of time series that originate from diverse domains.
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1. Introduction

Time series1 are sequences of observations that exhibit short
or long term dependencies between them in time. These depen-
dencies can be thought of as manifestations of a latent regime
(e.g. natural law) governing the behaviour of the time series.
Machine learning approaches designed to deal with data of a
vectorial nature have no knowledge of such temporal depen-
dencies. By introducing a model that accounts for temporal be-
haviour, algorithms can become “aware” of the sequential na-
ture of the data and make the most of the available information.

Echo state networks (ESNs) [1] are discrete time recurrent
neural networks that have emerged as a popular method to cap-
ture the latent regime underlying a time series. ESNs have the
great advantage that the hidden part, the reservoir of neurons, is
fixed and only the output weights need to be trained. The ESN
is thus essentially a linear model and so the output weights,
also known as readout weights, can thus be easily optimised
via least squares. The processing of structured data has been
a topic of research for a long time [2, 3]. Regarding time se-
ries, recent attempts [4, 5, 6] have exploited the predictive ca-
pabilities of ESNs in regression and classification tasks. In the
unsupervised setting, the work in [7] suggests compressinga
linear state space model through a linear autoencoder in order
to extract vectorial representations of structured data. The work
in [8] considers the visualisation of individual observations be-
longing to asinglesequence by temporally linking them using
an ESN.

In this work, we employ the ESN in the formulation of a
dimensionality reduction algorithm for visualising a dataset of

1We interchangeably use the terms time series and sequence.

time series (we extend previous work presented in [9]). Given
a fixed reservoir, the only free parameters in the ESN are in
the readout weight vector which maps the state space to the se-
quence space. Thus, an optimised (i.e. trained) readout weight
vector uniquely addresses an instance of the ESN (always for
the same fixed reservoir) that best predicts on a given sequence.
We can also reason backwards: given an observed sequence, we
can train the ESN (Section 2.1) and identify the readout weight
vector that best predicts the given sequence. Hence, each se-
quence in the dataset can be mapped to the readout weight vec-
tor that exhibits the best predictive performance on it. These
readout weight vectors in conjunction with the common and
fixed reservoir, capture temporal features of their respective se-
quences. Representing sequences as weight vectors, constitutes
the first part of our proposed approach (Section 3.1).

The second stage of our approach involves training an au-
toencoder [10] on the obtained readout weight vectors in order
to induce a two-dimensional representation, the visualisation,
at the bottleneck. At the heart of the autoencoder lies the re-
construction error function which drives the visualisation in-
duced at the bottleneck. During training, the autoencoder re-
ceives readout weights as inputs, compresses them at the bot-
tleneck, and outputs an approximate version of the inputs, the
reconstructed readout weights. Typically, one would take as
the reconstruction error function theL2 norm between the orig-
inal readout weights and reconstructed readout weights. Inthe
proposed work, we equip the autoencoder with a different re-
construction function that assesses how well the reconstructed
readout weights still predict on the sequence that it represents.
If it predicts well, we deem it a good reconstruction; if it pre-
dicts poorly, we deem it a poor reconstruction (Section 3.2). An

Preprint submitted to Neurocomputing February 1, 2016



time series y
reconstructed 

time series y = Xw

w

w1

w2

wD

fenc(w) fdec(z)

z1

z2 w2
w~

~ ~

z

stage 1 - embed time series as weights stage 2 - autoencode readouts

wD
w1

Fig. 1: Sketch of proposed method. In a first stage, time series y are cast to readout weightsw in the weight space (see Section
3.1). In a second stage, the autoencoder projects readout weights w onto coordinatesz residing in a two-dimensional space, and
reconstructs them again asw̃ (see Section 3.2). By multiplying with the state space, given by X, we map the reconstructed readout
weightsw̃ to the sequence space where reconstruction error is measured (see Eq. (7)).

overview of the proposed method is displayed in Fig. 1.
In Section 6, we show that the autoencoder with the proposed

reconstruction error function is capable of interpreting similar-
ities between time series better than other dimensionalityre-
duction algorithms. In Section 7, we discuss the possibility of
alternative formulations of the proposed approach before con-
cluding with some remarks on future work in Section 8.

2. Preliminary

This section introduces some notation and terminology while
briefly reviewing ESNs and the autoencoder.

2.1. Echo State Networks

An ESN is a discrete-time recurrent neural network with fad-
ing memory. It processes time series composed by a sequence
of observationsy(t) ∈ R over time t that we denote here by
y = (y(1), . . . , y(T)), whereT is the length2 of the sequences.
Hencey ∈ R

T×1. Given an inputy(t), the task of the ESN is
to make a prediction ˆy(t + 1) for the observationy(t + 1) in the
next time step. Similarly to a feedforward neural network, the
ESN comprises an input layer with weightsv ∈ R

D×1, a hid-
den layer with weightsU ∈ R

D×D (henceD is the size of the
reservoir) and an output layer with weightsw ∈ R

D×1, the latter
weightsw also known as readout weights. However, in contrast
to feedforward networks, ESNs equip the hidden neurons with
feedback connections. The operation of an ESN is specified by
the equations:

x(t + 1) = h(Ux(t) + vy(t)) , (1)

ŷ(t + 1) = wT x(t + 1) , (2)

wherex(t) ∈ R
D×1 are the hidden activations of the reservoir

at time t, and h(·) is a nonlinear function commonly chosen
as the tanh(·) function. Bias terms have been omitted in the
formulation for the sake of clarity in notation.

2In general, each sequence can have its own lengthTn. For ease of exposi-
tion, here all sequences have the sameT.

According to standard ESN methodology [1], parametersv
andU in Eqs. (1), (2) are randomly generated3 and fixed. The
only trainable parameters are the readout weightsw. Train-
ing involves feeding at each time stept an observationy(t) and
recording the resulting activationsx(t) row-wise into a matrix
X ∈ R

T×D. Usually, some initial observations are dismissed
in order to “washout” [1] dependence on the initial arbitrary
reservoir state (e.g.x(1) = 0). Given matrixX, the following
objective function is minimised:

ℓ(w) = ‖Xw − y‖2 . (3)

The above objective can be supplemented by a regularisation
term and so the combined objective isℓ(w) + µ2‖w‖2. The
combined objective can be exactly minimised by solving the
pertaining least squares problem and obtainingw = (XT X +
µ2ID)−1XT y as the solution, whereID is theD×D identity ma-
trix. Given this result, we introduce functiong(y) that maps a
given time series to the optimal readout weights:

g(y) = (XT X + µ2ID)−1XT y = w . (4)

2.2. Deterministically Constructed Echo State Networks

In the original formulation of the ESN [1] the weights inv
andU are generated stochastically and so are the connections
between the hidden neurons in the reservoir. This makes the
training and use of the ESN dependent on random initialisa-
tions. In order to avoid this source of randomness, we make
use of a class of ESNs that are constructed in a deterministic
fashion [11].

Deterministic ESNs make several simplifications over stan-
dard ESNs. All entries inv have the same absolute value of
a single scalar parameterv > 0. The signs of the entries inv
are deterministically generated by an aperiodic sequence:e.g.
a pseudorandom binary sequence (coin flips), with outcomes
0 and 1 corresponding to− and+ respectively. Similarly, the
entries inU are parametrised by a single scalaru > 0. As
opposed to random connectivity, deterministic ESNs imposea

3The spectral radius of the reservoir’s weight matrixU is made< 1 to en-
couragethe Echo State Property.
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Fig. 2: Deterministic ESN with cyclic architecture, see Section
2.2. Circles denote neurons and arrows connections between
neurons. All input neurons connect to the hidden neurons, and
all hidden neurons connect to the output neurons. Hidden neu-
rons are connected in a cyclic fashion to each other. All input
weights have the same absolute valuev, and the sign is deter-
mined by a deterministic aperiodic sequence. The hidden reser-
voir weights are fixed to the same scalaru. The readout weights
w are the only adaptable part of the ESN.

fixed regular topology on the hidden neurons in the reservoir.
Amongst possible choices, one can arrange the neurons in a cy-
cle. A cyclic arrangement imposes the following structure on
U: the only nonzero entries inU are on the lower sub-diagonal
Ui+1,i = u, and at the upper-right cornerU1,D = u. An illustra-
tion of a cyclic deterministic ESN is shown in Fig. 2.

In this work we employ deterministic ESNs with a cyclic
connectivity. Deterministic ESNs have three degrees of free-
dom: the reservoir sizeD, the input weightv and reservoir
weight u. Hence, the triple (D, v,u) completely specifies an
ESN. It has been shown empirically and theoretically (memory
capacity) [11] that deterministic ESNs perform up to par with
their stochastic counterparts. Training of a deterministic ESN
is performed in exactly the same fashion as in stochastically
constructed ESNs using the objectiveℓ(w) in Eq. (3).

2.3. Autoencoder

The autoencoder [10] is a feedforward neural network that
defines a three hidden layer architecture4 with the middle layer,
the “bottleneck”, being smaller than the others in terms of the
number of neurons denoted byQ. The autoencoder learns an
identity mapping by training on targets identical to the inputs.
Learning is hampered by the bottleneck that forces the autoen-
coder to reduce the dimensionality of the inputs, and hence the
output is only an approximate reconstruction of the input.

Given general vectorss, we want to reduce them to aQ-
dimensional representation. The autoencoder is the compo-
sition of an encodingfenc and a decodingfdec function. En-
coding maps inputss to low-dimensional compressed versions,
fenc(s) = z ∈ R

Q, while decoding maps approximately back to
the inputs,fdec(z) = s̃. The complete autoencoder is the func-
tion f (s; θ) = fdec( fenc(s)) = s̃, whereθ are the weights of the

4To be perfectly precise, we use what is widely considered thestandard
autoencoder specified in [12, Sec. 12.4.2]).

autoencoder. Training the autoencoder involves minimising the
L2 norm betweenN given vectorss and their reconstructions:

N
∑

n=1

‖s̃n − sn‖
2 =

N
∑

n=1

‖ f (sn; θ) − sn‖
2. (5)

3. Model Formulation

The proposed approach consists of two stages. In Section
3.1, we discuss how time seriesy are embedded in the space of
readout weight vectorsw. Section 3.2 discusses how an autoen-
coder with a modified reconstruction function is applied on the
readout weight vectors in a meaningful manner.

3.1. Embedding time series in the space of readout weights

Given a deterministically constructed and fixed reservoir
(D, v,u), we cast a dataset{y1, . . . , yN} via g(yn) = wn to a new
dataset of readout weights{w1, . . . ,wN}. We emphasise that all
time series are embedded in the space of readout weights with
respect to the same fixed dynamic reservoir(D, v,u). After this
embedding, visualisation proceeds by performing dimensional-
ity reduction on the new representationswn. We take the view
that the readout weightwn is a good representation for a se-
quenceyn with respect to the fixed reservoir (D, v,u). The read-
out weightwn captures important information aboutyn in the
sense that it exhibits good predictive power on it. Moreover,
the readout weight vectorwn features time-shift invariance, and
can accommodate sequences of variable length.

A prerequisite for a successful embedding is a common,
fixed reservoir that enables good predictive performance on
the data. To find this reservoir, we opt for a simple strat-
egy. For bothv and u we take a regular grid of e.g. 10 can-
didate values [10−2, . . . ,1.0]. For each combination (u, v) ∈
[10−2, . . . ,1.0] × [10−2, . . . ,1.0], we perform the following:

1. Split each sequencey in two halvesy(train)
n andy(test)

n .
2. According to Eq. (3), train ESN ony(train)

n by minimising
ℓ(train)(w) = ‖X(train)

n w − y(train)
n ‖2 which yieldswn.

3. Measure test error viaℓ(test)(wn) = ‖X(test)
n wn − y(test)

n ‖2.

MatricesX(train)
n andX(test)

n respectively record row-wise the ac-
tivationsy(train)

n (t) andy(test)
n (t) as specified in Section 2.1. The

combination (u, v) with the lowest test error over all sequences
∑N

n=1 ℓ
(test)(wn), determines the ESN that will cast all time series

in the dataset to readout weights. ParametersD andµmay also
be included in this simple validation scheme.

3.2. ESN-coupled Autoencoder

We want to reduce the dimensionality of the new represen-
tations{w1, . . . ,wN} using an autoencoder. One possibility is
to directly apply the autoencoder taking as input the readout
weights and returning their reconstructed versions,f : R

D×1 →

R
D×1. We could then minimise the following objective function

with respect to the autoencoder weightsθ:

N
∑

n=1

‖ f (wn; θ) − wn‖
2 =

N
∑

n=1

‖w̃n − wn‖
2. (6)
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A limitation of the above objective function is that it merely
measures how well the reconstructionsf (w; θ) = w̃ approxi-
mate the original inputsw in theL2 sense.

A better objective would measure reconstruction error in the
sequence space as opposed to the space of readout weights. To
that purpose, we map the reconstructed readout weightsw̃ to
the sequence space by multiplying with the respective statema-
trix, Xw̃ = ỹ. In actual fact, functionℓ(·) in Eq. (3) is cut out
for this task: ifℓ(w̃) returns high likelihood, theñw is a good
reconstruction; ifℓ(w̃) returns low likelihood, theñw is a poor
reconstruction. The new objective function reads:

N
∑

n=1

ℓn( f (wn; θ)) =
N
∑

n=1

‖Xn f (wn; θ)−yn‖
2 =

N
∑

n=1

‖ỹn−yn‖
2 , (7)

where ℓn and Xn are respectively the objective function and
state space pertaining to sequenceyn, see Eq. (3). The gradi-
ent of the new objective function in Eq. (7) with respect to
the weightsθ, is calculated by backpropagation [12]. We use
L-BFGS as the optimisation routine for training the weightsθ.

3.3. Data Projection

Having trained the autoencoderf (wn; θ), we would like to
project a time seriesy∗ to a coordinatez∗ ∈ R

Q. To that end,
we first use the fixed ESN reservoir to cast the time series to
g(y∗) = w∗. Then, the readout weightw∗ is projected using the
encoding part of the autoencoder to obtainfenc(w∗) = z∗.

4. Binary Sequences

The time series considered so far are sequences of reals
y(t) ∈ R. However, it is possible to extend the proposed ap-
proach to the processing of symbolic sequences. In particu-
lar, we consider binary sequences composed of observations
y(t) ∈ {0,1}. For an ESN to process binary sequences, we pass
its outputs through the logistic functionσ(·) = (1 + exp(·))−1

(link function of the Bernoulli distribution). Hence, the equa-
tions specifying the operation of the ESN now read5:

x(t + 1) = h(Ux(t) + v(y(t) − 0.5)) , (8)

ŷ(t + 1) = σ(wT x(t + 1)) . (9)

Here the output ˆy(t+1) ∈ [0 . . . 1] of the ESN is interpreted as
the probability of the next observationy(t + 1) being equal to 1,
i.e. ŷ(t + 1) = p(y(t + 1) = 1). Accordingly, the objective func-
tion ℓ(w) in Eq. (3) needs to be redefined. Instead of solving a
least squares problem, we minimise the cross-entropy:

ℓce(w) = −
T
∑

t=1

y(t) log ŷ(t) . (10)

Training of the ESN is carried out by iterative gradient minimi-
sation of Eq. (10) preceded by a period of washout.

5 In Eq. (8) we subtract 0.5 fromy(t), since the symmetric tanh(·) transfer
functionh is used in the dynamic reservoir.
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Fig. 3: Stylised sketch: mappingfdec(z) embeds the visu-
alisation spaceV as a manifoldM in the space of readout
weights. Each pointz addresses a probabilistic ESN with read-
out weightsw.

The above modifications to the ESN, call for a modification
also in the autoencoder. While in Eq. (7) reconstruction is mea-
sured via the least-squares based functionℓ(w), we now use
the cross-entropy based functionℓce(w). In order for the au-
toencoder to process correctly the weights coming from binary
sequences, its objective function needs to be changed to:

N
∑

n=1

ℓce
n ( f (wn; θ)) = −

N
∑

n=1

T
∑

t=1

y(t) logσ( f (wn; θ)T xn(t + 1)) .

(11)
In the case of binary sequences, the outputs of the autoencoder
f (w; θ) are put though the functionℓce(·).

By adopting a 1-of-K coding scheme for the symbols, and
the softmax function in the place of the logistic function, an
extension toK number of symbols is possible. The resulting
objective for training the ESN is again a cross-entropy function.

5. Magnification Factors

In Fig. 3, the smooth nonlinear functionfdec(z) embeds
the low-dimensional visualisation spaceV as aQ-dimensional
manifoldM in the space of readout weightsw. Each point
z ∈ V addresses an ESN model6 with readout weightsw ∈ M.
The ESN model may be viewed as a probabilistic model, if we
assume that observationsy(t) are corrupted by i.i.d. Gaussian
noise of zero mean and varianceǫ2:

y =Xw + ǫ , (12)

p(y; w) =N(y|Xw, ǫIT) , (13)

Thus, each pointz addresses a probabilistic modelp(y; fdec(z)),
andM is a manifold of probabilistic modelsp(y; fdec(z)).

ManifoldM is endowed with a natural metric for measuring
distances between probabilistic modelsp(y; fdec(z)). Specifi-
cally, the metric tensor on a statistical manifold at a givenpoint
z is theQ× Q Fisher information matrix (FIM) [13]. Here, we
approximate it through theobserved FIMover the given dataset
of sequences:

F(z)i, j =−

N
∑

n=1

[(

∂

∂zi
log p(yn; fdec(z))

) (

∂

∂zj
log p(yn; fdec(z))

)]

.

(14)

6We always have the same fixed reservoir.
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We note that the visualisation spaceV does not necessarily
reflect distances between models onM. In Fig. 3, we see how
neighbourhoods ofz, depicted as dotted ellipses, transform on
M. Thus, in order to interpret distances inV, it is important to
push-forward the natural notion of distances onM onto the vi-
sualization spaceV. In the topographic mapping literature the
induced metric in the visualization space from the data space is
usually represented through magnification factors [14]. Inthe
following we show how magnification factors can be computed
in the ESN-AE setting.

Given the FIM, one can push forward local distances∆z from
M ontoV via∆zT F(z)∆z. In particular, at a given point∆z it is
possible to estimate in which directiondz the distance changes
the most. This can be easily calculated by solving the following
constrained problem:

maximise∆zT F∆z over∆z, subject to‖∆z‖2 = 1. (15)

The solution to this problem is given by setting∆z∗ to the eigen-
vector corresponding to the largest eigenvalueλ∗. Eigenvalue
λ∗ informs us of the maximum local distortion in distance and
can be taken as a measure for the local magnification factor.

6. Numerical Experiments

In the following we compare the proposed method to other
visualisation algorithms and discuss the results.

6.1. Datasets

In order to judge whether a visualisation truly captures simi-
larities, we need to know a priori which time series are similar
to which. We therefore employ the following particular datasets
whose data items fall under known classes and are labelled.
For these datasets, there is a very strong a priori expectation
that the classesare governed by qualitatively distinct dynami-
cal regimes. Thus, time series of the same class are expected to
appear similar (close together) in the visualisation, while time
series belonging to different classes are expected to appear dis-
similar (separate) in the visualisation.

NARMA. We generate 100 sequences of length 1000 from
the three qualitatively different NARMA classes [11] of orders
10,20,30. The NARMA time series is an interesting bench-
mark problem due to the presence of long-term dependencies.

Cauchy. We sample sequences from a stationary Gaussian
process with correlation function given byc(xt, xt+h) = (1 +
|h|a)−

a
b [15]. We generated 4 classes by permuting parameters

a ∈ {0.65,1.95} andb ∈ {0.1,0.95}. We generated from each
class 100 time series of length 1,000. Parametersa andb are
respectively related to the fractal dimension (measuring self-
similarity) and the Hurst coefficient (measuring long-memory
dependence) of the series. By construction, the four classes
have distinct characteristics.

X-ray. The binary system GRS1915+105 is composed of an
extremely heavy stellar black hole and a low-mass star. Mate-
rial is transferred from the star towards the black hole through
the Roche lobe. While falling into the gravitational potential of
the black hole, energy is released by radiating X-ray and radio
(jet) emission which is typical for the class of microquasars.
A thorough investigation carried out in [16], detected the pres-
ence of classes of distinct dynamical patterns. Due to the lack
of multiple time sequences per state, we split the observations
into equal-length parts, resulting in 161 sequences. Here we
visualise classesdelta, kappa, phi, rho andchi.

Wind. We visualise wind data7 taken from the vicinity of
Hamburg, Frankfurt and Munich. Around each city, we se-
lect the 10 closest stations with a completeness of more than
99% of hourly measured wind speed data between 13/01/2014
- 31/12/2014 (8,471 measurements per station). Missing data
are interpolated using a spline function of the 3rd degree. In
order to increase the number of visualised entities, the time se-
ries of each station are cut into two non-overlapping parts of
4,000 data points each. In these data there is a strong a priori
expectation that time series associated with the coastal city of
Hamburg are different to the other data.

Textual data (symbolic). We visualise the first chapter of J. K.
Rowling’s “Harry Potter and the Philosopher’s Stone” in three
languages German, English and Spanish. A full symbolic rep-
resentation of the alphabet makes the optimisation of the ESN
difficult and it would be a trivial task to separate the languages
as they could be identified by single words. Here, we choose a
binary representation where the states 0 and 1 represent vowels
and consonants. Punctuation and whitespaces are ignored. E.g.
a German sentence is converted as follows:

≫Die Potters, das stimmt, das hab ich gehört -≪
011 0100100 010 001000 010 010 100 010100

Discarded symbols are marked by an underscore. This rep-
resentation returns sequences of different length for each lan-
guage, but all with at least 24,000 symbols. To increase the
number of sequences per language, we split the binary vectors
into sequences of length 2,000 with neighbouring sequences
overlapping by 50%. It is interesting to see whether texts orig-
inating from different languages still retain their distinguishing
dynamics after subjected to this drastic “binarisation”.

6.2. Dimensionality Reduction Algorithms

The following dimensionality reduction algorithms are com-
pared in the numerical experiments. All algorithms operateon
the readout weightsw. Sequences are represented as readout
weights using a deterministic cyclic ESN whose parameters are
selected using the validation procedure in Section 3.1. Addi-
tionally, in this validation scheme we include the regularisation
parameterµ ∈ {10−2,10−3,10−4}. In all experiments the size of
the reservoir is fixed toD = 50 and we set a washout period of
50 time steps. We setQ = 2 for constructing 2D visualisations.

7Kindly provided by the Deutscher Wetterdienst, ftp://ftp-cdc.dwd.de/ .
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Fig. 4: Visualisations on NARMA (top), Cauchy (middle) and X-ray (bottom) data. High/low magnifications correspond to
bright/dark regions. Legends specify which markers correspond to which classes.

PCA. We include PCA as it helps us gauge how difficult it
is to project a dataset to low dimensions: if PCA delivers a
good result, this hints that a complex, non-linear projection is
superfluous.

t-SNE. We include t-SNE [17] as one of the most popular and
well performing algorithms designed for vectorial data. We
train t-SNE with perplexities in [5,10,20,30,40,50], and dis-
play the visualisation that shows the best class separation. The
chosen perplexity is quoted in the figures.

Standard autoencoder (standard-AE). We employ the stan-
dard autoencoder operating directly on the readout weights.
The hidden layers of the encoding and decoding part have the
same numberH of neurons. We also add a regulariser on the
weights of the autoencoderν2‖θ‖2 to control complexity. In all
experiments, we setH = 10,ν = 1.

Proposed approach (ESN-AE).The proposed ESN-AE has
the same hyperparameters as the standard-AE. We again fix the
hyperparameters toH = 10,ν = 1.
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Spanish
English

(h) ESN-AE on Textual.

Fig. 5: Visualisations on Wind (top), and Textual (bottom) data. High/low magnifications correspond to bright/dark regions.
Legends specify which markers correspond to which classes.

6.3. Results
We present the visualisations in Figs. 4 and 5. Each col-

umn of plots corresponds to one of the aforementioned dimen-
sionality reduction algorithms, and each row to a dataset. The
projections in the plots appear as coloured markers of different
shapes indicating class origin. The legend in each plot shows
which marker corresponds to which class. Following Section
5, we display local magnification factors, for the autoencoders,
as the maximum eigenvalueλ∗ of matrix F(z) on a regular grid
of points z on the visualisation space. Dark and bright val-
ues signify low and high eigenvalues/magnification factors re-
spectively. There are no magnification factors for PCA, as the
linear mapping connecting the visualisation space to the high-
dimensional space is length/distance preserving. Also, we do
not present magnification factors for t-SNE, as it does not de-
fine an explicit mapping between the visualisation and high-
dimensional space. It thus requires a different framework than
the one used here in order to study magnifications.

NARMA , top row in Fig. 4. We note that all visualisations
separate the three classes, and show that the three classes are
equidistant. The magnifications in 4c show that the standard-
AE views the three classes indeed as distinctly separable clus-
ters. However, in the case of the ESN-AE in 4d, the magnifi-
cation factors suggest the presence of distortions in distances

Table 1: Mean squared errors between NARMA classes, the
smaller the more similar.

Order 10 Order 20 Order 30
Order 10 5.331 2185.935 37.161
Order 20 2213.019 0.052 2030.409
Order 30 30.478 1983.585 6.031

close to class “Order 20”. This means that in actual fact class
“Order 20” is separated by significant distance from the other
two classes, and that classes “Order 10” and “Order 30” are
closer and more similar to each other. We investigate this hy-
pothesis with a simple experiment. We generate from each class
additional 200 sequences. For each pair of classes (classesalso
pair with themselves), we train on sequences from one class and
measure the mean squared error on the unseen sequences of the
other classes. These errors are reported in Table 1, and support
this hypothesis put forward by the magnification factors in the
ESN-AE visualisation.

Cauchy, middle row in Fig. 4. PCA in 4e and t-SNE in 4f man-
age to organise the classes coherently to some degree, whilethe
standard-AE in 4g fails to produce a convincing result. ESN-
AE in 4h displays a clear separation between all four classes.
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Table 2: Mean reconstruction and standard deviation, averaged
over 10 runs.

PCA standard AE ESN-AE

NARMA 151451.130± 14984.801 116.041± 46.606 44.126± 11.962

Cauchy 121.110± 4.022 102.115± 2.522 95.176± 2.675

Xray 25.376± 2.274 42.727± 17.423 21.798± 1.617

Wind 5.0498± 0.253 5.192± 0.260 5.079± 0.231

Textual 0.691± 0.007 0.700± 0.010 0.694± 0.017

In particular the presence of magnification factors close tothe
two classes located in the upper right corner, shows that these
two classes are potentially separated by a larger distance to the
other two.

X-ray , bottom row in Fig. 4.All visualisations clearly sepa-
rate therho andchi classes. For standard-AE in 4k, the strong
magnification suggest that thechi class is quite different to the
others. t-SNE in 4j and ESN-AE distinguish in 4l the classes
in a clearer fashion. ESN-AE exhibits less overlapping projec-
tions, but does not put enough distance between classesdelta
and phi. The presence of magnifications close to thechi class
is a hint that this class is quite different to the other ones. Still
even in the absence of labels (i.e. colour markers), the classes
are identifiable in the visualisation produced by ESN-AE.

Wind , top row in Fig. 5. None of the visualisations separates
the Munich from the Frankfurt stations. Matching our prior
expectation, ESN-AE in 5d organises the stations around Ham-
burg in a single region, in contrast to the other visualisations
which show overlap. Standard-AE fails to produce a clear re-
sult and its magnifications do not help in its interpretationany
further.

Textual data (symbolic), bottom row in Fig. 5.The binary
representation of the text data in three different languages
shows the true power behind the ESN-AE equipped here with
the logistic function. While other visualisations do not exhibit
adequate separation, ESN-AE in 5h exhibits some clear organ-
isation. Additionally, magnifications suggest some separation
between the German and English sequences. The bright mag-
nifications that appear in the unpopulated corners are simply
artefacts as the model has not seen any data in these areas.

Reconstruction. In order to give a quantitative impression of
the quality of the visualisations, we report reconstruction errors
in Table 2. Each dataset is randomly partitioned 10 times into
equally sized training and test sets. For each partitioning, we
train the dimensionality algorithms and measure the error on
the test data using Eq. (3). For the binary textual data, the error
is measured as the fraction of predictions coinciding with the
binary test sequences. We exclude t-SNE as it does not offer a
way of reconstructing weights from the projections.

7. Discussion

Though the conversion of time-series into fixed-length repre-
sentations is not new (e.g. [18]), we believe that converting the

time series via a non-parametric state space model with fixed
dynamic part (i.e ESN) in conjunction with an appropriatelyde-
fined reconstruction function, does provide a new way of per-
forming dimensionality reduction on time series. The results
show that the proposed visualisation is better at understanding
what makes sequences (dis)similar as it manages to separate
classes that are governed by qualitatively distinct dynamical
regimes. Indeed, the produced visualisations reflect our prior
expectations as to which sequences should be similar.

Of course, combining the ESN with the autoencoder is just
one possible scheme, and certainly other dimensionality reduc-
tion schemes can be devised along this line. One can exchange
the ESN with other models such as autoregressive-moving-
average models (ARMA), and use them to cast the time-series
to fixed parameter vectors. E.g. for slow changing signals, mod-
els based on Fourier series might be more suitable than the
ESN. Choosing the ESN to model the temporal features of the
sequences, is indeed a subjective choice. However, this does
not mean that it is a bad choice: in the relevant literature, a
wealth of applications demonstrate that ESNs are good models
for a large variety of real-world time series.

Besides the autoencoder, other dimensionality reduction
methods that rely on optimising reconstruction error (e.g.
GPLVM [19]) can be adapted to the visualisation of time-series;
one has to modify their objective to measure reconstructionin
the sequence space, just as the loss function of ESN-AE does.

8. Conclusion

We have presented a method for the visualisation of time se-
ries that couples an ESN to an autoencoder. Time series are
represented as readout weights of an ESN and are subsequently
compressed to a low dimensional representation by an autoen-
coder. The autoencoder attempts reconstruction of the read-
out weights in the context of the state space pertaining to the
sequences thanks to the modified loss function. In future re-
search, we plan to work on irregularly sampled time series that
originate from eclipsing binary stars. The ESN will be replaced
by a physical model that will cast the time series to vectors of
physical parameters.
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