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Abstract—Since Estimation of Distribution Algorithms (EDA)

in a search space. Then new solutions are sampled from the

were proposed, many attempts have been made to improve model which presents extracted global statistical infdioma

EDAs’ performance in the context of global optimization. Sofar,
the studies or applications of multivariate probabilistic model
based EDAs in continuous domain are still mostly restricted
to low dimensional problems. Traditional EDAs have difficuties
in solving higher dimensional problems because of the cursef
dimensionality and their rapidly increasing computationa costs.
However, scaling up continuous EDAs for large scale optimation
is still necessary, which is supported by the distinctive fature
of EDAs: Because a probabilistic model is explicitly estimted,
from the learnt model one can discover useful properties oftte
problem. Besides obtaining a good solution, understandingf the
problem structure can be of great benefit, especially for blek box
optimization. We propose a novel EDA framework with Model
Complexity Control (EDA-MCC) to scale up continuous EDAs.
By employing Weakly dependent variable Identification (WI)
and Subspace Modeling (SM), EDA-MCC shows significantly
better performance than traditional EDAs on high dimensioral
problems. Moreover, the computational cost and the requirenent
of large population sizes can be reduced in EDA-MCC. In
addition to being able to find a good solution, EDA-MCC can ale
provide useful problem structure characterizations. EDAMCC
is the first successful instance ofmultivariate model based EDAs

from the search space. EDA uses the model as guidance of
reproduction to find better solutions. Actually, any EA has
an underlying probabilistic model explaining its reprotioic
behaviors. But in traditional EAs, the underlying model is
usually implicitly expressed through evolutionary operat
Once the model is explicitly presented, the algorithm camth

be classified as an instance of EDA. EDAs were proposed
originally for combinatorial optimization. Research on &D

has been extended from discrete domain to continuous opti-
mization and much progress has been made. In this paper,
we focus EDAs in single objective continuous optimization
domain.

Many studies on EDA have been done in the last decade.
In general, so far there are two major branches of continuous
EDAs. One is based on Gaussian distribution model, which
is the most widely used and intensively studied [2], [4]4[11
Another major branch is based on histogram models [6], [12]-
[19]. However, most of the existing studies have a common

that can be effectively applied a general class of up to 500D problem that the performance of EDA is only validated on

problems. It also outperforms some newly developed algotiims
designed specifically for large scale optimization. In orde to
understand the strength and weakness of EDA-MCC, we have
carried out extensive computational studies. Our results ave
revealed when EDA-MCC is likely to outperform others on what
kind of benchmark functions.

Index Terms—Estimation of distribution algorithm, large scale
optimization, model complexity control.

. INTRODUCTION
STIMATION of Distribution Algorithms (EDA) [1], [2]

relatively low dimensional problems (often much smallearth
hundreds of variables). The performance of EDA on higher
dimensional problems (e.g. 500D) is rarely studied. On the
other hand, large scale optimization using other EAs has
already become a hot topic in recent years [20]-[23].

As we can see in the following sections, the reason of this is
not that researchers simply ignored EDA, but that contiisuou
EDAs do have difficulties in high dimensional search space.
Due to relying on learning a model from samples, EDAs heav-
ily suffer from the well-knowncurse of dimensionality24].

If considering multi-dependencies of variables to solve-no

have been intensively studied in the context of globalharapie problems more effectively, traditional EDAsStfa

optimization. Compared with traditional Evolutionary Alg

_increasing computational costs also make them impradtical

rithms (EA) such as Genetic Algorithms (GA) [3], there i$qq).\vorld applications. In this paper, we propose a noBAE

neither crossover nor mutation operator in EDA. Insteadh\ED

explicitly builds a probabilistic model of promising salus
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control the model complexity to establish a trade-off betwe

a) the performance that may benefits from a complex model,
and b) the computational and population complexities that
grow rapidly with the problem size and the model complexity.
By doing so, EDA-MCC can suffer less from the curse of
dimensionality. Experimental comparisons on 13 well-know
benchmark functions validate the effectiveness and effiigie

of EDA-MCC. We find that EDA-MCC have significant ad-

obtained from the IEEE by sending a request to pubs-pemmis@ieee.org. vantages over traditional EDAs when solving large scale-non
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separable problems with few local optima (up to 500D in e
periments) in terms of solution quality and computatiorstc EDA

The significant difference between EDA-MCC and traditional|nitialize a population by generating individuals
EDAs with model complexity penalization is also discussed
According to the No Free Lunch Theorem [25], the limitation
of EDA-MCC are also analyzed.

If traditional EDAs are not appropriate for large scale opt
mization, why do we still strive to scale it up? Our motivatio
is based on a distinctive advantage of applying EDA compared
with other EA: Users can discover useful properties of the
problem from the learnt probabilistic model. Since the niode
is explicitly built in EDA, it is feasible to observe the ledr
model structure and its parameters to understand someesatdfid- 1. A typical EDA flow.
of the problem. For simple univariate (marginal distribuadi

model based EDAs, because the interdependencies amPr\]/%I ¢ tational lexitv. Also due to the simuici
variables are completely ignored, it is almost impossiblex- evel of computational complexity. Also due to the simpei

tract information representing the interdependency obbédes thhey m?y ha\(etdlfgculnej n splwq_g problzmstr:/yhose Vae;g:;)A
or other structural information. On the other hand, muiiaiz ave strong interdependencies. 10 remedy this, severa

model based EDAs have such potentials. In EDA-MCC, muhkl)_ased on multivariate Gaussian have been proposed, such

. . . ; o as EMNA .0 [2], Normal IDEA [5], [6] and EGNA [2],
depend tained to retain the potentials, whité wic> Lobal . . A
ependency IS mainained o retain the potentiass, wh WI[7]. EMNA g0pq:@dopts a conventional maximum likelihood

the degree of model complexity explicitly controlled. Teeth! I o . o .

best of our knowledge, EDA-MCC is the first attempt OEJS“maﬁgrrr:glt:\séﬁtzr%a?éﬁz d;ig?u;;; gig%ﬂﬁbﬂxi
li I[tivariat del based EDA for | e " 7 N ' e

scaling upmutivariate mode? hase or 1arge sca emum likelihood estimation (MLE) ofi and X, a graphical

continuous optimization (up to 500D problems). tactorization. that i B ian factorization (i 6si
The remainder of this paper is organized as follows. In se@-torization, that Is, a bayesian factorization (ie., auSsian

tion 11, the difficulties of traditional EDAs on high dimersial hetwork), is constructed, usually by greedy search. Coostr

problems are analyzed, especially for Gaussian based EDEQQ. graphical factori;ation introduces additional F:onmiqlnal .
In Section IIl, Wi and SM for EDA-MCC is presented incomplexny along with MLE, but the computational time in

the context of Gaussian model. The difference between EDinunon sampling can be_ reduced. On the (_)ther han_d, 'f. we
MCC and previous EDAs with model complexity penalizatio?%am to sample new solutions from a conventional multiaria

is also discussed. Experimental studies on 50D-500D pro aussian dlstr!butlon as in EMNAvar, deco_mposmgz IS
lems are given in Section IV. In Section V, the dependen@emUSt [26]. Since these EDAs are essentially based on the

of EDA-MCC on its WI and SM parameters is investigate2 "€ multivariate Gaussian distribution, their perforossn
The scalability of EDA-MCC is studied in Section VI. In&ré similar — at least no significant superiority of one to
Section VII, random partitioning based SM is compared with n(iLher hgsD :eehn repl;)rted S0 farLegetr, some extfhns_mns
clustering based SM, the advantage of random partitioning ese S have Deen proposed to improve their poor

high dimensional search space is verified. The problem-strl?(g(plor"’mve ability, such as EEDA [8], CT-AVS-IDEA [9]

ture characterization capability of EDA-MCC is demonsithat and SDR-AVS-IDEA [10]. These EDAs scalé according to
in Section VIII. In Section IX, the interactions between wpome criterions after MLE. A comparative study of different

and SM are analyzed. Conclusions are drawn in Sectioné?v"?‘(;'aniﬁ ma_tnxl sgahng_stral\)tegleijs ECSR beEI;(')Aund dm t[.ll]'
along with future work. esides thessingle Gaussian base S, s adopting

Gaussian mixture distribution [27]-[33] have been propose
for solving multimodal and hard deceptive problems. Hybrid
Il. THE DIFFICULTIES OFEDAS ONHIGH DIMENSIONAL  gptimization algorithms based on Gaussian EDAs have also
PROBLEMS been proposed [34], [35].
A. Related Work Interestingly, previous studies have shown that although
Gaussian models cannot always offer an accurate estimaition
ﬁghe true distribution of promising solutions, they can méve-

rtandomly.
SRepeatuntil a stopping criterion is met.

1) Selectm < M individuals from?P.

2) f(¥) «+ Estimate a probability density function from
the selected individuals.

3) P’ + Sample a number of individuals froff(Z).

4) CombineP andP’ to create the newp.

A typical EDA flow is shown in Fig. 1. Each individual in
the population presents a solution. One iteration of thelo ) ) . -
referps tF; one ggneration of evolution ? ess provide useful information for guiding the global séar

The primary difference between different EDAs is the prof2" magy ]lcmlmodalt_ar;d tsome, blut n:_)t all,f Thglt'mﬁdal prob-
abilistic model adopted. When adopting a Gaussian distripg "S- =0 far no satisiactory explanation ot Inis phenomenon

tion model, thef (Z) in Fig. 1 has the form of a normal densitythh""sfbteen tpretsedntedhm the I|t|?_ratudrel. It vgllll be_ mteresimr? d
which is defined by a mean vect@rand a covariance matrix € luture fo study when a muiimodarl problem IS €asy or har

3. The earliest proposed Gaussian based EDAs are basedtoér‘\'Tl given singlg Gaussian based EDA, e.g., by using recentl
simple univariate Gaussian, such as UMPAZ] and PBIL. proposed analytical approaches [36]-[39]. However, eiitep

[4]. In these EDAs, all variables are regarded independéht wunvanate Gaussian based EDAs, most (if not all) existing
ea(?h other. The 5|mpI|C|ty Qf such models mak.es them €asysome comparisons between EMMA,,;and EGNA can be found in [2].
to implement and the algorithms are characterized by a Iovewever few comparisons involving Normal IDEA have been ead
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studies of multivariate Gaussian based EDAs are restrictedthe model is, the more data it requires to yield a reliable es-
low dimensional problems. timation and to sustain enough good performance. According
Continuous EDAs using histogram models include sevetial the curse of dimensionality theory, the amount of data to
EDAs based on univariate histogram [6], [12], [13], [15]sustain a given spatial density increases exponentiatly the
[18] and some based on multivariate histogram [14], [163limensionality of the search space. This will adversely&dnip
[17], [19]. Histogram models are more flexible than Gausny method based on spatial density, unless the data follows
sian models because of the convenience to describe aybitraertain simple distributions. Obviously the latter corutit
multimodality. However, if considering multiple variabtie- is not always satisfied in practice. The population size of
pendencies such as full interdependency, the required aumBDA has to grow fast as the problem size grows to sustain
of bins can increase exponentially with problem size [40§jood performance. Since EDA tries to learn some global
which makes multivariate histogram models hard to be agplistatistical information fromn sampled data (i.e., individuals
to large scale non-separable problems in practice. Althougelected from the population af/ individuals, see Fig. 1),
some efforts have been made to improve the scalability of has to be sufficiently large, which also requires a large
multivariate histogram model based EDAs [14], [16], mogiopulation sizeél/ when some level of selection pressure needs
existing results of these EDAs are also restricted to lot®@ be maintained. Of course, the demand of the increasing
dimensional problems<( 50D, even lower than multivariate population size can be of different levels when models have
Gaussian based EDAS). different levels of complexity. For simple univariate EDAs
To the best of our knowledge, there have been onlyvehen solving ann dimensional problem, it estimates one
few attempts of studying continuous EDA on large scate (dimensional distributions independently. When populasize
500D) problems, including: 1) A univariate model based EDAV/ is large enough for estimating thesedistributions and
LSEDA-gl, proposed by Wang and Li [41]; 2) Application offinding good enough solution}/ does not necessarily grow
UMDA%and EGNA as logistic regression regularizers on @sn grows. However, for multivariate models, the more de-
“large k (genes), smallV (samples)” microarray classificationgrees of freedom make them usually require larger populatio
problem, proposed by Bielza et al. [42]; 3) Study of parallelizes, which can be validated from our experiments. When
implementation of EGNAx on sphere function, proposed bythe problem size is large, EDAs with complex multivariate
Mendiburu et al. [43]; 4) Studies of a Gaussian EDA, namelypodels can become inapplicable because the large populatio
AMalLGaM, on up to 1000D problems done by Bosmagize may consume considerable computational resources (se
[44]. However, these attempts have their limitations. L®ED Section 1I-C). There is an urgent need for techniques that ca
gl is a univariate EDA where a mixed Gaussian and Léwgduce the required computational resources without tafigc
distribution is adopted. As discussed, it lacks the cajisibil (too much) the precisions of learning a probabilistic model
of modeling multi-dependencies. In [42], a multivariate AD
was utilized as a parameter optimizer of a logistic regossi
model with (order of) 500 parameters, trained via consé@in  Since previous results (e.g. [6]) have shown that, a) Gaus-
maximum likelihood. The parameters were constrained $an models suffer less from the curse of dimensionality
certain intervals, effectively regularizing the model.wtwer, than histogram models, which is reasonable because Gaussia
the general performance of the multivariate EDA on broadsrodels usually have much less degrees of freedom, and b)
types of high dimensional problems is still unknown. Iisingle Gaussian models have less degrees of freedom than
[43], the study focuses on the parallel multivariate EDA§aussian mixture models, in the following sections, we $ocu
performance in terms of speed up of execution time but non using single multivariate Gaussian models to scale up
on solution quality, and only one test function is involved i EDA. Univariate Gaussian models are also involved in amglys
experiment. In [44], variants of AMaLGaM (with or with- and experiments. However, it should be noticed that our
out memory) using univariate Gaussian, Bayesian factdrizeonclusions can be generalized and are not restricted only t
(multivariate) Gaussian, and multivariate Gaussian with f Gaussian models. Although previous research has shown that
covariance matrix were tested on problems up to 1000D, 400¢gle Gaussian model based EDAs can perform well on many
and 200D, respectively. As can be seen, multivariate mbdelsiimodal and multimodal problems, they still have known
higher complexities reduce the size of applicable probléms limitations other than the effect of the curse of dimenslityia
this paper, from a totally different perspective from [44f Specifically, Gaussian EDAs using MLE are supposed to have
propose a novel scalable multivariate EDA framework which poor explorative ability. Theoretical analysis of UMBA45],
simpler in design yet capable of solving even larger prokleni46] proved that the maximal distance that the mean of the
In a word, an open and important question is: Can we expgxtpulation can move across the search space is bounded, and
promising performance and moderate computational costtbé algorithm is guaranteed to converge since the populatio
multivariate EDAs on larger scale problems? variance converges to zero. Although theoretical analysie
not been developed, similar results of multivariate Gaarssi
. . . based EDAs using MLE were also observed in experimental
B. The Curse of Dimensionality studies [9], [11], [28], [47]. Therefore, several Gausdi@sed
Since EDAs completely rely on probabilistic models builEDAs with covariance matrix scaling [8]—[10] were proposed
from finite data samples, they must suffer from the well-knowBut the effectiveness of these techniques in very high dimen
curse of dimensionalitj24]. The more flexible and complex sional search space still lacks validation.
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C. Computational Cost EDAs with covariance matrix scaling have additional com-

Besides the curse of dimensionality, computational cost Bgitations, here we choose EMIAy.;as the representative of
an EDA (especially multivariate EDA) can also restrict itall multivariate Gaussian EDAs to analyze the computationa
application to large scale problems. In an EDA, if excludingomplexity. The analysis of EMNA...;approximately gives
fitness evaluation, the model estimation and subsequemt s@ lower bound of all multivariate Gaussian EDAs.
tion sampling determine its overall computational comitjex ~AS mentioned above, when a univariate model is sufficient
which also depends on the model complexity. In generd®r solving a problem,A/ and m do not necessarily grow
univariate EDAs have lower level of computational compiexi @S n grows. Table | shows that, in this case, the overall
than multivariate EDAs. Empirical studies can show thagrev computational cost of univariate EDAs, such as UMDA
for problems whose fitness function evaluation is not toetimcan grow linearly withn. Although the model's simplicity
consuming, multivariate EDAs’ overall runtime can becom@n restrict its performance, its computational cost grows
unacceptable in practice. Here we consider the computdtioRnildly. On the other hand, the overall computational cost
complexity brought by the modatithin one generationFor ©f multivariate Gaussian EDAs, such as EMNA.:, grows
two representative EDAs of different model complexities: Buch faster. Though [9] reported that a necessHrgrows
univariate Gaussian EDA, UMD [2], and a multivariate @pproximately with\/n for Normal IDEA, in practice it is
Gaussian EDA, EMNA,a; [2], analytical computational usually true that\/ > m > n. Overall computational cost of
complexities in terms of data access are given as below. S@ptypical multivariate Gaussian EDA thus grows at least with
pose current model is estimated from the selected indilsdu#’(°). In Section IV, more illustrative comparisons of CPU
of the last generation)/ denotes the population size, and time will be made by experimental studies.
denotes the number of selected individuals—= 7M, usually
0.3 < 7 < 0.5 [2], [28]. The computational complexities I1l. ScALING UrP EDA: EDA-MCC
of UMDAfand EMNA,01.: are shown in Table I. Detailed

: . In short, there are three requirements to be met to scale up
computation please see Appendix A.

multivariate model based EDA to large scale problems:

TABLE | 1) Multivariate search needs to be preserved as much as
SUMMARY OF ONE-GENERATIONCOMPUTATIONAL COMPLEXITY

possible.
UMDAC | EMNA,1upa; 2) Computatic_mal cost must bg accgptab_le and grow mildly.
Model Estimation | O(nm) | O(n?m) 3) Running with small population sizes is preferred.
Solution Sampling] O(nM) | O(n*M) It can be seen that the differences of performance and compu-

tational complexity between EDAs using univariate Gaussia
UMDA Sand any other univariate Gaussian EDAs shares thad multivariate Gaussian models are essentially relewant
same model structure and only differ in the way the model pthe complexity of the Gaussian model. Intuitively, univari
rameters are updated. These EDAs share mostly the same lavel Gaussian has simple structure and lower computational
of computational complexity. However, different multii&e cost, but has difficulty in characterizing complicated inte
Gaussian EDAs have different computational complexi#es. dependencies between variables. Multivariate Gaussian ha
mentioned above, EMNA. estimates model via MLE and complex structure and thus higher computational cost, but
sampling solutions via decomposition of covariance matrisan effectively model interdependencies between vasable
While Normal IDEA and EGNA build a graphical factoriza-There is a need for an appropriate trade-off between model
tion after MLE, then fit the parameters of the factorizatiogomplexity and computational cost such that an EDA can have
and sample solutions by traversing the graph. The MLE romising performance on non-separable problems with mild
all the three is exactly the same, thus they share a saginputational costs. We propose to reach such an attractive
computational complexity in this step. For the latter stepgade-off in an EDA by two steps: Weakly dependent variable
EMNA gi0b01's computational complexity is easy to analyzedentification (WI) and Subspace Modeling (SM). The result-

since decomposing a covariance matrix constantly costie cuihg EDA framework is called EDA-MCC (Model Complexity
time with problem size. Whereas the graphical factorizatio - Control).

Normal IDEA and EGNA can be obtained by several different
structure search algorithms, whose computational contjEex
depend on the specific algorithms and the data samples. Aﬁ\er
obtaining the structure, in Normal IDEA, the conditional A multivariate Gaussian represents the (linear) interdepe
variances of the factorization are computed by the invefse dencies between variables by their covariances. Accortding
covariance matrix [5], which costs same computational corthe definition of covariance, we have

plexity as decomposing a covariance matrix. We can infdr tha

Normal IDEA's computational complexity is higher than that cov(Xi, Xj) = E((Xs — pa)(Xj = 15)) @)

of EMNA 4i0pa1- In EGNA, the parameters of Gaussian networherecov(X;, X, ) is the covariance between variabsand

are computed in a different way, making the computationat, ; ; —1,... n, E is the expected value operator. We also
cost difficult to establish analytically. Literatures on B& pgye

did not provide analytical computational complexity eithe (X, X;) = cov(X;, X;) @)
Also considering the fact that multivariate Gaussian based cormisnSa) = 0i0; ’

Weakly Dependent Variable Identification (WI)
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where corr(X;, X;) is the linear correlation coefficient be-
tween X; and X, o; ando; are the standard deviations of Wi
X and X; respectively,o; > 0, 0; > 0,4,7 = 1,...,n. 1) Calculate am x n global correlation matrixC' based
According to the definition, a correlation coefficient cahng ON Meorr individuals. Ci; = corr(Xi, X;),i,j =
exceedl in absolute value. Thus correlation coefficients can 1,...,n. '
also be seen as normalized covariances. 2) UseC to constructV according to (3).

Suppose during the evolutionary process of a multivariate 3) Estimate a univariate model oA’ based on then
Gaussian EDA, if at some generation, the correlation coef- selected individuals.
ficients are close to zero, which means theservedlinear

dependencies between variables are weak, then the di&iribu
that the model can learn will be little different from a univa
ate Gaussian. The algorithm’s exhibited behavior in this-ge

eration does not differ much from a univariate Gaussian EDféarning such as identifying weakly dependent variables, i
el_ther._F|g. 2 shows an examplg of 2D Gaussian d'smbu“%rpecision does not directly influence the sampling. Later we
with different correlation coefficients. As can be seen,rehew." see that, with working with SM, a small sample size for

is a trade-off between: a) the computational complexity an | (100 for 50D-500D problems) can be sufficient, which

requirement of population size which increase with respe%tSO helps reduce the computational cost of EDA-MCC.

o a more complex model; and b) the performgnce whic Let m.o denote the sample size for constructing a global
potentially benefits from a complex model. In this case, Wrrelation matrixC. The main flow of WI is depicted in

find that switching the current model to a univariate Gaursm%ig 3. Here the term “weakly dependent/correlated” is not a

can greattly freducle :.he cpmpq;[ﬁtlotnql C(_)fmpletrltyﬁand.t:]he r&’rictly defined term as in the statistics domain. Whether a
quirement of population size without significantly affefithe variable is classified int®V or not is determined by both the

performance. In a way, the algorithm can ignore the weak CYrrelation matrix at hand and the user specified parameter

relat|o?s SO t:laé tht(ra]_searcr}_ef:?)rt_é:ou:q btifOCUSEd on_gm?[ N9, The correlation matrix reflects the observed information i
_or:jes. nzplrte ykl 'Sc’j we I(;S yt/I en Ilfyt dose apkﬁ;ixgnw the search space, while different valuesfotan reflect the
independent (weakly dependent/correlated) variablebt user's confidence on the univariate model. The largés,

apply a simple univariate model on them. We call this StteGhe more probable that more variables are optimized by the

thf Weakly dependent” varlr_able Ident|f|cat|o_n (W.D' ._univariate model. Then less computational cost and a smalle

Weakly dependent” variables can be |de_nt|f|ed by.ﬂrsxugopulation size may be required. In this paper, we find a prope
calcula.tlng ann x n global correlation matrix, then p|c_k value off = 0.3 for EDA-MCC (see Sections IV, V, and VI)
out variables whose. absolute values of correlation coefftsi such that: a) the model precision is only slightly worse H) t
Eg a<II ;hi cit)he-Fh\éaQZ»?lsfasrjcyTowggfr égaznzetg{evi’:r?ﬁlecomputational complexity and the requirement of popufatio
derﬁ)ted_by)/\} i defined as: y dep zeis greatly reduced, and c) the overall performance &-ED

' : MCC can be significantly better than previous EDAs, at least
W =A{X, | |corr(X;, X;)| < 0,Vj=1,...,n,5 #4} . (3) onthe 13 problems investigated in experiments.

Note that for non-Gaussian EDAs, “weakly dependent” may
not be identical to “weakly correlated”. If applying WI to
non-Gaussian models, the identification method may need
¥Ldefinition. One can also imagine other ways of defining

0 exists, a good trade-off between the gain in Compmation@\'/eakly/strongly dependent” variables. For instance, ag-
cost and the loss of model precision can be found. ’

| trast (o © kv d dent”. th t of th iabl ables can be classified as weakly or strongly dependent by
h contrast to vv“ea y dependent, ”e restotthe vana Sonsidering their correlation with the function to be optied.
are regarded as “strongly dependent”. The set of stron

. . i Ye idea of separating weakly dependent variables from
dependent variables, denoted Byis defined as: strongly dependent ones in this context is interesting amrhw

S={Xi| XigW,i=1,...,n.} . (4) of further consideration in the future. However, as tygdical
done in EDA implementations, our definition of weak/strong
dependency is restricted to variables only (within the ernt

of building a local Gaussian model on the variables) and the

Note tha‘g if We use a global correlation matrix for th odel does not reflect any correlation between a variable and
purpose of identifyingV, we do not need a large number o he function value

samples as we do for estimating a reliable global covariance

matrix for the purpose of guiding the search, even thougBh )

computing a correlation matrix is essentially of no difiege B- Subspace Modeling (SM)

with computing a covariance matrix. Because the precisionSuppose we only have a small population size (and

of covariance matrix directly impacts the sampling progeduthus m), and |S| is still too large form samples to give
and thus influences the algorithm’s behavior, it does regair a reliable estimation for a multivariate Gaussian model. To
sufficiently large amount of data with respect to problenesizobtain better overall performance, as a trade-off, we ptoje
However, if we just use a correlation matrix for a “coarsethem points to several subspaces of thelimensional search

Fig. 3. Main flow of Weakly dependent variable IdentificatiGi).

As can be seen, applying a univariate modellohimplies
explicitly removing the dependencies on the variable3\n

LetV denote the set of all variablés= {X; | i =1,...,n.}.
Obviously, we havey = W{JS and® = W(S.
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Fig. 2. Demonstrations of 2D Gaussian distributions witlfiedént correlation coefficients. The contours denote tlaig3ian densities. In every sub-figure,
each of the two variables has a standard deviation equals <o fere the correlation coefficient equals to the covagianc

SM Xer X2 Xgs Xka Xks Xke  Xkr  Xis

1) ConstructS according to (4). Xp1 179092 1.31 0 0 0 0 0

2) Randomly partitionS into [|S|/c] non-intersected Xez 092 241 059 0 0 0 0 0

y P _ ( Xpz 131 059 3.88 0 0 0o 0 0

subsetsSi, S, . . ., Spis) /1, Wherec is a user speciy Xpa 0 0 0 154 —0.23 0.75 0 0

fied parameter defining the maximal size of a suhset X&s 0 0 0 -023 121 -—084 0 0

(1<c<n) Xie 0 0 0 075 —0.84 1.82 0 0

>csn) o Xpr 0 0 0 0 0 0 1.95 0.56

3) Estimate a multivariate model for each subset bgsed X, 0 0 0 0 0 0 056 2.94
on them selected individuals.

Fig. 5. An example of the approximated global covariance rimatn
Fig. 4. Main flow of Subspace Modeling (SM). S after performing SM.S = {Xi,...,Xs}, ¢=8. (Xk1,...,Xkg) IS @
random permutation ofX1,..., Xg). The three subsets of are S; =
{Xk1, Xr2, Xp3}, S2 = { X4, Xis, Xue} and Sz = {Xpr, Xps}
space, then build model and sample solutions on subspaces.
When it is impractical to further increase, building subspace
models and using their combination to approximate the globériables can be kept together within one group|Sf > c,
estimation can be a good choice. We call it the Subspaténeans that the size of currestis beyond the capability
Modeling (SM), whose flow is shown in Fig. 4. Each subsé&f a global multivariate model that. samples can estimate
of S, i.e., group of variables, corresponds to a subspace. Agcording to the user’s experience or preference. Thexefor
the m samples are projected tdS|/c| subspacés and we We have to make a concession by explicitly eliminating some
build a multivariate model for each subspace. The capacfigpendencies between variables while keeping the restilAs w
¢ indicates the maximal size of a subspace. It representsb®shown later, Wi and SM are performed in every generation,
what extent we trust the: samples to give reliable estimationthus the random partition is not fixed throughout evolution.
By dividing the variables into several separated subspads Variables from different subsets in current generatioreftae
projecting the samples to lower dimensional subspaces, fnce to be grouped in one subset and keep their interaction
EDA only considers the local dependencies among variabi@sthe next generations. When sampling a new individual, its
belonging to the same subspace, and the density of samples/ggiables inS are sampled from the subspace models they
each subspace will increase. This technique probablysgferbelong to. Then they are concatenated with those sampled
feasible way for alleviating the growth of population sizéhw Variables inVV. The evaluation of a newly sampled individual
respect to a growing problem size, which will be validated by the same as in traditional EDA.
our experimental results in later sections. The random subspace partitioning method proposed here
After randomly partitioningS, variables of different sub- is a simple and the most straightforward one. Experiments
sets are regarded independently. When we use a multivariaih show that although we use only the simplest SM method,
Gaussian to model each subspace, combination of all subspé&dndeed significantly improves EDAS’ performance on large
Gaussian models can be seen as an approximation to shele problems. Of course, more sophisticated subspaee par
global Gaussian estimation @ The global mean vector ontitioning can be developed. For examplg,can be divided
S is still identical to the combination of subspace model#to several clusters of variables according to the cotigrla
but the global covariance matrix is approximated by a blodoefficients, and each cluster is regarded a subspace. ldowev
diagonal matrix whose main diagonal blocks are the subspaicean be imagined that such techniques also heavily suffers
covariance matrices. Fig. 5 shows an exampléS|f< ¢, the from the curse of dimensionality. With a finite sample size, w
cannot expect good clustering in very high dimensional spac
2For a real numbet, [x] is the smallest integey, such thaty > . Section VII will present comparison between the random
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subspace partitioning and a clustering-based one. Expatn
will show that the simple random partitioning can perform EDA-MCC

significantly better on large problems. Initialize a population? by generatingM individuals

randomly.
Repeatuntil a stopping criterion is met.
1) Selectm < M individuals from?P.
By incorporating WI and SM within the EDA framework,| 2) Randomly samplen.,,. < m individuals from the

C. Model Complexity Control: WI + SM

we explicitly control the model complexity: a) WI reducegth m selected individuals without replacement.
model complexity by approximation of univariate model. b) 3) Build a model using WI+SM, as (5):
SM further reduces the complexity of multivariate part of th a) WI:

model by approximation of subspace models. Sgt (1 <

I i) Calculate the correlation matriC' based
k < [|S]/c]) denote a subset of, and vectors; denote

on the me..» Sampled individualsC;; =

realizations of the variables if. After performing WI and corr(X;, X;),i,5 = 1 n, as (2)
) L. 19 J S I I | .
SM, the final joint pdf has the form: iy Construct)V based onC, as (3).
sl/¢l i) VX; € W, estimate a univariate modej(-)
£(@) = H gi(x) - H hio(st) ) based on then selected individuals.
X, eW k=1 b) SM:
) o . ] i) ConstructS, as (4).
whereg;(-) is the univariate pdf of variabl&’;, andhy(-) is i) Randomly partition S into [|S|/c] non-
the multivariate pdf of variables i5;. For instance, we can intersected  subsets:S1, S, ..., S[is|/e]
assigng;(-) to a univariate Gaussian as (6) and assigi) 1<e<n. R
to a multivariate Gaussian as (8). iii) Estimate a multivariate modéiy(-) for each
Based on WI+SM, the main flow of the proposed EDA subsetS;, based on then selected individ-
framework, namely EDA with Model Complexity Control uals,k =1,...,[|S|/c].

(EDA-MCC), is given in Fig. 6. The WI and SM steps in Fig. § 4) P’ « Sample new individuals: Sample from ()
are essentially the same as Figs. 3 and 4. As discussed abpve, andhy,(-) independently, then combine sampled vari-

for the purpose of “coarse” Iearninigza?rlr does not need to ables into one reproduced individual.
be as Iarge as.. So we samplen. .o |nd|v_|duals out of then 5) CombineP and P’ to create the newp.
selected individuals to calculate correlation mattixBecause
duplicate samples cannot contribute to correlation estima
sampling without replacement is adopted. Experiments fg- 6- Main flow of EDA-MCC.
Sections 1V, V, and VI will show that a smath.,,, = 100
can work fine for problem sizes up to 500D.

The comparison of computational complexity of EDAp pitference Between EDA-MCC and EDAs with Model
MCC, UMDAfand EMNAobqare shown in Table II. Details Complexity Penalization
of computation please refer to Appendix B. Becausg,., <
m andc < n, in @ same number of generations, EDA-MCC'’s
computational complexity is always between the complesiti o
of a typical univariate Gaussian EDA and a typical multivarin©del complexity in EDAs have also been proposed. For
ate one. Besides, if EDA-MCC requires smalker and M, instance, EGNAE [2]_ uses edge e?<clu5|on test to control
the computational cost can be further reduced. Specificaff}€ Structure complexity of a Gaussian network, or uses BGe
in experiments, we will apply a UMD@model as (6) for (Bayesian Gaussian equivalence) metric and local searqh to
variables inyV, and an EEDA model mentioned in Section (/€& the structure. Normal IDEA [28] uses BIC (Bayesian
for each subset o. EEDA [8] is a multivariate Gaussian Information Crlten_on)_ metric to penalize the _comple>_<|t;_/a)_
EDA using covariance matrix scaling. After performing MLENO'Mal pdf factorization. Real-coded Bayesian Optimazati
EEDA scales the covariance matrix by resetting its minimuf90rithm (rBOA) [30]-[32] also employs Bayesian factor-
eigenvalue to its maximum eigenvalue. EEDA regards tf{gation with BIC metric and greedy search, but in contrast
direction of the eigenvector with the minimum eigenvalue 48 EGNA and Normal IDEA, it fits Gaussian mixture model
an approximation to the fitness function’s gradient. Preyio INstead of a single Gaussian. There are significant difteren
studies [11], [35] have shown that by enlarging the varian&§tween EDA-MCC and these approaches:
along this direction, EEDA can have better explorativeigbil 1) Fig. 7 shows typical model structures after applying pre-
than EMNA,;.1;and require smaller population sizes. Sinceious approaches’ model estimation and WI+SM. Compared
the covariance matrix scaling can be done (qn) [11], with WI+SM, previous approaches can be seen as “implicitly”
EEDA has roughly the same computational complexity a®ntrolling the model complexity. Therefore, model estiwra
EMNA g0 When using the same parameters. Therefore, threthese approaches often leads to a large connected graph,
computational complexity analysis of EDA-MCC in Table llalthough some dependencies between variables are removed.
still holds. It means that the variables are still modeled by a “big” mul-

Several other approaches for controlling/penalizing the
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TABLE Il
COMPARISON OFONE-GENERATIONCOMPUTATIONAL COMPLEXITY

UMDAS | EMNA ;1050 | EDA-MCC
Model Estimation | O(nm) O(n?m) [O(n®mcorr) + O(nm), O(n’meorr) + O(cnm))
Solution Sampling| O(nM) | O(n?M) [O(nM),O(enM))
V on different subsets of for diversity consideration is also

NS W O feasible. This allows to easily develop new EDAs and hybrid
1 OQ algorithms. But in this paper we only discuss Gaussian nsodel

);>\ S5 IV. EXPERIMENTAL STUDIES
A. Experimental Setup

1) Involved Algorithms:Four algorithms are involved in
(a) Previous approaches (b) Wi+SM experimental comparisons: UMDA [2], EMNA jiopa [2],
Fig. 7. A demonstration of model structures after applyingditional EEDA [8] and EDA-MCC. As extensions of the analyses
approaches and WI+SM, respectively. Each circle representariable and on computational complexity, we select UMBAs a repre-
the directed edges represent the dependency. sentative of univariate Gaussian EDAs, and EMNAyas a
representative of multivariate Gaussian EDAs. Both atbors
o o N are based on MLE (maximum likelihood estimation). Since
tivariate modef. In contrast, WI+SM “explicitly” partitions many theoretical studies, experimental comparisons aald re
the variables into several separated groups with a sizé lig}joq applications of these two EDAs have been made [2],
(parameter). Then a number of “small” mod_els are appliecm, 18], [11], [15]-[19], [29], [34], [35], [41]-[43], [43,
to W and subsets of. The failure of a “big” model on [46] [48]-[51], taking them into comparisons makes sense.
large problems can be seen from a fact that, few results ®Epa js included as a representative of multivariate Gaussi
previous algorithms on problems having hundreds of vae@blgpas ysing covariance matrix scaling. It can be seen as an
are reported. A possible explanation is that it is due to the&  oytension of EMNAobq;, Making it easy to implement based
of dimensionality and the computational complexity isses EMNA,/o50. In EDA-MCC, we apply a UMDA model
n grows, a “big” model's performance fast deteriorates asd ifor yariables in)V, and an EEDA model for each subset of
computational cost also rapidly increases. S. Such an implementation can yield fair comparisons with
2) Previous approaches are mostly tryingptecisely learn UMDACG, EMNA,1.s;and EEDA. To fairly compare CPU
a complex global structure from data, which is in fact imgme cost, all algorithms are implemented with C++ using
practical in high dimensional space. They also involve démpg same template design and they share the same basic data
cated computation that makes the computational compleXitysiryctures and numerical computation library. They onffedi
EDAs become even higher. On the other hand, if use WI+SMn model estimation and solution sampling modules.
the global structure is jusbughly learnt Since it is too hard 2y Test Functions:Test functions are listed in Table 1.
to perform good global learning in high dimensional SPacney are selected from classical benchmarks in [7], [52]
WI+SM tries to perform good learning in divided subspaceg,q CEC2005 Special Session [53]. All the 13 functions are
to give a better approximated global estimation. Fortupateminimization problems. Details of the CEC2005 functions,
the controlling parametetsandc both have explicit physical jncjuding the shifted global optima and the transformation
implications that can be interpreted and set easily (Sedfio magrices, etc., please refer to [53]. These functions donta
will give more discussions on these parameters and empiriggyeral comparison pairs, from which we can see whether
guidelines of setting them). WI and SM do not introducgn gigorithm is sensitive to the shifted or rotated function

additional time consuming computation into EDA. They capngscape. The 13 functions can also be classified into 3
even help reduce the overall computational complexity.vgeit groups:

can also imagine that if the global structure can be sucaigsf
learnt under some conditions, WI+SM will not outperform
traditional approaches.

3.) Cqmpared W'Fh previous a_lpproaches, WHSM IS MOr® | Multimodal problems with many local optimd? —F 3.
flexible in terms of introducing different search stratsgigto

EDAs. For example, probabilistic models other than Gaussia 33“\(/3|gmcr:nogwll3lifmeter SdegllrzwgDioréraqglonal EDAs Sl_JCh
can also be applied toV and S. Applying different models 25 A, globalAN » besides representing
the selection pressure, the only parameter is the popnlsiie

3In rBOA, the global pdf is factorized as a product of lineamtmnations M. Given a_-f'xed maximal number qf flt!’]eSS evaluations (max.
of subproblems, which are still essentially fragments ofausian network, #eval) as in many real-world applications, a larger may
and thus' can be interconnected via overlappipg variableen i they are gffer petter Iearning, but also reduces the maximal number
the “maximal compound subproblems” [31] which are totakyparated from f . in th . d vi f I
each other, there is no explicit control on the size of a solipm. It may of generations In the meantime, and vice versa for smaller

also result in “big” multivariate subproblems. M. People are aware of the trade-off between population size

o Separable unimodal problemB; and Fs.
« Non-separable problems with only a fewc (2) local
optima: F3—F}g.
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TABLE Il
TEST FUNCTIONS USED IN EXPERIMENTSTHE DOMAINS OF FUNCTIONF7 AND F11 ARE CHANGED FROM ORIGINAL DEFINITIONS IN[52] TO MAKE
THEM CONSISTENT WITH THE DOMAINS OFFg AND F'2, RESPECTIVELY Fy AND Fg ARE SHIFTED VERSION OFF3 AND F5, RESPECTIVELY THE
SHIFTED GLOBAL OPTIMA ARE GENERATED FOLLOWING THE SAME WAY & [53].

| | Description | Expression | Domain |
F Sphere f; in [52]) F@) =30 22 [~100, 100]™
Fy Shifted Sphere {y in [53]) F@) =" 122+ frias,s Z=7—0 [—100, 100]™
F3 Schwefel's Problem 2.21f¢ in [52]) F(Z) = max;{|z;|,1 <i<n} [—100, 100]™
Fy Shifted F3 F(Z) = max;{|z],1<i<n}, Z=&-7 [—100, 100]™
Fs Schwefel ¢ in [7]) F@) =" (1 —22)2 4 (z; — 1)?] [—10,10]™
Fes Shifted Fi F@ =" 1l(z1—22)+ (- 1)?], Z=&-6+1 [~10,10)™
F; Rosenbrock f5 in [52]) F(Z) = S0 100(zi41 — 22)2 + (2 — 1)?] [~100, 100]™
Fyg Shifted RosenbrockKs in [53]) F(@) = 301 100(zi41 — 22)2 + (2 — 2] + foiasg, Z=Z —06+1 | [~100,100]"
Fo* | Shifted Rotated High Conditioned F(@) = 2?21(106)%22 + friass [—100, 100]™
Elliptic (F3 in [53]) Z=(-0)-M
Fio Schwefel 2.6 with Global Optimum F(Z) = maz{| AT — B;|} + friass [—100, 100]™
on Bounds £ in [53]) t=1,...,n.
Fi1 Rastrigin (fg in [52]) F(Z) =371 22 — 10cos(2mz;) + 10] [—5,5]™
Fio* | Shifted Rotated Rastriginf{o in [53]) | F(Z) = Y1~ [22 — 10cos(2m2;) + 10] + friasyy, 2= (& —06) - M [-5,5]"
i3 Shifted Expanded Griewank plus See [53], page 16. [-3, 1™
Rosenbrock £3 in [53])

* Note that the transformation matri®Z in F9 and F2 is not the population sizé/.

and number of generations, and understand that the balanakie of 6 = 0.15 may result in an emptyV, i.e., all of
between the two factors, which may even vary from problethe variables are regarded as strongly correlated with each
to problem, has significant influence on the performancgher, which makes WI a null operation. Large = 0.6
of EDAs. As in most (if not all) studies on EDAs, ourmay lead to)V =V, i.e., EDA-MCC degrades itself into an
investigation does not emphasize the setting of populatittMDA Gand discards all the dependencies among variables.
size. Instead, for each EDA, we always apply four setting® release the power of EDA-MCC most, there must be an
of population size,M < {200, 500,1000,2000}, aiming at optimal # given a problem and other parameters. Different
releasing promising performance of the algorithms as msch@roblems and other parameters may also lead to different
possible on every problem. In experiments, for each algaorit optimal value of. As mentioned abové,can reflect the user’s
given a problem with a specific problem sizg we compare confidence on univariate model. To have reasonable analysis
the average best solutions obtained among the four populaton the effects of WI, we set a constant and moderate value
sizes, and choose the best result. The population size teadsf # = 0.3 for all tests. Here our aim is to demonstrate that
the best result is also recorded for comparison. All alpong EDA can benefit from WI, whereas which value ®bbenefits
user = 0.5 in all tests (thusn = M/2). The initial popula- EDA most on a specific problem can be an independent
tions are always generated uniformly within the search spadéssue. For SM, we set = 20. In practice, the settings of
Elitist approach is adopted for all algorithms, i.e., onlyeo ¢ can be determined by according to user’s preference and
best individual is survived into the next generation, tbget experience. In normal cases, if a largercan be appliedg
with (M —1) newly sampled individuals they constitute a newan also be set larger, and vice versa. Wheis large enough
generation. All these settings are widely used when studyito give a reliable estimation on the entitadlimensional space,
these EDAs in previously publications. For each problem, wee can setc = n, which implies that we fully trust the
test problem sizes: € {50,100}. The max. #eval is set global estimation rather than approximating it by comborat
according to [53], i.e., max. #eval 10000 x n. Algorithms are of subspace models. But meanwhile, we should also afford the
terminated only when their #eval exceed this limit. Resaits computational complexity. On the other hand, a smallean
averaged over 25 independent runs. All experiments are daignificantly reduce the computational complexity. Useaa ¢
on a P4 2.40 GHz computer with 512 MB RAM. weigh the pros and cons and then seParametersn,;., ¢
_ andc all have explicit physical implications. Their values are

4) Parameters of EDA-MCCIThrough all experiments of gjiher hounded or can be determined with the guidance of othe
EDA-MCC, we setmn.,,, = 100, 6 = 0.3 for Wl. We regard o jetermined parameters or user's preference. It shuaild
Meorr = 100 points are enqugh to _caIcu'ate th? correllatlogtraightforward to set these parameters when applying EDA-
coefficients between any pair of variables (a pair of va&ably ¢ 1o a new problem. In Section V, the influence of different

implies a 2D space). W_e sét = 0.3 here becguse itisS @y and e will be investigated. Empirical guidelines of setting
popular threshold to define weakly correlated in the contexiha_pcc parameters will also be given.
of statistics. In our experience, we have also observed that

WI can be sensitive to the value 6f For example, a small
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TABLE IV

10

SOLUTION QUALITY COMPARISON. THE RESULTS ARE DIVIDED INTO3 GROUPS ACCORDING TO THE PROBLEM PROPERTIESHE MEANS AND STANDARD
DEVIATIONS OF F'(Z) — F (%) FOR25RUNS ARE REPORTEDIF THE VALUE IS BELOW 1E-12,WE REGARD IT AS ZERQ THE BEST RESULT(WITH THE
MINIMAL MEAN VALUE ) IS BOLDED IN EACH ROW. RESULTS OFEDA-MCC ARE COMPARED WITH OTHERS ALGORITHMS BY NONPARAMETRIC
MANN-WHITNEY U TEST. THE SIGNIFICANCE LEVEL IS SHOWN BY MARKERS(*, T AND ). NO MARKER IMPLIES NO SIGNIFICANT DIFFERENCE

[Prob. [ n [ UMDAY [ EMNA 0pa1 | EEDA | EDA-MCC |
F 50 [0£0 1.3e-11+ 6.3e-1% 0+0 0+0
100 | 0+ 0 1.4e+01+ 5.6e+06 | 0+ 0 0+0
Fy 50 [ 0+0 45e+04+ 2.2e+03 | 0+ 0 0+0
100 | 0+ 0 1.4e+05+ 4.0e+03 | 5.3e-10+ 1.4e-09 0+0
F3 50 [ 2.6e-04+ 1.5e-0% 1.2e-01+ 1.2e-0% 1.8e-08+ 2.4e-09 0+0
100 | 2.6e-02+ 8.3e-02 3.3e+00+ 7.0e-0f | 1.5e-03+ 8.5e-04 0+0
Fy 50 | 3.4e+01+ 2.5e+08 | 4.1e+01+ 2.6e+06 | 1.4e-05+ 6.8e-05 0+0
100 | 4.7e+01+ 3.1e+06 | 5.8e+01+ 2.7e+06 | 8.1e+00+ 1.4e+06 | 0+ 0
Fs 50 | 1.5e+01+ 4.1e+0§ | 1.5e+02+ 1.4e+0% | 2.4e-02+ 3.7e-03 0+0
100 | 1.3e+024+ 2.7e+0% | 6.7e+02+ 7.5e+0% | 3.8e-01+ 4.7e-03 0+0
Fg 50 | 1.4e+01+ 5.2e+08 | 6.6e+03+ 9.4e+03 | 1.0e-01+ 1.2e-02 0+0
100 | 1.8e+02+ 2.6e+0f | 2.2e+04+ 2.1e+038 | 7.2e+00+ 7.9e-08 | 0+ 0
Fr 50 | 4.8e+01+ 3.4e-08 | 5.7e+01+ 5.9e+06 | 5.0e+01+ 9.2e+00 | 4.7e+01+ 2.1e-01
100 | 9.7e+01+ 6.4e-02 | 2.7e+03+ 1.5e+03 | 9.7e+01+ 3.7e-0f | 9.6e+01+ 7.5e-02
Fg 50 | 4.1e+02+ 9.1e+03 | 4.0e+09+ 7.5e+08 | 5.2e+02+ 1.0e+03 | 4.8e+01+ 1.5e-01
100 | 9.3e+02+ 3.1e+03 | 1.8e+10+ 1.9e+0$ | 4.4e+04+ 4.4e+04 | 9.6e+01+ 1.3e-01
Fo 50 | 4.3e+07+ 4.1e+08 | 1.8e+09+ 2.4e+08 | 4.1e+06+ 1.4e+06 | 3.6e+06+ 1.5e+06
100 | 4.3e+07+ 3.1e+06 | 4.9e+08+ 9.7e+0% | 2.2e+07+ 3.7e+06 | 9.6e+06+ 2.5e+06
Fio 50 | 4.9e+03+ 1.8e+02 | 2.9e+04+ 1.4e+03 | 2.0e+03+ 2.0e+02 | 3.1e+03+ 3.4e+02
100 | 5.9e+03+ 4.3e+03 | 7.8e+04+ 2.1e+03 | 4.4e+03+ 6.0e+03 | 1.9e+03+ 3.6e+02
F11 50 [ O+ 08 7.7e+00+ 5.0e+06 | 3.1e+02+ 1.3e+0F | 2.9e+02+ 1.4e+01
100 | 0 + 08 1.4e+02+ 2.4e+0f | 7.3e+02+ 1.5e+0f | 7.5e+02+ 1.6e+01
Fia 50 | 2.1e+00+ 9.5e-0F | 3.2e+02+ 2.1e+0F | 3.1e+02+ 1.7e+01 | 3.0e+02+ 1.46e+01
100 | 8.6e+00+ 2.1e+0§ | 9.0e+02+ 2.9e+0f | 7.3e+02+ 2.5e+01 | 7.4e+02+ 2.35e+01
F13 50 | 7.8e+00+ 8.3e-0F | 9.9e+01+ 2.4e+0F | 2.7e+01+ 1.1e+00 | 2.6e+01+ 9.2e-01
100 | 1.5e+01+ 2.0e+0§ | 1.2e+03+ 1.9e+028 | 3.8e+01+ 2.6e+0f | 6.5e+01+ 1.6e+00

* The value of Asymp. Sig. (2-tailed 0.05 when compared with the results of EDA-MCC.
T The value of Asymp. Sig. (2-tailedx 0.01 when compared with the results of EDA-MCC.
§ The value of Asymp. Sig. (2-tailed} 0.001 when compared with the results of EDA-MCC.

B. Experimental Results EMNA j100a1, but not as good as UMDAand EDA-MCC on

We record the difference between the best fitness tHeOD F2. Overall, EDA-MCC performs the best among all the
an algorithm can find and the known global optimum, i'emultivariate EDAs with statistical significance, and it foems
F(%) — F(7%). The value is always non-negative for mini-as Well as UMDA?. Also note that EMNA,o,.:and EEDA can
mization problems. The smaller it is, the better an algarithPerform worse when the optimum is shifted away £i) from
performs. The means and standard deviationg(af) — F'(z«) the center of search space (i).
for each algorithm in each test are summarized in Table IV. Although the CPU time of an algorithm may depend on
If F(Z) — F(#*) < le-12, then we regard it as zero, i.e.population sizes and thus different number of generations,
the global optimum is reached. If multiple results among the reflects the computational time needed to exert an algo-
four-population-size tests reach the optimum, we repaet thithm’'s best performance. We can find that UMPeosts
one exhibiting the fastest convergence. Table V shows tleast CPU time whereas EMNA,,;and EEDA cost the most.
corresponding population sizes of the algorithms. Bectuse EDA-MCC'’s CPU time grows faster than UMC#but slower
CPU time comparisons on different problems are similar, whan EMNA,;.,;and EEDA. SinceF; and F, are easy for
only show the CPU time comparisons on selected functiot®1DA “model, the required population size indeed grows
F,, F3 and Fy; in Fig. 8. mildly. However, the population sizes of EMNAuand
EEDA keep at high levels. EDA-MCC's requirement of large
population size is significantly relaxed due to WI+SM. Mean-
while, EDA-MCC shows significantly better performance.

C. Discussion and Analysis

1) Separable Unimodal Problem&he separable and uni-
modal structures of; and F; can facilitate univariate model 2) Non-separable Problems with Only A Few Local Optima:
based EDAs in solving the problems although this is ndthis group of functions are either unimodal or only have two
always the case. Our experiments show that, in our cafm;al optima, which implies the problems have clear inner
UMDA ¢and EDA-MCC perform well. However, EMNA,q;,  Structures. The non-separable properties pose signifitiffiat
which relies on global multivariate estimation, exhibifg-s culties for UMDAS. We can see that UMDfails to perform
nificant performance degradation as grows. EEDA also best on any test. On the other hand, EDA-MCC performs best
performs well due to its better explorative ability tharon all tests only except 50B7¢. EMNA 405q:performs worst
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Fig. 8. Comparison of average CPU time 6h, Fs and Fy1.

TABLE V TABLE VI
POPULATION SIZE COMPARISON POPULATION SIZES USED BY THE COMPARISON BETWEENEEDA AND EDA-MCC oN 50D-200DF1g.
ALGORITHMS TO GENERATE THE RESULTS INTABLE IV ARE SHOWN. ON POPULATION SIZES USED ARE SHOWN IN BRACKETSIN EACH ROW, THE
EACH PROBLEM, THE SMALLEST POPULATION SIZE IS MARKED IN BOLD SIGNIFICANTLY BETTER RESULT(DETERMINED BY NONPARAMETRIC
MANN-WHITNEY U TEST) IS SHOWN IN BOLD. FOR ALL RESULTS OF
| Prob. | n | UMDAg’ | EMNA 4iobal | EEDA | EDA-MCC | EEDA, THE VALUE OF ASYMP. SIG. (2-TAILED) < 0.001WHEN
i =5 500 5000 1000 500 COMPARED WITH THE RESULTS OFEDA-MCC.
100 500 2000 2000 200
50 500 2000 | 1000 200 n EEDA EDA-MCC
100 1000 2000 2000 1000 50 | 2.0e+03+ 2.0e+02(1000) | 3.1e+03+ 3.4e+02 (200)
100 | 4.4e+03+ 6.0e+02 (2000)| 1.9e+03+ 3.6e+02(200)
£ S0 2000 2000 11000 200 150 | 1.7e+04:+ 1.2e+03 (2000)| 3.1e+03+ 4.0e+02(500)
100 2000 2000 | 2000 200 200 | 2.9e+04+ 2.0e+03 (2000)| 4.3e+03+ 7.7e+02(500)
Fy 50 2000 2000 1000 200
100 2000 2000 2000 200
Fs5 50 2000 2000 200 200 14
100 2000 2000 200 200 c
Fs 50 2000 2000 1000 200 S 12 I =EDA
100 2000 2000 2000 200 5, L_Jeba-mce
Fr 50 1000 2000 2000 500 oy
100 1000 2000 2000 500 § 08
Fs 50 2000 2000 1000 2000 £
100 2000 2000 2000 500 o %6
Fy 50 2000 2000 500 200 E 04
100 2000 2000 1000 200 E
Fio | 50 2000 2000 | 1000 200 %
100 2000 2000 | 2000 200 L W1
50 100 150 200
11 50 1000 2000 200 2000 dimension
100 2000 2000 200 2000
Fia 50 2000 2000 1000 2000 : : R
100 5000 2000 500 2000 Fig. 9. Average CPU time of EEDA and EDA-MCC df .
i3 50 500 2000 200 500
100 500 2000 200 1000

have better explorative ability, they can benefit from aithe

a) large population sizes, or b) large budget of number of
and EEDA performs generally between UMPAnd EDA- generations (by applying a small population size). However
MCC. Note thatFy, Fs and Fy are shifted versions of;, for UMDA%and EMNA, 01 Which fully relies on MLE, the
Fs and F7, respectively. On the unshifted versions, althoughopulation sizes usually keep increasingnagrows.
UMDA % and EEDA performs significantly worse than EDA- In this group, F;—Fy, are relatively hard problems that
MCC, the solutions they found are not too bad. Howevemp algorithm achieves satisfying solutions. But to the best
once the global optima are shifted away, their performanoé our knowledge as well as we can see in the following
become much worse. EMNA,has similar issue and it 500D tests that, no known algorithm can find good solutions
always perform worst. Among all, only EDA-MCC showson these problems, and EDA-MCC is in fact the best so
robust performance to the shifts of the global optima. far in general. Among these problensy’s global optimum

The CPU time costs are similar to that of previous group @& on the bounds of the domain, which requires explorative

functions. EDA-MCC’s CPU time grows much slower tharability the most among all 13 problems. On 50D,, EEDA
EMNA g00q:and EEDA. Although UMDA costs least CPU performs the best since it has a global guidance of the
time, it always performs worse than EDA-MCC. EDA-MCCgradient and a relatively good estimation can be obtained.
also needs the smallest population sizes in most caseqtex€n the other hand, because EDA-MCC partitions the search
on 50D Fy. As we can see olfr}2 in the next group that, the space, search along the approximated global gradient ismnot
best population size of EDA-MCC and EEDA can sometimesffective as EEDA. But as the problem size grows to 100D,
fluctuate as» grows. This can be explained as that since th&gDA-MCC significantly outperforms EEDA. This confirms
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the effectiveness of using subspace models to approximiteen the global optimum of. is shifted, compared with
the global estimation: In higher dimensional space wheretlze results onF; (see Table 1V), surprisingly UMD&still
precise global estimation is hard to obtain, approximatirautperforms the others. Whereas EMNA.;becomes much
the global estimation by combination of subspace modeisrse. EEDA and EDA-MCC approximately hold the solu-
can achieve better performance for EDA. To further verifiion quality. Intuitively, non-separable problem is harar f
the effectiveness of the combination of subspace models, WBIDAS. However, the results reveal that high dimensional
extend our experiments afio to 150D and 200D to compare F15 is even much harder for multivariate Gaussian model. On
EEDA and EDA-MCC. Experimental settings are the samexpanded multimodal functiod;;, UMDAS again performs
as previous ones. The comparison is shown in Table VI atite best. It seems that the complicated problem structure of
Fig. 9. We can see that if grows even larger, combinationthis group of functions poses similar difficulties to EDA-I@C
of subspace models can be significantly better than a paord simple algorithms like UMD&can be good enough on
global model. EDA-MCC not only finds significantly betterthese problems. CPU time comparisons on these problems are
solutions, but also scales to larger problems better,wigh,  similar to previous ones that EDA-MCC’s CPU time is always
a much slower increase in CPU time cost. between UMD@and EMNA;01q:. Since EDA-MCC based
On this group of functions, UMD&cannot perform as well on WI+SM cannot perform well, its required population size
as EDA-MCC, but its computational cost is always muchlso becomes large.
lower. One may wonder whether a bigger CPU time budget4) The Failure of EDA-MCC And The Success of
for UMDAcGwouId lead to superior performances over EDAUMDACGon F11—F15: To further analyze the failure of EDA-
MCC. In Fig. 10 we plot the averaged evolutionary curves ®fiCC and the success of UMD#on Fy,—F3 (three problems
25 runs for all algorithms in 100D tests to give an answer. Vigharing the common property of having a huge number of local
can see that the evolutionary curves of UMB&ll quickly optima), additional experiments are presented here. Glyer
become flat as the algorithm proceeds. This implies the fagteaking, the experiments concern two characteristicOafsE
that even given more CPU time, UMD¥&annot find better which may be closely related to the performance on these
solution but converges to a suboptimal one. problems. Our goal is to find the intrinsic reasons that preve
Another possible reason of why UMD#loes not perform EDA-MCC from performing well.
well is that the population sizes applied are still not large The first characteristic we take into account is the model
enough. Therefore, we further test even larger populaticomplexity of EDA. On a specific problem, a multivariate
sizes M € {4000,8000,16000} (and still m = M/2) for Gaussian EDA does not necessarily outperform a univariate
UMDASon 100D functions in this group. Results on repGaussian EDA. The failures of several multivariate Gaussia
resentative functions are summarized in Table VII. We cadDAs and the success of univariate Gaussian EDA (UNIDA
see that larger population sizes do not help UMfdhtain on Fy;, Fi» and Fy3 probably imply that using high depen-
better results. To be specific, only aFg the result using dency degree (i.e., high model complexity) for these pnoisle
M = 4000 becomes a little better, but still much worse thais no longer effective. If such an intuition can be validated
EDA-MCC. On other functions, large population sizes perforthen the failures of EDA-MCC are very likely to attribute
even worse. This implies that the failure of UMBAN these to the failures of high dependency degree, not the novel
functions is primarily due to its model simplicity, eitherger WI+SM techniques adopted by EDA-MCC. Therefore, we test
population sizes or longer CPU time budget may not lead &xplicitly controlling the dependency degree by changing

better performance. i.e., from original settings: = 20 to ¢ = 2. Note that if

In a word, on this group of non-separable functions, EDA= = 1, EDA-MCC will perform exactly the same as UMDA
MCC performs significantly the best. UM#ails on all and ¢ = 2 restricts the multivariate dependencies to the
problems because of its model simplicity. EMMNAand minimal degree that at most dependencies of two variables
EEDA cannot perform well in high dimensional tests. are considered. We also add 10D tests to see what happens in

3) Multimodal Problems with Many Local Optimahese low dimension. Note that for 10D tests,= 20 is essentially
functions all have a huge number of local optima, which rissulidentical toc = 10 since all variables can be included.
in highly complicated function landscape and makes the-prob Another characteristic that may influence the performance
lems hard to solve. Using the same sample size, the estimadécan EDA is the base multivariate model, which also in-
multivariate model cannot be as reliable as on previousgrodicates the method of estimating the probabilistic model.
of problems. Results coincide with this intuition. Althdug UMDA Yadopts MLE (maximum likelihood estimation), and
F1, is separable, results show that it is not easy to solve fBMNA ;.,;model is more similar to UMDAmodel than
multivariate Gaussian EDAs. Previous study [11] has showvtine others because of also using MLE. UMB8 promising
that if a small population size is applied, EMMAyand performance on the three problems may indicate that MLE
EEDA cannot perform well on this problem, and EEDA mays more efficient than covariance matrix scaling on these
even perform worse than EMNAs.;. The huge number of problems. Therefore, we replace the EEDA model with the
local optima can mislead the multivariate search and tEMNA ;.5 model in EDA-MCC to test the effect of base
covariance matrix scaling. UMDAperforms the best and model. By crossing over the settings of base multivariate
EMNA g00:the second on this function. Both EEDA andnodel andc¢, we have four candidates to be compared
EDA-MCC adopting covariance matrix scaling fail to reaca thwith UMDAS: a) EDA-MCC with EEDA model,c = 20;
optimum. Applying a rotation té"; makesFis non-separable. b) EDA-MCC with EEDA model,c = 2; ¢) EDA-MCC
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Fig. 10.

TABLE VI

Evolutionary curves on 100B3, Fs, Fs, Fg and Fig. Curves ofFy, Fg, F7 are similar to that offs, F5, Fg, respectively, and thus omitted.

RESULTS OFUMDA $USING LARGE POPULATION SIZES ONLOOD F3, F, Fy, Fg AND F1o. RESULTS OFEDA-MCC AND UMDA G USING M = 2000
ARE ALSO DIRECTLY INCLUDED FROMTABLE IV. ON EACH PROBLEM, THE VALUE OF ASYMP. SIG. (2-TAILED) < 0.001WHEN ANY UMDACGRESULT 5
COMPARED WITHEDA-MCC RESULT USING NONPARAMETRICMANN-WHITNEY U TEST.

UMDAC, M = 4000

UMDA®, M = 8000

UMDAS, M =16000 |

Prob. EDA-MCC UMDAC, M = 2000
F3 0+0 2.6e-02+ 8.3e-02
F5 0+0 1.3e+02+ 2.7e+01
Fg 9.6e+01+ 1.3e-01 9.3e+02+ 3.1e+03
Fy 9.6e+06+ 2.5e+06 | 4.3e+07+ 3.1e+06
Fio 1.9e+03+ 3.6e+02 | 5.9e+03+ 4.3e+02

6.7e-02+ 2.7e-03
1.3e+024+ 1.7e+01
1.2e+02+ 4.7e+01
4.9e+07+ 2.7e+06
6.0e+03+ 2.8e+02

2.6e+004 8.7e-02
1.3e+02+ 1.4e+01
2.4e+02+ 4.4e+01
9.5e+07+ 3.5e+06
9.1e+03+ 2.0e+02

1.6e+01+ 3.6e-01
7.4e+02+ 3.3e+01
9.6e+05+ 9.2e+04
4.2e+08+ 3.3e+07
2.0e+04+ 5.2e+02

with EMNA j;smodel, ¢ = 20; and d) EDA-MCC with the complex function landscapes. On the other hand, the
EMNA g005;model,c = 2. Still, for each implementation, four more “conservative” MLE performs better. Covariance nxatri
population sizes are applied in each test. The best resolhgmscaling is more effective only when is small. Of course,
the four population size tests is reported. The compariaoms discussions here are restricted to our pre-defined popalati
summarized in Table VIII. sizes and the max. #eval. Since EDA-MCC can perform as
) ) . o ood as UMDAon low dimensional 10D tests, we guess
‘We can find that in 10D tests, there is no &gmﬁcarﬁ]at with extremely large population size and sufficiendisgle
difference among candidate algorithms. EDA-MCC can be Bﬁdget of max. #eval, EDA-MCC has the potential to come
good as UMDA'. In 50D and 100D tests, different degrees %ip with or even outperform UMDE&. But considering the
multi-dependencies does not help EDA-MCC achieve as gopd; increasing number of local optima and the fast incregsi
performance as UMDA, no matter the base model is EEDA_\:omplexity of the function landscape as grows, EDA-
model or EMNA model. It implies that on these problems, if;-cg requirement of population size and #eval to outpenfor
the computational resources (max. #eval) are limitedizit  ;\1pa Gwill also increase tremendously. This can also be
multi-dependencies among variables may not be an effectig,ained by the effect of curse of dimensionality. Therefo
strategy. To be specific, as long as considering the mulilen acing problems with many local optima, it may be
dependencies, even only with the minimal degree=(2), ompytationally too expensive to apply a multivariate skar
the search is misled by the complex function landscape. 454 expect good performance. In this case, a cheap and simple
n grows, this effect becomes more serious. Neverthelegg; ariate algorithm such as UMDcan be a better choice
changing from EEDA model to EMNA,,.;model does help given limited computational resources.
to find better solutions, although the results are not always
as good as UMDAK. It implies that, whenn is large, the
“radical” covariance matrix scaling can be easily misled by
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TABLE VI
COMPARISON OF DIFFERENT BASE MULTIVARIATE MODELS AND DIFFERNT SUBSPACE SIZESTHE BEST RESULTS FOR EACH ROW ARE SHOWN IN BOLD
RESULTS OFUMDA $ ARE COMPARED WITH RESULTS OF EACH OF THE OTHER IMPLEMENTATIONS OF EDA-MCC BY NONPARAMETRIC
MANN-WHITNEY U TEST. THE SIGNIFICANCE LEVEL IS SHOWN BY MARKERS(*, T AND 8). NO MARKER IMPLIES NO SIGNIFICANT DIFFERENCE

EDA-MCC with EDA-MCC with EDA-MCC with EDA-MCC with
Prob. | n UMDAE" EEDA model EEDA model EMNA 4,54 model EMNA ;1,54 model
c=20 c=2 c=20 c=2
Fip. |10 [0+0 0+0 0+0 0+0 0+0
50 |0+0 2.88e+021.36e+0% | 2.96e+02-1.13e+0% | 6.31e-08-1.52e-0% 4.81e-08-5.93e-08
100 0+ 0 7.49e+021.61e+0% | 7.96e+02:2.33e+0% | 0+ 0 1.52e-04-7.62e-04
Fio | 10 | 5.83e-02:2.91e-01 | 8.46e-04:2.86e-03 | 1.68e-013.70e-01 1.59e-01:3.73e-01 1.33e-01:3.68e-01
50 | 2.08e+0@-9.49e-01 | 2.96e+02-1.46e+0% | 2.97e+02:1.50e+0% | 7.30e+0@-2.47e+08 | 8.70e+0@-3.58e+06
100 | 8.57e+0@-2.07e+00| 7.41e+022.35e+0% | 8.01e+02-1.61e+0% | 2.66e+017.51e+06 | 2.54e+013.96e+06
Fis | 10 | 1.33e+0@-2.13e-01 | 1.31e+0@2.57e-01 | 1.33e+0@-3.09e-01 | 1.45e+0@3.91e-01 | 1.46e+0@-3.39e-01
50 | 7.77e+0@:8.34e-01 | 2.64e+019.20e-0% | 2.59e+01#1.05e+06 | 8.13e+0@-1.37e+00 | 8.16e+0@1.58e+00
100 | 1.52e+011.98e+00| 6.53e+011.64e+00 | 6.82e+012.09e+06 | 1.63e+011.97e+00 | 1.66e+0%1.54e+00

* The value of Asymp. Sig. (2-tailed} 0.05 when compared with the results of UMPA
T The value of Asymp. Sig. (2-tailedk 0.01 when compared with the results of UMBA
§ The value of Asymp. Sig. (2-tailed) 0.001 when compared with the results of UMBA

problemsFy and Fyg), none of the candidates performs well
ﬁough to find a high quality solution. More effective and
icient search strategies for large scale optimizatiensitl

be developed.

D. Summary So Far

It is discovered by the above experiments that comparg
with traditional EDAs, EDA-MCC shows remarkable effec®
tiveness and efficiency on high dimensional non—separatt)?e
problems with only a few local optima. On simple separable
problems, EDA-MCC is comparable with UMIA But on E. Experimental Results on 500D Functions
problems with too many local optima, it does not work as well

as simple UMDA’. In any case, EDA-MCC offers a partial

;olutt_mn Itlcl)' the three requirements raised at the beginning ooptimization algorithms specifically designed for largalsc
ection Tl optimization. Involved traditional EDAs include UMCZand

1) The multivariate Gaussian based search is preservediMIC & [2]. MIMIC Cis also a Gaussian EDA, whose model
EDA-MCC, which leads to promising performance oomplexity is between UMD&and those multivariate Gaus-
large scale non-separable problems. sian EDAs. The variable dependency in MIMi® a chain-

2) Computational cost of EDA-MCC is usually lower tharshaped structure with bivariate conditional Gaussianitleas
traditional multivariate Gaussian EDAs; Its CPU timeyyltivariate Gaussian EDAs, such as EMNA.;, EEDA and
cost also grows much slower as problem size grows. EGNA, are not included because their CPU time on any of the

3) EDA-MCC can work with small population sizes for500D functions is too long to be acceptable.
large scale optimizations. Recently, Yang et al. [54] proposed a cooperative coevolu-

Conditions under which EDA-MCC may succeed or fail cation framework for large scale optimization, and an aldorit
also be summarized: named DECC-G, which uses Differential Evolution (DE) as

« In low dimensional search space with sufficient datdh® base algorithm in the framework was proposed. DECC-

where the global estimation is sufficiently precise, EDAS also adopts variable partitioning strategy, but withie th
MCC may not be better than traditional EDAS. cooperative coevolution framework, when DECC-G is acti-

« In high dimensional search space with sparse data onf@ting the variables of one group, all the other variables

where the global estimation is far from precise, EDAZ"® fixed. The evaluation of currently activated variables a

MCC can be more effective. However. if the functiorf@/culated in the context of fixing other variables. In EDA-
landscape has a huge number of local optima as MCC, though variables are also grouped into several subsets
F),—Fy5, EDA-MCC as well as traditional multivariate their optimizations are simultaneous and synchronizetA£D

Gaussian EDAs will fail. In this case, simple univariatd/CC is not an instance of cooperative coevolution. In [54],
Gaussian EDAs can be more effective and efficient. PECC-G has been compared with three other algorithms,
The success of EDA-MCC does not mean that it cap@NSDE, FEPCC and DECC-O, on several 500D and 1000D

escape from the curse of dimensionality. EDA-MCC jugy.nctions, and !t shows outstanding performance cqmpared
suffers less from it by explicitly controlling the modelWith other algorithms. Here we compare EDA-MCC with the

complexity. If using a fixed finite population size, EDA-T€Sults reported in [54]
MCC and any other EDAs relying on learning will in- Another algorithm, sep-CMA-ES recently proposed by Ros

evitably fail in extremely high dimensional search spac@nd Hansen [56] is also included in comparison. Because

We also note that ‘?‘l_thOUgh EDA_'MCC can have betteragegyits onr,—F; are not available in [54]. These results are obtained by
performance than traditional EDAs, in some cases (e.g., @ining the source code provided by the authors of [54].

Now we further enlarge the problem sizefgf-F13 to 500D,
and compare EDA-MCC with traditional EDAs and several
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COMPARISONS OF500D TESTS FOR EACH PROBLEM THE BEST RESULT IS BOLDED SINCE RESULTS OFSANSDE, FEPCC, DECC-@ND DECC-GIN
[54] ONLY CONTAIN MEAN PERFORMANCE WE ARE NOT ABLE TO GIVE STANDARD DEVIATIONS. RESULTS OFEDA-MCC ARE COMPARED WITH
RESULTS OFUMDAS, MIMIC &, AND SEP-CMA-ES,RESPECTIVELY BY NONPARAMETRIC MANN-WHITNEY U TEST. THE SIGNIFICANCE LEVEL IS
INDICATED BY MARKER §. SOME RESULTS OFFEPCCARE NOT REPORTED IN[54], THUS ARE LEFT BLANK. TWO-TAILED FRIEDMAN TEST SHOWS THAT
ALL ALGORITHMS (EXCEPTFEPCCWHOSE DATA IS NOT AVAILABLE) ARE NOT EQUIVALENT AT THE SIGNIFICANCE LEVEL OF0.05. POST-HOC
NEMENYI TESTS DEMONSTRATE THATEDA-MCC OUTPERFORMSSANSDE, DECC-OAND MIMIC fAT THE SIGNIFICANCE LEVEL OF0.05 [55].
MOREOVER ACCORDING TO ONETAILED WILCOXON SIGNED RANKS TESTS EDA-MCC ouTPERFORMSUMDA G'AT THE SIGNIFICANCE LEVEL OF
0.15. AT THE SAME SIGNIFICANCE LEVEL, EDA-MCCDOES NOT SIGNIFICANTLY OUTPERFORMDECC-GAND SEr-CMA-ES.

| Prob. | SaNSDE | FEPCC | DECC-O | DECC-G | UMDAY | MImIC & | EDA-MCC sep-CMA-ES

I 2.41e-11 | 4.90e-08| O 0 0+0 0+0 0+0 0+0

Fy 2.6le-11 | - 1.04e-12 | O 0+0 2.56e+02+ 2.2e+02 | 0+ 0 0+0

F3 4.07e+01] 9.00e-05| 6.01e+01 | 4.58e-05 | 1.35e+01+ 2.9e+06 | 4.40e-01+ 1.4e-08 | 2.79e-01+ 2.3e-02 | 1.40e+02+ 1.4e+0%
Fy 8.29e+01| - 1.05e+02 | 7.00e+01 | 6.92e+01+ 4.2e+00 | 7.93e+01+ 4.8e-0f | 3.27e-01+ 3.7e-02 | 1.41e+02+ 1.2e+0%
Fs 9.30e-07 | - 1.37e+02 | 6.66e-08 | 2.60e+03+ 2.8e+02 | 2.03e+02+ 2.1e+0f | 0 £ 0 0+0

Fe 1.02e-06 | - 1.44e+02 | 9.59e-08 | 6.61e+03+ 8.7e+02 | 1.07e+03+ 2.6e+0f | 0+ 0 0+0

Fr 1.33e+03] - 6.64e+02 | 4.92e+02 | 4.96e+02+ 1.4e+01 | 4.93e+02+ 8.6e-02 | 6.42e+02+ 4.1e+02 | 2.91e+02+ 2.6e+0%
Fy 2.71e+03]| - 1.71e+03 | 1.56e+03 | 3.44e+04+ 9.8e+04 | 3.75e+08+ 8.5e+0F | 6.77e+02+ 6.3e+02 | 2.87e+02+ 2.9e+0%
Fy 6.88e+08 | - 4.78e+08 | 3.06e+08 | 4.72e+08+ 1.6e+0F | 4.44e+08+ 7.1e+06 | 8.03e+07+ 1.1e+07 | 7.98e+07+ 1.7e+07
Fio 4.96e+05| - 2.40e+05 | 1.15e+05 | 3.48e+04+ 8.4e+02 | 1.03e+05+ 7.8e+02 | 2.09e+04+ 1.3e+03 | 1.20e+05+ 9.4e+03
Fi1 2.84e+02 | 1.43e-01| 1.76e+01 | O 2.27e+00+ 1.2e+06 | 4.80e+03+ 4.0e+0f | 5.24e+03+ 3.9e+01 | 2.14e+03+ 9.9e+0%
Flo 6.97e+03] - 1.50e+04 | 5.33e+03 | 7.55e+01+ 6.5e+06 | 5.03e+03+ 4.7e+0F | 5.25e+03+ 4.2e+01 | 2.28e+03+ 1.8e+03
Fi3 2.53e+02| - 2.81e+01 | 2.09e+02 | 7.90e+01+ 3.1e+06 | 4.73e+02+ 4.7e+06 | 4.52e+02+ 5.0e+00 | 1.03e+02+ 7.1e+00

§ The value of Asymp. Sig. (2-tailedx 0.001 when compared with the results of EDA-MCC.

the original CMA-ES is incapable of handling problems = 100 for all tests. If M = 200 is too small for solving a
with more than several hundreds dimensions [57], sep-CMAroblem, we consequently tedf = 500 and M = 1000 to
ES was developed only using a diagonal covariance matage whether better performance can be obtained while kgepin
in a Gaussian model while keeping the original covariantle selection pressure. We highly trust the small poputatio
matrix adaptation. Several recent studies (e.g., [56]])[5&izes that forc = 100 dimensional subspace, we still have
investigated its performance on problems larger than 500&nnfidence in the subspace models. The result is that EDA-
Although sep-CMA-ES uses a diagonal covariance matrix 88CC needsV/ = 1000 on F3, Fy andFy, and onlyM = 200
well as UMDAY, their model estimations are far different. On@n all other functions. Other experimental settings areesam
major difference is that sep-CMA-ES relies on cumulation @fs previous ones. Detailed comparisons are summarized in
the information gathered in the evolution path to model thEable IX.
covariance matrix, which is mainly heuristic-based, anasth  On the simplest separablg and F», EDA-MCC, UMDAY,
only requires a very small population size. In contrastpicgi DECC-O, DECC-G, and sep-CMA-ES perform very well.
EDA such as UMDA estimates the covariance matrix only byOn the second group of non-separable functidhs-Fio,
samples in current generation with MLE, which is learningEDA-MCC and sep-CMA-ES show the most stable good
based, thus usually requires a much larger population sizerformance. Interestingly, although sep-CMA-ES onlygdo
than sep-CMA-ES does. As will be seen later in experimentiiagonal covariance matrix, its performs generally well on
this could lead to significantly different performance. Weeu these non-separable functions, which was also reported in
recommended parameters of sep-CMA-ES [56] to conduct tf%]. But only on two Ronsenbrock functiong’{ and Fy)
comparison, with population sizé& = 4 + |3In(n)] (i.e., it significantly outperforms EDA-MCC. Whereas EDA-MCC
22 whenn = 500), selected sizeu = L%J, initial standard significantly outperforms sep-CMA-ES ohs, F, and Fyg.
deviation (step sizer) identical to one third of the searchBoth EDA-MCC and sep-CMA-ES reach the global optimum
interval, and initial search point the center of the seapats. on F; and Fs. On Fy although sep-CMA-ES has a little better
The implementation of sep-CMA-ES is derived from a @verage performance, there is no significant differencé wit
version of CMA-ES. EDA-MCC's. If we compare DECC-G with EDA-MCC, only
Following [54], we set the max. #eval to 2.5e+06. The pop@n F3 and F;, DECC-G performs better than EDA-MCC. But
lation size of DECC-G is 100 and its subcomponent dimensi@ECC-G is rather sensitive to the shifted global optimum:
is 100 for all tests. The parameters of SaNSDE, FEPCC a@th the shifted functions¥; and Fgz, EDA-MCC performs
DECC-O please refer to [54]. For UMDZand MIMICS, well holding almost the same performance, whereas DECC-G
population sizeM = 2000 and selected size» = 1000 are becomes much worse. Similar situations happenfpnand
adopted. In EDA-MCC, still we use UMDAmodel for W its shifted rotated versioit1z, EDA-MCC is not sensitive to
and EEDA model for subsets &. We set population size the shifted and rotated function landscape as DECC-G.
M = 200, selected sizen = 100, Mo = 100, 0 = 0.3, and ~ For the last group of functions F{;—F3) having
a huge number of local optima, as analyzed above,
UMDA &'shows clear advantage in general. ®p, DECC-

Shttp://www.Iri.fr/~hansen/cmaes.tar
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O and UMDAC performs much better than the others. Thi¥he performance comparison of combinationg)aind ¢ are

is consistent to previous observations. Because DECC-P ogummarized in Tables X and XI.

mizes function of one variable at a time within the coopeeti From the results we can see that on separableas long
coevolution framework, its behaviors are similar to UMP#® as6 < 0.3, differentc does not change the performance. But
some extent. Therefore they should be more effective oretheghen § > 0.3, the performance becomes a little unstable.
problems. The exception that DECC-O fails @k, can be Note that because current implementation of EDA-MCC uses
explained as its sensitiveness to the shifted global optimuEEDA model on subsets af, even when adopting a large
As for sep-CMA-ES, although it also uses univariate modé, as long asS is not empty, EDA-MCC performs differently
its performance orFy;—F}3 is far worse than UMDA. This from UMDAY. When variable dependencies are overly elim-
seems to be due to the heuristics by which the covarianioated by largefl, according to the definition of covariance
matrix is estimated in sep-CMA-ES. The results show that tlmeatrix scaling, the performance can become unstable since
standard “conservative” MLE adopted in UMD&an be more the gradient is likely to be poorly approximated. But getigra
effective than the heuristics adopted in sep-CMA-ES ondargpeaking, on separable problems differ@aindc do not have
scale problems with many local optima. much impact on EDA-MCC's performance.

We also find that MIMIG fails to perform the best on any On non-separabléy, only whend < 0.3, differentc does
problem. Due to more suffering from the curse of dimensiomot change the so far best performance much, except when
ality, it is neither so effective as UMD{#on problems which combining with a very smalk. Large# (> 0.3) can make
simple univariate model can already handle, nor as good &seasily become empty, which is hazardous to solving non-
EDA-MCC on non-separable problems with clear structureeparable problems. Largeis not harmful for solving non-
The results again validate our analysis on the difficulties separable problems, although it may cost longer CPU time
traditional EDAs in high dimensional search spaces. as analyzed before. However, too smalhas similar effect

Generally speaking, EDA-MCC with a relatively smallof larged that the dependencies between variables are overly
population size shows robust performance on these 50eifiminated. Since the partition & is random, considering the
problems, especially on non-separable problems with onlynan-separability, it further makes covariance matrixiscgfail
few local optima. It performs statistically better than SHE, together with a smalb. We can conclude that too largeis
DECC-O, UMDAGand MIMICS. Although DECC-G also hazardous for non-separable problems. Besides, a too small
performs generally well, its sensitiveness to shifted glaipti- is not recommended either because it has similar effect as a
mum is evidently a disadvantage. Sep-CMA-ES also perforiasge.
generally well, notably on non-separable problemis—Fs), Generally, setting around 0.3 is good for these problems.
which is interesting considering the univariate nature s t With such a @, the value ofc does not impact overall
Gaussian model. This could be a topic worthy further studyerformance much when population size is sufficiently large
in future work. In a word, we can say that EDA-MCC is théut may lead to different CPU time cost according to Table II.
first successful application of multivariate EDA on a gehera
class (13 in total) of 500D problems since continuous EDAS Gyidelines of Setting and
have been proposed. Moreover, compared with other EAs

A o Intensive experiments in Section IV have suggested that, in
. G
EDA-MCC and UMDAshow their significant superiority on most cases, a population size no larger than 2000 (and often,

8 out of the 13 functions, implying the advantages of uSIn(():lr'lly 200) is sufficient for EDA-MCC to obtain satisfactory re

probabilistic models_ and statistical learning for optiatian. 8u|ts on the problems no larger than 500D. Besides, a cdnstan
Also note that we did not tune the parameters of EDA-MC .
s . Selection pressure = 0.5 and a constantn.,.,- = 100 also
further on specific problems. Its potential performance loan . .
even better on real-world large scale problems seems enough for dealing with these 50D-500D problems.
' With such settings¢ around 0.3 will be good in most cases.
For the value of:, considering: a) the CPU time cost is very
V. INFLUENCE OFPARAMETERS ¢ AND ¢ often necessary to care about in lots of real-world apptioat
d b) a too large: close ton (especially whem is very
arge) also requires a sufficiently large population sizbawee
reliable subspace model estimation and thus increases the
computational cost, we suggest to seh linear fraction of
the problem sizen, e.g.,c = n/5. Note that as shown in
A. Influence Tests above influence tests, when the population size is suffigient
A separable functionF,; and a non-separable function!ar?;_af’f d|ffereé'1Ft)cU|m_pactsfPtt_Ie on ﬁc)erformbalmce bult _maylresrl]J It
Fy are selected from the 13 test functions (Table III) af diferent t'.“‘g etnciency Or: pro leg)l.so \:‘IrI]E%AnCe
demonstration. Different combinations 6fand ¢ are tested NEXtsection, we wi emon;trate t. € scala liity 0 ™
under these parameter setting guidelines.

In this section, the dependence of EDA-MCC on the new
introduced parametefsandc are investigated. Guidelines of
setting these parameters are also given.

on the two functions with problem size = 100, where
6 € {0.2,0.25,0.3,0.35,0.4} and ¢ € {5, 10, 20, 30,40, 50}.
The population size and selected size are adopted from pre- VI. SCALABILITY OF EDA-MCC

vious experiments of EDA-MCC and kept fixed, i.84 = In this section, we study the scalability of EDA-MCC in
1000, m = 500 for F5, and M = 500,m = 250 for Fy. terms of CPU time cost and number of function evaluations
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TABLE X

PERFORMANCE COMPARISONS OF DIFFEREN# AND ¢ ON 100D F». RESULTS ARE AVERAGED OVER25 RUNS.

c=5 c=10 c=20 c=30 c=40 c =50
0=0.2 0+0 0+0 0+0 0+0 0+0 0+0
0=025 | 0+0 0+0 0+0 0+0 0+0 0+0
0=0.3 0+0 0+0 0+0 0+0 0+0 0+0
9=035]0x0 1.96e-019.82e-01| 0+ 0 0+0 7.2e-02:3.6e-01| 0+ 0
0=04 8.2e+00t3.5e+01 | 1.8e+00:9.0e+00 | 9.8e-02-3.7e-01| 2.8e-03t1.4e-02 | 1.8e-05:8.9e-05| 1.1e+0G:4.6e+00

TABLE XI

PERFORMANCE COMPARISONS OF DIFFEREN# AND ¢ ON 100D Fg. RESULTS ARE AVERAGED OVER25 RUNS.

c=10

c=20

c=30

c =140

c=50

9.5e+0H-2.9e-01

2.3e+02:6.9e+02

9.6e+0H1.1e-01

9.6e+0H-2.1e-01

9.6e+0H-3.9e-01

9.5e+0H-2.0e-01

9.6e+0H-1.4e-01

1.3e+02:1.6e+02

9.6e+0H-9.0e-02

9.6e+0H-5.0e-01

9.9e+0Hk1.3e+01

9.6e+0H-1.3e-01

9.7e+0H1.2e-01

9.7e+0H-2.1e-01

9.7e+0H-3.9e-01

2.2e+02:2.4e+02

7.9e+02:2.4e+03

9.5e+03t2.6e+04

7.7e+03:3.3e+04

1.2e+03:3.2e+03

c=25
0=0.2 4.4e+06E2.1e+07
0 =0.25 | 1.1e+02:8.0e+01
0=0.3 9.9e+0H1.2e+01
0 =0.35 | 2.1e+047.3e+04
0=0.4 6.3e+06t1.4e+07

1.3e+06:1.6e+06

1.2e+06:2.3e+06

1.4e+06:4.0e+06

2.5e+06:6.0e+06

1.1e+06:2.3e+06
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s needed to find the global optimum grows mildly for the two
25 g o2 benchmarks. On simple separaljlg the growing speed even
T 2 5o decreases as grows. On non-separablg, it grows approx-
§15 2 o imately lineally asn. On both problems, the CPU time costs
£ needed also grow mildly, that is, approximately quadrética
! é‘“’s The small intervals between the error bars in Fig. 11 also
0% 100 200 300 _ 400 500 600 O % 10 200 300 400 500 600 Imply the stable performance of EDA-MCC. In a word, EDA-
problem size (n) problem size (n) MCC shows good scalability on the two problems investigated
(a) #eval onFy (b) CPU time onf} at least for problem sizes. 500D. Since the experiments
L . in Section IV have demonstrated that EDA-MCC can have
o 2 better performance and need less CPU time than traditional
s ge° multivariate Gaussian EDAs on large scale problems, we can
= ;5:06 expect EDA-MCC to have better scalability than traditional
R 7 %04 multivariate Gaussian EDAs in general.
6 £
j éoz VII. SUBSPACEMODELING BY CLUSTERING VARIABLES?
* " problemsize (n) * " oroblem size (n) In EDA-MCC, we randomly partitionS into subspaces
(c) #eval onFs (d) CPU time onFs in SM. One may ask whether a more sophisticated way of
partitioningS can be applied, e.g., partitioning subspaces by
Fig. 11. Scalability results of EDA-MCC o#; and F5.

clustering the variables it based on the strength of the
interdependencies. Intuitively, such a method should work
well when sample size is large enough compared with the
(#eval) needed to reach the global optimum. On differeptoblem sizen. But asn grows very large (e.gn = 500)
problems, the scalability of EDA-MCC may be different. Hereand only a small sample size is available (e.g., populaiizm s
two test functions, separablB; and non-separablés, on )/ = 200 and selected size» = 100), its performance may
which EDA-MCC can find the global optimum with acceptabl@ot be as good as random partition since any learning method,
time, are selected for empirical studies on problem sizggluding unsupervised clustering, will be greatly aftstby
n € {100,200, 300,400, 500}. The algorithm terminates only the curse of dimensionality. In this section, we replaceShe
when the global optimum is reached. We also use the four EDA-MCC with a greedy clustering method named SM-
population size settings as in Section 1V, and select theltresGC (Subspace Modeling by Greedy Clustering), and compare
with the least #eval for plotting. Interestingly, EDA-MCQtv it with original EDA-MCC. The new resulting algorithm is
population sizeM = 200 is always the fast to reach thecalled EDA-MCC-GC.
optimum in these tests. And, results with the least #eval als The details of SM-GC are shown in Fig. 12. SM-GC
always cost the least CPU time among the four populatigrartiions subspaces in the following steps: First, a pair o
size tests. We set = 0.5, meorr = 100, 6 = 0.3, and variables, whose absolute correlation is the largest antioag
c=n/5 as Section V suggests. All results are averaged ousies above, is picked up fromS as an initial cluster. This
25 independent runs and obtained on a computer with Intgiplies the pair of variables are the most strongly dependen
Core2 2.66 GHz CPU and 3GB RAM. Fig. 11 depicts the #evamong all. Then a variable outside the cluster is selected an
and the CPU time (mean and error bars) needed in solving #ded to the cluster, on the condition that its correlatinthe
two problems. existing variables in the cluster is the strongest. The atper
Under the above parameter settings, we find that the #eitafates until the cluster reaches the maximal sizer no
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SM-GC
1) ConstructS according to (4).

2) Partiion S into  non-intersected  subsets
81,82,...,8k,1 <k<n:
a) i<+ 1.

b) Repeatuntil S = 0.

i) Find two variablesX;, X, € S maximizing
|corr(X7, X2)| > 6. Exit current loop if not
found.

II) CreateS; < {X17X2}. S+ S \ S;.

i) Repeatwhile |S;| < ¢, wherec defines the
maximal size of a subse? K ¢ < n).
A) Find a variable X € S maximizing
|corr(X,Y )| > 0, whereVY € S,. Exit
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VIIl. CHARACTERIZATION OF PROBLEM PROPERTIESBY
EDA-MCC

As our motivation of scaling up EDA, we regard a major
advantage of using EDA other than traditional EA is that
we can obtain some feedback on the problem properties
through observing the probabilistic model learnt. We lwelie
that the learnt model structure should reflect some undwylyi
properties of the problem. In addition to finding a solution,
EDA has its unique capability in this aspect. However, suth a
advantage of EDA has not been deeply investigated. In atecen
study [58], discrete EDA model has been used to represent
interactions between the protein conformations by prdigbi
models. But still, rare study has been done on continuous EDA
models to characterize the structure of optimization prots.

In EDA-MCC, we can do so by visually analyzing the model

current loop if not found.

structure obtained from WI+SM. When running EDA-MCC
in previous experiments, we also record the results of WI
iv) 7< i+ 1. procedure in every generation. By analyzing these records,
c) If S # 0, estimate a univariate model for the We can give in-depth analysis on the problem properties-char
rest variables irS. acterization capability of EDA-MCC. We record the number
3) Estimate a multivariate model for each subset base&‘c 5”0”9'3.’ dependent variables (#strong), i, and th?
on them selected individuals. elements inS. 'I_'he curves_of the average #_strong of multlple
(25 in all previous experiments) runs during evolution thus
can be plotted. Which variables are partitioned igtocan
also be plotted by a matri€). Each row of@ corresponds
to a variable. Each column corresponds to one generat®n. It
elemeniQ;; on theith row and thejth column, ranging from 0
to 25, indicates how many runs (out of the 25 runs) partitibne
variablez; into S at generatiorj. Because visually examining
) matrix @ with 50 or 100 rows is relatively hard for human
strongly dependent variable can be found from the persgectiyes, we conduct additional 10D and 30D experiments for
of the cluster. A cluster refers to a partitioned subspabenT_ EDA-MCC. Results of 500D experiments are even harder to
the dependencies between the clusters and the rest varia@lgq so we omit them here. The 10D and 30D tests are based
in § are eliminated. An outer loop keeps generating ney the same settings as previous 50D and 100D experiments
subspaces in a greedy manner until all variable$ rave been iy section IV. Since am € {10,30} is relatively small, it
partitioned or when there is no strongly dependent var&ablg easier to visually examine the results and summarize the
!eft. If a_fter clusteringS is §t||| non-_empty, a univariate modelchanging trends as grows. For the purpose of comparing
is applied to the rest varlables_ since they are now regardg\%rage #strong and matr@ in a same figure more clearly,
weakly dependent by the algorithm. we transform the column of) which indicates the number
We compare EDA-MCC-GC with EDA-MCC on threeof generations into the number of evaluations (#eval) in all
representative problemsy, Fgz and F1; with n € {50,100}. the following figures. The horizontal axis of average #sfron
Population sizes, parameteffsand ¢ of EDA-MCC-GC are graphs is also converted to #eval. Due to the page length
set the same as used in EDA-MCC in previous 50D and 500iDit, here we only report the results af,, Fg, Fy and Fis.
experiments. Results and parameters used are summarizeilihough the results seem to be the solo effect of Wi, agguall
Table XII. We can find that on 50D tests, there is no significa@M plays an important role to work with WI. The interactions
difference between EDA-MCC-GC and EDA-MCC. Howeveietween WI and SM will be analyzed in Section IX.
on 500D tests where a small sample size is applied, EDA-From Fig. 13 we can see that on separablg #strong
MCC performs significantly better. This verifies our prexsouremains at a low level. But as grows, the level of #strong
discussion that when applied to large scale problems withaso becomes higher. It can be interpreted as the effeciataf d
small sample size, partitioning subspaces based on dhugtersparsity in higher dimensional space. Using fixedhrough
might not be as effective as random partition. Though tredl experiments, the size ofV can reduce as the search
illustrative experiments cannot exclude the possibilivatt space enlarges (thus #strong can increase), because EDA-
some delicate clustering approach might outperform randdCC may capture some correlations which do not actually
partition on specific large scale problems, a clustering apxist. The relatively low level of #strong is consistentiwiihe
proach often requires relatively higher computationak.cbss separability of the problem. Furthermore, the grey levdls o
contrast, random partition is simple and efficient, whiclh camatrices@ are nearly uniform, indicating that all the variables
be considered as a default component of EDA-MCC. in S are observed to play identical roles for optimizing. It is

Fig. 12. Subspace Modeling by Greedy Clustering (SM-GC)eNbat the
partition step is changed from original SM and the minimaugaof ¢ is
changed to 2 since there is no need to cluster - 1. Parametef here is
the same as defined in (3).
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TABLE Xl
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COMPARISONS BETWEENEDA-MCC-GCAND EDA-MCCoN 50D AND 500D F», Fg AND F1. FOR EACH TEST THE BEST RESULT IS BOLDED
RESULTS OFEDA-MCC ARE DIRECTLY FROMTABLES IV AND IX. RESULTS OFEDA-MCC ARE COMPARED WITH THAT OFEDA-MCC-GCBY
NONPARAMETRICMANN-WHITNEY U TEST.

[ Prob. [ n [ EDA-MCC-GC | EDA-MCC | Parameters |
75 50 | 0 L0 0L0 M = 200, m = 100, meorr = 100,0 = 0.3, ¢ = 20
500 | 1.32e+05+ 2.73e+08 | 0+ 0 M = 200, m = 100, meorr = 100,0 = 0.3,c¢ = 100
Fy 50 4.78e+01+ 2.34e-01 4.77e+01+ 1.52e-01 | M = 2000, m = 1000, mcorr = 100,60 = 0.3,¢c = 20
500 | 6.32e+11+ 1.29e+18 | 6.77e+02+ 6.28e+02| M = 200, m = 100, meorr = 100,60 = 0.3,c¢ = 100
Fiq 50 3.00e+02+ 1.45e+01 | 2.88e+02+ 1.36e+01| M = 2000, m = 1000, mcorr = 100,60 = 0.3,¢c = 20
500 | 6.25e+03+ 1.01e+08 | 5.24e+03+ 3.86e+01| M = 200, m = 100, mecorr = 100,60 = 0.3,c¢ = 100

§ The value of Asymp.

Sig. (2-tailedx 0.001 when compared with the results of EDA-MCC.
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Fig. 13.  WI results ony: Sphere. The darker the element@fis, the more times a variable is partitioned ifoat the specific #eval during the 25 runs.

also consistent with the function’s expression. be written as:

n

F(‘i:) = Z( (106)H : Zi)2 + fbia53
i=1
Fig. 14 shows that EDA-MCC correctly recognizes the n — =
problem structures of Shifted Rosenbrogk. The variable = Z( (106) =1 'Z(Scj —0;)M;i)* + friass
dependency of the problem is a chain-like structure: The firs i=1 j=1
variable determines the second, the second determines the nonl 1,
third, and so on. We can see that WI first identifies the last = Z(Z(%‘ = 0j) M\ (10°)"=T)" + fias,
i=1 j=1

pair of variables, then it quickly “realizes” that the firship
of variables are the most important. The structural infdafoma
of the problem is clearly and precisely identified.

n n

Z(Z(%‘ —0j)R;i)* + friass -

i=1 j=1

Wherele- = ji ©\/ (106);;*11,1 <147 < n Mji is the

Experiments have shown that EDA-MCC significantly outg/ément ofM (value can be found in [53]). MatriR partly

performs others on Shifted Rotated High Conditioned Etiipt"@Presents to what extent the original variahiesnpact the
Fy. Fig. 15 shows that W always helps EDA-MCC to recogf_unct|on value. Roughly speakind?;; |nd|c_ates th_e effe(_:t_of

nize the problem structure. The WI results clearly show th&i Ont0 2 and thus ontd”' (7). Becausel is non-linear, it is
some variables are constantly identified as strongly desrengh@rd to analyze the exact impact of each variable. But since

during evolution (the dark rows @). Furthermore, by check- Mainly impacts the function, we can instead analyzeritre

ing the expression of}, (see Table Iil), we can see that the?0lumn of R Whifh can partly indicate the impact gfontoz,,
coefficient -7, (106);;31 before -2 increases exponentially and thus ontd”(Z) to give a rough analysis. We plot the curves
i

with ¢ given fixedn. Thus among the transformed variablesf coefficient (106)% as sub-figures in the first column
zi(1 <4 < n), z, mostly impacts the functionfy can also of Fig. 16. The sub-figures in the second column show the
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Fig. 14. WI results onFy: Shifted Rosenbrock. The darker the elementpfs, the more times a variable is partitioned ifoat the specific #eval during
the 25 runs.
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0 0 0
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#eval x10°
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Fig. 15. WI results onFy: Shifted Rotated High Conditioned Elliptic. The darker #lement of@Q is, the more times a variable is partitioned itfcat the
specific #eval during the 25 runs.

absolute value of matriR, Abs(R). We use absolute valuevariables most impacting optimization are correctly idieed
because both positive or negative coefficients of a variakds dark rows inQ.®

can influence the function value. The sub-figures in the third Fig. 17 shows the WI results on Shifted Rotated Rastrigin
column show the:th column of Abs(R), which is denoted as Fi». Results here also help explain why UMBperforms
Abs(R)(:,n). To compare them with the experimental resulteell on this problem while EDA-MCC fails. By examining

Q shown in the last column of Fig. 16, we stretch the widththe WI results on Rastrigirfy; (not shown here), we find

to make them same size. Haare directly from Fig. 15. We that the results are very similar to Fig. 17. Sinég; is

can see that when is large, the domination of,, becomes separable, the results are reasonable. As analyzed above,
weak because the coefficientsf 1, z,_», etc., approach the due to the inefficiency of covariance matrix scaling on this
coefficient ofz,,. Therefore, the difference between the rougfunction with a huge number of local optima, EDA-MCC
analysis and the experimental results also becomes largannot perform well. However, on non-separable, WI still
However, for all four tests, we can always find the evidendails to recognize the problem structure because the sample

that WI successfully recognizes the problem structure:sého ) ) ) ) )
5t is recommended to refer to the high resolution versionheke figures.
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Fig. 16. Explanations of WI results afy. The coefficients of; are shown in the first column. The second column demonstrétesR). The third column
shows thenth column of Abs(R), denoted asAbs(R)(:,n). The experimental) results are shown in the last column, which are directly &tbgrom
Fig. 15. We can see that the graphs in the last two columnsimitaus especially for lower dimensional tests.

size (selected size) is far less enough considering the hugeand multivariate model o other than the two Gaussian
number of local optima. From the information that WI camodels employed. Therefore, even if EDA-MCC correctly
gather,Fi2 just looks like a separable problem and no usefaharacterizes the problem properties, such informationmoa
interdependencies are learnt from samples. As a result,-EO#e fully exploited due to the limitation of Gaussian models.
MCC cannot perform well. This can possibly explain why in some cases EDA-MCC
EDA-MCC's remarkable capability of characterizing thesannot outperform other algorithms, even with correct @b
problem properties are clearly shown in this section. Alifio  structure characterization. We have to admit that our tesné
in some cases, EDA-MCC cannot find better solutions thatill restricted within the capability of Gaussian models.
candidate algorithms, its capability of describing theljppems’
underlying structural information is remarkable througho One thing needs to be addressed is that when solving a real-
the experiments. We regard it the most valuable aspectwérld problem in practice, a user may not want or be able
EDA-MCC. However, forFy;—F;3 which has a huge numberto run EDA-MCC for multiple times to obtain the problem'’s
of local optima, EDA-MCC still has limitation. It should structural information. In this case, a recommended wap is t
also be noticed that in current implementation of EDAallow EDA-MCC for restarts, and aggregate the information
MCC, we haven't tried every possible univariate model ocollected over multiple trials to generate tGematrix.
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TABLE XIlI
COMPARISON AMONG“WI[+SM”, “SM ONLY” AND “WI ONLY” ON 100D

. . PROBLEMS RESULTS ARE AVERAGED OVER25 RUNS. FOR EACH TEST
In this section, we analyze the roles of Wl and SM, andTHE BEST RESULT IS BOLDED RESULTS OF*WI+SM” ARE COMPARED

their interactions in EDA-MCC. Besides the implementation wiTtH RESULTS OF*SM ONLY” AND “WI ONLY", RESPECTIVELY, BY
of EDA-MCC using WI+SM, we also implement an “SM NONPARAMETRICMANN-WHITNEY U TEST.
only” version and a “WI only” version. We compare them

IX. ROLES OFWI AND SM, AND THEIR INTERACTIONS

. . Prob. | WI + SM | SM only | WI only |
W|th EDA-MC_C on 100D of the 13 test functions to analyze 7, ] 020 (020 (00 |
their respective roles. But to save space, we only repgr 5 65670013601 | 1006102236701 | 45167032 16503
comparisons on selected functiohs, Fs—Fi1, andFi3 here. [F, 9.50e+0@-2.56+06 | 9.01e+0%1.16+09 | 3.336+076.76+06
The parameters of “SM only” and “WI only” are exactly the Fy | 1.87e+033.6e+02 | 8.15e+04:3.9e+03 | 2.39e+04-2.3e+03
same as the respective settings of SM and WI in previou$i; | 7.49e+021.6e+01| 7.82e+02:1.7e+0F | 7.36e+02-1.1e+0%
EDA-MCC experiments. For each test, the population sizes[of1s | 6.53e+03%1.6e+00 | 6.97e+01%:1.8e+00 | 6.51e+0%1.1e+00

all the three versions are set to the same as the selected b&gt value of Asymp. Sig. (2-tailed) 0.001 when compared with the
results of EDA-MCC. results of “WI+SM”.

The solution results are shown in Table XIll. We can see
that when WI+SM performs the best, it usually finds order-

0.25 -
of-magnitude better solutions than “SM only” and “WI only”. W+ sM
Because “SM only” applies several multivariate models on 0.2 I B SM only

. . . [ IWIonly
all variables, the ways dealing with those actually weakly -
dependent variables are not so efficient. Therefore, it fail 0.15

to perform the best on any function except the simplgst

On the other hand, “WI only” can perform slightly better 0-1
than WI+SM onFi; and F;3 and the same as WI+SM on

Fy, but much worse on the others. The average CPU time 0.03 ’H I

costs are illustrated in Fig. 18. Although “SM only” cannot 0

find solutions of comparable quality, its CPU time cost is F2 F7

usually acceptable or comparable with WI+SM. Whereas “WI

only” can cost much more CPU time. Generally speakingig. 18. Comparison of CPU time of “WI+SM”, “SM only” and “Wirdy".
WI+SM shows much more robust performance and moderate

computational time cost than “SM only” and “WI only”.

It is also interesting that “WI only” can perform slightly better. But when SM is necessary, e.g.,/6A-F1,, “WI only”
better than WI+SM onFy; and Fy3. This implies that SM will fail.

does not contribute a bit on these functions. It is consisten To investigate the interaction between WI and SM in terms
with our previous conclusions in Section IV-C4 that subgpaof EDA-MCC'’s capability of characterizing problem strucgy
partitioning with changinge does not help to solve thesewe plot the WI results (#strong ar@ matrix) of “WI only”
functions. Without SM, “WI only” can even performs a littleon Fg and Fy; in Fig. 19. WI results of “WI only” on other

CPU time (hour) per run

1l

F8 F9 F10 FI1 F13
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significantly better performance than traditional EDAs on
large scale non-separable problems (up to 500D) with only
a few local optima. The computational complexity and the
requirement of large population sizes can be significantly
reduced in EDA-MCC. Besides, EDA-MCC exhibits good
scalability, and more importantly, the remarkable problem
property characterization capability. When solving a fpeob
EDA-MCC will not only find a solution, but also give users
feedbacks on the problem'’s structure. Such a capabilityoean
far more valuable than just obtaining a solution. It is esgbc
useful when facing a black box optimization problem. Based
on the extracted problem structural information, more ieffic
algorithms can be designed specifically to give better smist

The limitations of EDA-MCC are also analyzed. First, in
low dimensional search space where available populatia si
is usually sufficiently large to offer a good global model
estimation, EDA-MCC may not be so effective as traditional
EDAs. The advantage of EDA-MCC over traditional EDAs
appears in high dimensional space where a given population
size fails to give a reliable global model estimation. Sekon
when facing large scale non-separable problems which have
a huge number of local optima, EDA-MCC may not be so
effective or efficient as a simple univariate Gaussian EDA.
functions are similar to either of the two. We can see thg{e should note that current discussions and implementation
on problems with strong variable interdependencies ke on EDA-MCC are still restricted to Gaussian models. Differe
without SM, the precision of global multivariate model 6n pase univariate and multivariate models other than Gaussia
fast deteriorates as the search proceeds. It affects nptioal are still to be tested and analyzed. Moreover, smarter self-
solution quality, but also the WI procedure. Based on samplgdaptive setting of and ¢ is still an interesting issue that is
drawn from the imprecise global model, WI also becomestt for our future work.

useless that eventually all variables are partitioned ifito

It also result in high computational costs in modeling and APPENDIX

sampling. On the other hand, when SM does not help as 0G@OMPUTATIONAL COMPLEXITY ANALYSIS OF UMDAY,

Fiq, “WI only” can still characterize the problem structure EMNA ;/0p01AND EDA-MCC

properly and finds solutions with same or better quality. A, Computational Complexity of UMDAaNd EMNAopal

W(_a can fc?hncluded tratthSMhh_(taIps to mg|nta£ndth§thglobal We consider the one-generation computational complexity
precision 8 | € mz t?w ( houlg \INIIS appro#m?el Wi Su{]ﬁere. Suppose the current model is bgilt from the selected
space models), and thus helps more efectively FeCogMicli iquals of the last generation. Vectaf denotes an indi-

the_ problem st_ructure. On the other hand’ Wi helps to apR/YduaI, andX; denotes theth variable ofX. The problem is
suitable modeling and search strategies on weakly depende%limensionalM denotes the population size, anddenotes

:l/lngcstronglfy gepen(;ent Ivetl_rlablesﬁres{pecl:tlvclaly, S0 thzt _Ifl'? e number of selected individuals. Without loss of gertgtal
can find good solutions effectively. In a word, e assumeP’| — [P| = M.

success of EDA-MCC, in terms of both the problem structure 1) UMDAC: Let y; and o2 denote the mean and the

character_|z§1t|o_n capability and the robust pe_rforma_nda[ge variance ofX;, respectively{=1,...,n). The joint pdf is:
scale optimization problems, are due to the interactiowéen
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Fig. 19. onFyg and F1.

2
WI and SM. T D
F@ =11 v of) =11 o 2 (6)
i=1 i=1 TiV 4T
X. CONCLUSIONS ANDFUTURE WORK L
. ) o ) « Model estimation.
In this paper we first analyze the difficulties of continuous Estimate(u;, 02) for X; (i = 1,...,n):
EDAs in high dimensional search space. Due to the curse of 1) Traversezm selected individuals to estimate
dimensionality, given a finite population size, the perfance . O(nm)
of traditional EDAs fast deteriorates as the problem size 2) /'I{;éver:slénm sele;:ted individuals to estimate
grows large. Their computational cost also increases fastw o2 o2 O(nm)
f,...,00: .

adopting a multivariate model for non-separable problems.
To improve the performance and reduce the computational
cost for large scale optimization, a novel multivariate EDA
with Model Complexity Control (EDA-MCC) is proposed.
By employing Weakly dependent variable Identification (WI)
and Subspace Modeling (SM) techniques, EDA-MCC shows

Overall complexity:O(nm).

Sampling new solutions.

For X;, we need to generate a standard normal random
number(, then do

(@)

Ti = pi + G0y
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Since such an operation is fast, we suppose sampling one Same order as building & dimensional
variable cost€)(1), thusO(n) is needed for variables. EMNA jiopamodel [n/c] times, O(c*m -
Repeating)/ times to creaté?’ costsO(nM). n/c) = O(cnm).
Overall complexity:O(nM). Thus the overall complexity is between
2) EMNA 0500 Let I and X denote then dimensional 5
mean vector and the x n covariance matrix, respectively. O(n"meorr) + O(nm) (10)
The joint pdf is: and
1 Y T O(n*Meorr) + O . 11
F@) = fac(5 1, B) = e BT ED (8 Meore) + Olonm) -
(2m) = [X]z ®) Also note thatl < meorr <m,1 < c < n.
o « Sampling solutions.
« Model estimation. Consider two extreme situations:
1) Traversem selected individuals to estimatg: — WhenW = V, all n variables are sampled from
O(nm). o . gi(-),i=1,...,n:
2) Traversem selected individuals to estimat®: . , .
O(n2m) 1) Sampling fromg;(-),i =1,... S .
o Same order as UMD@solution sampling,
Overall complexity:O(n?m). O(nM).
« Sampling new sol.ut|0ns. . 2) No need to sample frorhy(-).
1) Before first time sampling, we need(n”) to de- — When W = 0, all n variables are sampled from
composeX such thats = HH” [26]. () k=1,....[n/e]:

2) To sample a new solution, we need to generate a

standard normal random vectﬁr then do 1) No need to sample from(.).

2) Sampling fromh(-),k=1,...,[n/c]:

T g+C-H . (9) Same order as sampling from cadimensional
. . . . EMNA ;55 model times,O(c*M - =
Primary cost here is thé(n?) matrix multipli- 0(chg§ bal [n/c] (c n/c)
cations. Repeatingl/ times to createP’ costs ' L
2 Thus the overall complexity is between
O(n*M).
Note that for EMNAy;cpqi, Usually M > n in practice, O(nM) (12)

which means the population size is usually larger than

the problem size. Therefore, the overall complexity of and 13
sampling is dominated b (n>M) in 2nd step. O(enM) . (13)
Overall complexity:O(n?M).
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