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Abstract

We present an approach for the visualisation of a set of tenesthat combines an echo state network with an autoencede
each time series in the dataset we train an echo state netusirlg a common and fixed reservoir of hidden neurons, and use
the optimised readout weights as the new representatiome@sionality reduction is then performed via an autoencodehe
readout weight representations. The crux of the work is wnpethe autoencoder with a loss function that correctlyriptets

the reconstructed readout weights by associating themanigtonstruction error measured in the data space of seepiefhis
essentially amounts to measuring the predictive perfoomdmat the reconstructed readout weights exhibit on tleenesponding
sequences when plugged back into the echo state networkhgittame fixed reservoir. We demonstrate that the proposadlvi
isation framework can deal both with real valued sequensagefl as binary sequences. We derive magnification factoosder

to analyse distance preservations and distortions in thealisation space. The versatility and advantages of thgoged method

are demonstrated on datasets of time series that origirmatediverse domains.

Keywords: Time series, dimensionality reduction, echo state netyaurkoencoder

1. Introduction time series (we extend previous work presenteﬁin [9]). ive
Ti i f ob i that exhibit sh a fixed reservoir, the only free parameters in the ESN are in
IMe Series are sequences ot observations that exnibit S Or{he readout weight vector which maps the state space to the se

or long term dependencies between them in time. These depe&&ence space. Thus, an optimised (i.e. trained) readoghtvei

denuestcanl l?e thought c_:f asthmatr)nfﬁ stgtlons fogha I?tent 9N ector uniguely addresses an instance of the ESN (always for
(e.g. natura qw) governing the behaviour ot the tme Seie y, o s5me fixed reservoir) that best predicts on a given sequen
Machine learning approaches designed to deal with data of We can also reason backwards: given an observed sequence, we

vecto_rlal nature havg no knowledge of such temporal depenéan train the ESN (Section 2.1) and identify the readout kteig
dencies. By introducing a model that accounts for temparal b vector that best predicts the given sequence. Hence, each se

haviour, algorithms can become “aware” of t_he sequennal .naquence in the dataset can be mapped to the readout weight vec-
ture of the data and make the most of the available informatio

. . tor that exhibits the best predictive performance on it. Sehe
Echo state networks (ESNQ) [1] are discrete time recurreqleadout weight vectors in conjunction with the common and
neural networks that have emerged as a popular method to ¢

X ed reservoir, capture temporal features of their respese-
ture the latent regime underlying a time series. ESNs hawve th ; Cap P e

) ) . uences. Representing sequences as weight vectorsjutmssti
great advantage that the hidden part, the reservoir of neui® d P gseq 9 '

fixed and only the output weights need to be trained. The ESl{Fe first part of our proposed approach (Section 3.1).

is thus essentially a linear model and so the output weights, The second stage of our approach involves training an au-
also known as readout weights, can thus be easily optimise(@encoder@O] on the obtained readout weight vectors ierrd
via least squares. The processing of structured data ha&s be induce a two-dimensional representation, the visu#disa
a topic of research for a long tim [E 3]. Regarding time se-at the bottleneck. At the heart of the autoencoder lies the re
ries, recent attemptg [EL 5, 6] have exploited the prediate-  construction error function which drives the visualisatio-
pabilities of ESNSs in regression and classification taskghé  duced at the bottleneck. During training, the autoencoder r
unsupervised setting, the work in [7] suggests compressing ceives readout weights as inputs, compresses them at the bot
linear state space model through a linear autoencoder &r ordtleneck, and outputs an approximate version of the inphes, t
to extract vectorial representations of structured datte Work  reconstructed readout weights. Typically, one would take a
in [8] considers the visualisation of individual obsereat be-  the reconstruction error function the norm between the orig-
longing to asinglesequence by temporally linking them using inal readout weights and reconstructed readout weightthen
an ESN. proposed work, we equip the autoencoder with féedent re-

In this work, we employ the ESN in the formulation of a construction function that assesses how well the recaetetiu
dimensionality reduction algorithm for visualising a dsgtof  readout weights still predict on the sequence that it regoss
If it predicts well, we deem it a good reconstruction; if iepr
IWe interchangeably use the terms time series and sequence. dicts poorly, we deem it a poor reconstruction (Sedtion.3A2)
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Fig. 1: Sketch of proposed method. In a first stage, time sgrége cast to readout weightsin the weight space (see Section
[3.1). In a second stage, the autoencoder projects readagtite® onto coordinateg residing in a two-dimensional space, and
reconstructs them again @s(see Section 3]2). By multiplying with the state space, mive X, we map the reconstructed readout
weightsW to the sequence space where reconstruction error is measeeEq/ (7).

overview of the proposed method is displayed in Fig. 1. According to standard ESN methodolocgy [1], parameters
In Section 6, we show that the autoencoder with the proposeandU in Egs. (1), (2) are randomly generatexhd fixed. The
reconstruction error function is capable of interpretingiar- ~ only trainable parameters are the readout weightsTrain-
ities between time series better than other dimensionadity ing involves feeding at each time stepn observationy(t) and
duction algorithms. In Sectidn 7, we discuss the possjhilit ~ recording the resulting activationgt) row-wise into a matrix
alternative formulations of the proposed approach before ¢ X € R™P. Usually, some initial observations are dismissed
cluding with some remarks on future work in Sectidn 8. in order to “Washout”ﬁl] dependence on the initial arbigrar
reservoir state (e.gx(1) = 0). Given matrixX, the following
objective function is minimised:
2. Preliminary
(W) = [IXw =yl (3)
This section introduces some notation and terminologyevhil
briefly reviewing ESNs and the autoencoder. The above objective can be supplemented by a regularisation
term and so the combined objective 4&v) + w?Wj>. The
21 Echo State Networks compin_ed objective can be exactly minimige_d by S(%Iving the
pertaining least squares problem and obtaining: (X' X +
An ESN is a discrete-time recurrent neural network with fad-«?1 p) "> X"y as the solution, wherk, is theD x D identity ma-
ing memory. It processes time series composed by a sequeniix. Given this result, we introduce functiagy) that maps a
of observations/(t) € R over timet that we denote here by given time series to the optimal readout weights:
y = (Y(2),...,y(T)), whereT is the Iengtﬁ of the sequences.
Hencey € R™!. Given an inputy(t), the task of the ESN is a(y) = (XTX +21p) Xy =w. (4)
to make a prediction(f + 1) for the observatiog(t + 1) in the
next time step. Similarly to a feedforward neural netwohig t 2.2. Deterministically Constructed Echo State Networks
ESN comprises an input layer with weights= RDXII' a hid- In the original formulation of the ESN [1] the weights in
den layer with weightd) € R®*® (henceD is the size of the  anqy are generated stochastically and so are the connections
reservoir) and an output layer with weightss R®, the latter  petween the hidden neurons in the reservoir. This makes the
weightsw also known as readout weights. However, in contrasgraining and use of the ESN dependent on random initialisa-
to feedforward networks, ESNs equip the hidden neurons witljons. |n order to avoid this source of randomness, we make
feedback connections. The operation of an ESN is specified byse of a class of ESNs that are constructed in a deterministic

the equations: fashion [11].
Deterministic ESNs make several simplifications over stan-
X(t+1) = h(Ux(1) + w(1)) » (1) dard ESNs. All entries iv have the same absolute value of
Yt+1)=wx(t+1), (2) asingle scalar parameter> 0. The signs of the entries n

are deterministically generated by an aperiodic sequeacg:
wherex(t) € RP*! are the hidden activations of the reservoir a pseudorandom binary sequence (coin flips), with outcomes
at timet, andh(-) is a nonlinear function commonly chosen 0 and 1 corresponding te and+ respectively. Similarly, the
as the tanhj function. Bias terms have been omitted in the entries inU are parametrised by a single scalar> 0. As

formulation for the sake of clarity in notation. opposed to random connectivity, deterministic ESNs im@ose
2In general, each sequence can have its own lefigttFor ease of exposi- 3The spectral radius of the reservoir's weight matdiis made< 1 to en-
tion, here all sequences have the sdme couragethe Echo State Property



autoencoder. Training the autoencoder involves minirgitie
L, norm betweerN given vectorss and their reconstructions:

N N
D Is = sl? = ) (50 6) - sl (5)
n=1

n=1

3. Model Formulation

The proposed approach consists of two stages. In Section
I3.1, we discuss how time serigsre embedded in the space of
Fig. 2: Deterministic ESN with cyclic architecture, seet@et ~ readout weight vectons. Section 3.2 discusses how an autoen-
2.2. Circles denote neurons and arrows connections betwe&gder with a modified reconstruction function is applied loe t
neurons. All input neurons connect to the hidden neurorgs, anfeéadout weight vectors in a meaningful manner.
all hidden neurons connect to the output neurons. Hidden neu
rons are connected in a cyclic fashion to each other. Alltinpu3.1. Embedding time series in the space of readout weights
weights have the same absolute valy@nd the sign is deter- Given a deterministically constructed and fixed reservoir
mined by a deterministic aperiodic sequence. The hidderres (D, v, u), we cast a dataséy, ..., Yy} Viag(y,) = W, to a new
voir weights are fixed to the same scalaiThe readout weights dataset of readout weighf®;, ..., wy}. We emphasise that all
w are the only adaptable part of the ESN. time series are embedded in the space of readout weights with

respect to the same fixed dynamic reser(Dirv, u). After this

embedding, visualisation proceeds by performing dimevadio
fixed regular topology on the hidden neurons in the reservoirity reduction on the new representatioms We take the view
Amongst possible choices, one can arrange the neurons in a Ghat the readout weight, is a good representation for a se-
cle. A cyclic arrangement imposes the following structune o quencey, with respect to the fixed reservod(v, u). The read-
U: the only nonzero entries id are on the lower sub-diagonal gt weightw, captures important information aboyt in the
Ui.1i = U, and at the upper-right cornelip = u. Anillustra-  genge that it exhibits good predictive power on it. Morepver
tion of a cyclic deterministic ESN is shown in Fig. 2. the readout weight vectov, features time-shift invariance, and

In this work we employ deterministic ESNs with a cyclic ¢an accommodate sequences of variable length.
connectivity. Deterministic ESNs have three degrees @-fre  p prerequisite for a successful embedding is a common,
dom: the reservoir siz®, the input weightv and reservoir  fixed reservoir that enables good predictive performance on
weightu. Hence, the triple@,v,u) completely specifies an the data. To find this reservoir, we opt for a simple strat-
ESN. It has been shown empirically and theoretically (mgmor egy. For bothv andu we take a regular grid of e.g. 10 can-

their stochastic counterparts. Training of a determiai&$N  [10-2 .| 1.0]x[1072,...,1.0], we perform the following:

is performed in exactly the same fashion as in stochasticall

. . . . ; i (train) tes)
constructed ESNs using the objectii(@) in Eq. (3). 1. Split each sequengein two haIvesynt " andy;°.
2. According to Eq.(3), train ESN oyt by minimising
2.3. Autoencoder e ) = [ X§*Vw - i@ |12 which yieldsw,.

The autoencodef [10] is a feedforward neural network that 3+ Measure test error VIA®)(wy) = X5 — Yoo,
defines a three hidden layer architecfuréth the middle layer, MatricesX @ and X respectively record row-wise the ac-
the “bottleneck”, being smaller than the others in termshef t tivationsy ™™ (t) andy®®(t) as specified in Sectidn 2.1. The
number of neurons denoted Iy The autoencoder learns an combination ¢, v) with the lowest test error over all sequences
identity mapping by training on targets identical to thedtsp ~ ¥N | /(es)(w,), determines the ESN that will cast all time series
Learning is hampered by the bottleneck that forces the autoe in the dataset to readout weights. ParameBeandu may also
coder to reduce the dimensionality of the inputs, and hemee t be included in this simple validation scheme.
output is only an approximate reconstruction of the input.

Given general vectors, we want to reduce them to @- 3.2. ESN-coupled Autoencoder
dimensional representation. The autoencoder is the COMPO-\ye want to reduce the dimensionality of the new represen-
sition of an encodingfenc and a decodingec function. En- tationsiwy, ..., wy} using an autoencoder. One possibility is
coding maps inputs to low-dimensional compressed versions, i, girectly apply the autoencoder taking as input the readou
fendS) = z € RY, while decoding maps approximately back to \yejghts and retuming their reconstructed versignsRP*: —
the inputs,fued2) = S The complete autoencoder is the func- gox1 e could then minimise the following objective function
tion f(s;0) = faed fendS)) = § whered are the weights of the \iih respect to the autoencoder weighits

N N
“To be perfectly precise, we use what is widely consideredsthadard Z I (Wn; ) — Wall? = Z (1K — Wall2. (6)
autoencoder specified 12, Sec. 12.4.2]). ~ —~



A limitation of the above objective function is that it meyel
measures how well the reconstructioh@v, §) = W approxi- Z5 7
mate the original inputes in the L, sense.

A better objective would measure reconstruction error @ th
sequence space as opposed to the space of readout weights. To
that purpose, we map the reconstructed readout weiglts
the sequence space by multiplying with the respective state
trix, XW% = §. In actual fact, functior’(:) in Eq. (3) is cut out
for this task: if((W) returns high likelihood, thew is a good  Fig. 3: Stylised sketch: mappinfie{z) embeds the visu-
reconstruction; (W) returns low likelihood, theiv is a poor  alisation spacel as a manifoldM in the space of readout
reconstruction. The new objective function reads: weights. Each point addresses a probabilistic ESN with read-

out weightsw.

N N N
Dl f(Wai 6)) = > X (Wi 0) =Yl = > IS0=all®. (7)
n=1 n=1 n=1 The above modifications to the ESN, call for a modification
where ¢, and X, are respectively the objective function and alsoin the autoencoder. While in Eg! (7) reconstruction ia-me
state space pertaining to sequengesee Eq.[(3). The gradi- sured via the least-squares bgsed functipm, we now use
ent of the new objective function in Eq/ |(7) with respect totN€ cross-entropy based functiéff(w). In order for the au-
the weightsd, is calculated by backpropagati[lZ]. We usetoencoder tq proc'ess.correctl)./ the weights coming fromrigina
L-BFGS as the optimisation routine for training the weights ~ S€dUeNCes, its objective function needs to be changed to:
N N T

3.3. Data Projection Z 8(f (Wn; 6)) = — Z Z y(t) log o (f (W )T Xn(t + 1)) .

Having trained the autoencodé(w,; 6), we would like to n=1 n=1t=1 (11)

. . . . o
propct atime Sef'eV* toa coordlnqtez* € R* To Fhat enq, In the case of binary sequences, the outputs of the autoencod
we first use the fixed ESN reservoir to cast the time series t?(w- 9) are put though the functiof(.)

g(y) = w". Then, the readout weight' is projected using the By adopting a 1-of-K coding scheme for the symbols, and

encoding part of the autoencoder 1o Obtw") = 7. the softmax function in the place of the logistic functiom, a
extension toK number of symbols is possible. The resulting
4. Binary Sequences objective for training the ESN is again a cross-entropy fiomc

The time series considered so far are sequences of reaés
y(t) € R. However, it is possible to extend the proposed ap-—
proach to the processing of symbolic sequences. In particu- In Fig. [3, the smooth nonlinear functiofyed2) embeds
lar, we consider binary sequences composed of observatiofise low-dimensional visualisation spaseas aQ-dimensional
y(t) € {0, 1}. For an ESN to process binary sequences, we pasganifold M in the space of readout weighte Each point
its outputs through the logistic functian(-) = (1 + exp())™  ze v addresses an ESN moflelith readout weightsv € M.
(link function of the Bernoulli distribution). Hence, the@a-  The ESN model may be viewed as a probabilistic model, if we
tions specifying the operation of the ESN now f&ad assume that observatiog) are corrupted by i.i.d. Gaussian

noise of zero mean and varian€e

Magnification Factors

X(t + 1) = h(Ux(t) + v(y(t) — 0.5)), (8)

gt +1) = oW x(t+1)). 9) y=XW+e, (12)

ply; W) =N (yIXw, el 7) , (13)

Thus, each point addresses a probabilistic mog#ly; fged2)),
and M is a manifold of probabilistic models(y; fied 2)).

a Manifold M is endowed with a natural metric for measuring
distances between probabilistic modely; feed2)). Specifi-
cally, the metric tensor on a statistical manifold at a gigemt

T zis theQ x Q Fisher information matrix (FIM)I13]. Here, we

(W) = — Z y(t) log y(t) . (10)  approximate it through thebserved FINMbver the given dataset

t=1 of sequences:

Here the outpuy(t+1) € [0... 1] of the ESN is interpreted as
the probability of the next observatigft + 1) being equal to 1,
i.e.y(t+ 1) = p(y(t + 1) = 1). Accordingly, the objective func-
tion £(w) in Eq. (3) needs to be redefined. Instead of solving
least squares problem, we minimise the cross-entropy:

Training of the ESN is carried out by iterative gradient mini NT/ o P
sation of Eq./(10) preceded by a period of washout. F(2ij=- ; [(a log p(Yn; fdec(Z))) (6_z, log p(Yn; fdec(Z)))] :
(14)

5 In Eq. [8) we subtract 0.5 from(t), since the symmetric tanhitransfer
functionh is used in the dynamic reservoir. 6We always have the same fixed reservoir.




We note that the visualisation spadedoes not necessarily X-ray. The binary system GRS191%05 is composed of an
reflect distances between models®h In Fig.[3, we see how extremely heavy stellar black hole and a low-mass star. Mate
neighbourhoods of, depicted as dotted ellipses, transform onrial is transferred from the star towards the black hole ufio
M. Thus, in order to interpret distancesy it is importantto  the Roche lobe. While falling into the gravitational potahtf
push-forward the natural notion of distances/fonto the vi-  the black hole, energy is released by radiating X-ray anirad
sualization spacé’. In the topographic mapping literature the (jet) emission which is typical for the class of microquasar
induced metric in the visualization space from the dataegmc A thorough investigation carried out iﬂlG], detected thesp
usually represented through magnification factors [14]then  ence of classes of distinct dynamical patterns. Due to ttle la
following we show how magnification factors can be computedof multiple time sequences per state, we split the obsemnsti
in the ESN-AE setting. into equal-length parts, resulting in 161 sequences. Here w

Given the FIM, one can push forward local distanagérom  visualise classedelta kappa phi, rho andchi.

MontoV viaAz" F(2)Az In particular, at a given poim zit is
possible to estimate in which directiolz the distance changes
the most. This can be easily calculated by solving the falgw
constrained problem:

Wind. We visualise wind dafataken from the vicinity of
Hamburg, Frankfurt and Munich. Around each city, we se-
lect the 10 closest stations with a completeness of more than
99% of hourly measured wind speed data betweg@113014
maximiseAZ FAz overAz subjecttolAzf =1 (15) - 31,{12/2014 (8471. measurgments per station). Missing data
are interpolated using a spline function of thel legree. In
The solution to this problem is given by settig to the eigen- ~ Order to increase the number of visualised entities, the &e
vector corresponding to the largest eigenvalue Eigenvalue €S Of each station are cut into two non-overlapping pafts o
A" informs us of the maximum local distortion in distance and% 000 data points each. In these data there is a strong a priori

can be taken as a measure for the local magnification factor. €Xpectation that time series associated with the coasjatti
Hamburg are dferent to the other data.

Textual data (symbolic). We visualise the first chapter of J. K.
Rowling’s “Harry Potter and the Philosopher’s Stone” inetiar

. languages German, English and Spanish. A full symbolic rep-
In the following we compare the proposed method to othefesentation of the alphabet makes the optimisation of tHé ES

6. Numerical Experiments

visualisation algorithms and discuss the resullts. difficult and it would be a trivial task to separate the languages
as they could be identified by single words. Here, we choose a
6.1. Datasets binary representation where the states 0 and 1 represeets/ow

and consonants. Punctuation and whitespaces are ignaged. E
In order to judge whether a visualisation truly captures-sim a German sentence is converted as follows:
larities, we need to know a priori which time series are samil . . L
to which. We therefore employ the following particular dwts >>Die Potters, das stimmt, das hab ich geh«
whose data items fall under known classes and are labelled. -011.0100100.010001000.010.010100.010100--

For these datasets, there is a very strong a priori expestati  Discarded symbols are marked by an underscore. This rep-

that the classeare governed by qualitatively distinct dynami- resentation returns sequences dfedient length for each lan-

cal regimes Thus, time series of the same class are expected tguage, but all with at least 2800 symbols. To increase the

appear similar (close together) in the visualisation, @hilne  number of sequences per language, we split the binary sector

series belonging to ffierent classes are expected to appear disinto sequences of length @0 with neighbouring sequences

similar (separate) in the visualisation. overlapping by 50%. It is interesting to see whether texig-or
inating from diterent languages still retain their distinguishing

NARMA. We generate 100 sequences of length 1000 fronflynamics after subjected to this drastic “binarisation”.

the three qualitatively dierent NARMA classes [11] of orders

10,20,30. The NARMA time series is an interesting bench- 6-2. Dimensionality Reduction Algorithms

mark problem due to the presence of long-term dependencies. The following dimensionality reduction algorithms are com
pared in the numerical experiments. All algorithms opeoaie

Cauchy. We sample sequences from a stationary Gaussiawe_ readogt weights. Se_q‘%ence$ are represented as readout
process with correlation function given lyx, x..r) = (L + weights using a deterministic cyclic ESN whose parameters a

Ihj2)~3 @]_ We generated 4 classes by permuting paramete|'§6|eCted using the validation procedure in Sedtion 3.1.i-Add

a € {0.65 1.95) andb € {0.1,0.95|. We generated from each tionally, in this validation scheme we incluo_le the reguia_tion
class 100 time series of lengthQD0. Parametera andb are parametey: < ,{1(T2’ 10°%,10°%). In all experiments the size of
respectively related to the fractal dimension (measurglf s the FesernvoIris fixed t® = 50 and we S?t awas_hout _per!od of
similarity) and the Hurst cdcient (measuring long-memory 50 time steps. We s& = 2 for constructing 2D visualisations.
dependence) of the series. By construction, the four dasse
have distinct characteristics. Kindly provided by the Deutscher Wetterdienst, ftitp-cdc.dwd.dg .
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(a) PCA on NARMA. (b) t-SNE on NARMA, perpk40. (c) Standard-AE on NARMA. (d) ESN-AE on NARMA.
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(i) PCA on X-ray. () t-SNE on X-ray, perpk10. (k) Standard-AE on X-ray. (I) ESN-AE on X-ray.

Fig. 4: Visualisations on NARMA (top), Cauchy (middle) andry (bottom) data. Highow magnifications correspond to
bright/dark regions. Legends specify which markers correspondcitohiclasses.

PCA. We include PCA as it helps us gauge howfidult it Standard autoencoder (standard-AE). We employ the stan-

is to project a dataset to low dimensions: if PCA delivers adard autoencoder operating directly on the readout weights

good result, this hints that a complex, non-linear proggtis  The hidden layers of the encoding and decoding part have the

superfluous. same numbeH of neurons. We also add a regulariser on the
weights of the autoencodef||6]|* to control complexity. In all
experiments, we séi = 10,v = 1.

t-SNE. We include t-SNE [17] as one of the most popular and

well performing algorithms designed for vectorial data. We

train t-SNE with perplexities in [BL0, 20, 30,40,50], and dis- Proposed approach (ESN-AE).The proposed ESN-AE has

play the visualisation that shows the best class separdliom the same hyperparameters as the standard-AE. We again fix the

chosen perplexity is quoted in the figures. hyperparameters td = 10,v = 1.
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Fig. 5: Visualisations on Wind (top), and Textual (bottonatal Highlow magnifications correspond to brigthark regions.
Legends specify which markers correspond to which classes.

6.3. Results

We present the visualisations in Figs.
umn of plots corresponds to one of the aforementioned dime
sionality reduction algorithms, and each row to a dataske T

4 4nd 5. Each colJable 1. Mean squared errors between NARMA classes, the
' smaller the more similar.
Order 10  Order20  Order 30

projections in the plots appear as coloured markersftémint Order 10 5331 2185935  37.161
shapes indicating class origin. The legend in each plot show Order20  2213.019 0.052  2030.409
Order 30 30.478 1983.585 6.031

which marker corresponds to which class. Following Section
[5, we display local magnification factors, for the autoerersd
as the maximum eigenvalug of matrix F(2) on a regular grid
of points z on the visualisation space. Dark and bright va
ues signify low and high eigenvalyesagnification factors re-
spectively. There are no magnification factors for PCA, as t

|_close to class “Order 20”. This means that in actual factsclas
“Order 20" is separated by significant distance from the othe
h two classes, and that classes “Order 10" and “Order 30" are
linear mapping connecting the visualisation space to tga-hi closer gnd_more_smllar to gach other. We investigate this hy
pothesis with a simple experiment. We generate from easl cla

dimensional space is lengthstance preserving. Also, we do I :
not present magnification factors for t-SNE, as it does net geadditional 200 sequences. For each pair of classes (claksses

fine an explicit mapping between the visualisation and highpalrWIth themselves), we train on sequences from one cfabs a

dimensional space. It thus requires &efient framework than measure the mean squared error on the unseen sequences of the

the one used here in order to study magnifications. ot_her classes: These errors are reported_ in ‘I’T’_:lble 1, and¢upp
this hypothesis put forward by the magnification factorshia t

NARMA , top row in Fig.[4. We note that all visualisations ESN-AE visualisation.

separate the three classes, and show that the three classes a

equidistant. The magnifications[in]4c show that the standardCauchy, middle row in Figl 4. PCA in 4e and t-SNE in 4f man-

AE views the three classes indeed as distinctly separaide cl age to organise the classes coherently to some degree thdile

ters. However, in the case of the ESN-AE in 4d, the magnifistandard-AE in 4g fails to produce a convincing result. ESN-

cation factors suggest the presence of distortions inrmisea  AE in displays a clear separation between all four classes

7



' . o time series via a non-parametric state space model with fixed
Table 2: Mean reconstruction and standard deviation, geera dynamic part (i.e ESN) in conjunction with an appropriaty

over 10 runs. fined reconstruction function, does provide a new way of per-
PCA standard AE ESN-AE forming dimensionality reduction on time series. The resul
NARMA 151451.130: 14984.801 116.04% 46.606 44.126- 11.962 show that the proposed visualisation is better at undgjmgn
Cauchy 121.110-4.022 1021152522  95.176-2.675 what makes sequences (dis)similar as it manages to separate
Xray 25.376+2.274  42727:17.423  21.798 1.617 classes that are governed by qualitatively distinct dyeami
wind 5.0498+ 0.253 5.192 0.260 5.079 0.231 regimes. Indeed, the produced visualisations reflect aor pr
Textual 0.691= 0.007 0.700: 0.010 0.694: 0.017 expectations as to which sequences should be similar.

Of course, combining the ESN with the autoencoder is just
one possible scheme, and certainly other dimensionalityae
tion schemes can be devised along this line. One can exchange
the ESN with other models such as autoregressive-moving-
average models (ARMA), and use them to cast the time-series
to fixed parameter vectors. E.g. for slow changing signatgl-m

X-ray, bottom row in Fig[ 4. All visualisations clearly sepa- els based on Fourier series might be more suitable than the
rate therho andchi classes. For standard-AE[in 4k, the strongESN. Choosing the ESN to model the temporal features of the
magnification suggest that tioi class is quite dferent to the ~ sequences, is indeed a subjective choice. However, this doe
others. t-SNE in 4j and ESN-AE distinguishlin 4| the classeg0t mean that it is a bad choice: in the relevant literature, a
in a clearer fashion. ESN-AE exhibits less Over|apping¢]r0j wealth of applications demonstrate that ESNs are gOOd rmodel
tions, but does not put enough distance between clatses  for a large variety of real-world time series.

and phi. The presence of magnifications close to théclass Besides the autoencoder, other dimensionality reduction
is a hint that this class is quiteftérent to the other ones. Still methods that rely on optimising reconstruction error (e.g.
even in the absence of labels (i.e. colour markers), theetas GPLVM [19]) can be adapted to the visualisation of time-ayi

are identifiable in the visualisation produced by ESN-AE. ~ one has to modify their objective to measure reconstrudtion
the sequence space, just as the loss function of ESN-AE does.
Wind, top row in Fig/5. None of the visualisations separates

the Munich from the Frankfurt stations. Matching our prior )
expectation, ESN-AE in 5d organises the stations around-Han$- Conclusion

burg in a single region, in contrast to the other visualisati . L .
; . We have presented a method for the visualisation of time se-
which show overlap. Standard-AE fails to produce a clear re-. : :
: - C o . ries that couples an ESN to an autoencoder. Time series are
sult and its magnifications do not help in its interpretatoy .
further represented as readout weights of an ESN and are subsgguentl

compressed to a low dimensional representation by an autoen

Textual data (symbolic) bottom row in Fig[ 5.The binary  coder. The autoencoder attempts reconstruction of the read
representation of the text data in thredfefient languages Out weights in the context of the state space pertainingéo th
shows the true power behind the ESN-AE equipped here witgeguences thanks to the modified loss function. In future re-
the logistic function. While other visualisations do not #sth ~ search, we plan to work on irregularly sampled time serias th
adequate separation, ESN-AE in 5h exhibits some clear erga®riginate from eclipsing binary stars. The ESN will be regid
isation. Additionally, magnifications suggest some sefmra Py a physical model that will cast the time series to vectdrs o
between the German and English sequences. The bright maghysical parameters.

nifications that appear in the unpopulated corners are gimpl

artefacts as the model has not seen any data in these areas. Acknowledgement

In particular the presence of magnification factors clostnéo
two classes located in the upper right corner, shows thaethe
two classes are potentially separated by a larger distarttet
other two.

Reconstruction In order to give a quantitative impression of
the quality of the visualisations, we report reconstrutgorors
in Table/ 2. Each dataset is randomly partitioned 10 times int
equally sized training and test sets. For each partitignivey
train the dimensionality algorithms and measure the error o
the test data using Eq. (3). For the binary textual data, rttog e
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