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Abstract 28 

When immersed in a new environment we are challenged to decipher initially 29 

incomprehensible streams of sensory information. Yet, quite rapidly, the brain finds structure 30 

and meaning in these incoming signals, helping us to predict and prepare ourselves for future 31 

actions. This skill relies on extracting the statistics of event streams in the environment that 32 

contain regularities of variable complexity: from simple repetitive patterns to complex 33 

probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to 34 

adapt to the environment’s statistics and predict upcoming events. By combining behavioral 35 

training and multi-session fMRI in human participants (male and female), we track the 36 

cortico-striatal mechanisms that mediate learning of temporal sequences as they change in 37 

structure complexity. We show that learning of predictive structures relates to individual 38 

decision strategy; that is, selecting the most probable outcome in a given context 39 

(maximizing) vs. matching the exact sequence statistics. These strategies engage distinct 40 

human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor 41 

regions and basal ganglia (dorsal caudate, putamen), while matching engages occipito-42 

temporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our 43 

findings provide evidence for distinct cortico-striatal mechanisms that facilitate our ability to 44 

extract behaviorally-relevant statistics to make predictions.  45 

 46 

Significance Statement 47 

Making predictions about future events relies on interpreting streams of information that may 48 

initially appear incomprehensible. Past work has studied how humans identify repetitive 49 

patterns and associative pairings. However, the natural environment contains regularities that 50 

vary in complexity: from simple repetition to complex probabilistic combinations. Here, we 51 
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combine behavior and multi-session fMRI to track the brain mechanisms that mediate our 52 

ability to adapt to changes in the environment’s statistics. We provide evidence for an 53 

alternate route for learning complex temporal statistics: extracting the most probable outcome 54 

in a given context is implemented by interactions between executive and motor cortico-55 

striatal mechanisms compared to visual cortico-striatal circuits (including hippocampal 56 

cortex) that support learning of the exact temporal statistics. 57 

 58 

 59 

  60 
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Introduction 61 

Making predictions about future events challenges us to extract structure from streams of 62 

sensory signals that initially appear incomprehensible. Typically, event structures in the 63 

natural environment contain regularities of variable complexity: from simple repetitive 64 

patterns to more complex probabilistic combinations. For example, when learning a new 65 

piece of music or a new language, we extract simple repetitive patterns (e.g. tones, syllables) 66 

as well as more complex contingencies (e.g., melodies or phoneme pairs) that determine the 67 

probability with which events occur. Learning to extract these statistics allows us to interpret 68 

incoming signals rapidly, and predict upcoming events. Despite the fundamental importance 69 

of this type of statistical learning for sensory interpretation and prediction, we know 70 

surprisingly little about its neural basis.  71 

Previous work on statistical learning has focused on simple repetitive patterns or associative 72 

pairings. Behavioral studies provide evidence that mere exposure (i.e. without explicit 73 

feedback) to co-occuring stimuli can drive learning of contingencies (for reviews see: 74 

(Perruchet and Pacton, 2006; Aslin and Newport, 2012)). For example, observers become 75 

familiar with structured patterns after exposure to items (e.g. shapes, tones or syllables) that 76 

co-occur spatially or appear in a temporal sequence (Saffran et al., 1999; Chun, 2000; Fiser 77 

and Aslin, 2002; Turk-Browne et al., 2005). Here, we investigate the functional brain 78 

mechanisms that mediate our ability to adapt to changes in the environment’s statistics and 79 

learn behaviorally-relevant structures for making predictions.  80 

We combine behavioral measures with multi-session fMRI (before and after training) to 81 

examine the neural mechanisms that mediate learning of temporal sequences that change in 82 

their statistics: from repetitive patterns to more complex probabilistic contingencies. To do so 83 

unencumbered by past experience, we tested participants with sequences of unfamiliar 84 
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symbols, where the complexity of the sequence structure changed unbeknownst to the 85 

participants (Figure 1). We increased sequence complexity by manipulating the memory 86 

order (i.e. context length) of the Markov model used to generate the sequences. In particular, 87 

we presented participants first with sequences that were determined by frequency statistics 88 

(i.e. occurrence probability per symbol), and then by more complex context-based statistics 89 

(i.e. the probability of a given symbol appearing depends on the preceding symbol). 90 

Participants performed a prediction task in which they indicated which symbol they expected 91 

to appear following exposure to a sequence of variable-length. Following previous statistical 92 

learning paradigms, participants were exposed to the sequences without trial-by-trial 93 

feedback.  94 

Our behavioral results show that individuals adapt to the environment’s statistics; that is, they 95 

are able to extract predictive structures of different complexity. Further, we show that 96 

learning of predictive structures relates to individual decision strategy; that is individuals 97 

differed in their decision strategies, favouring either probability maximization (i.e. extracting 98 

the most probable outcome in a given context) or matching the exact sequence statistics. We 99 

used this variability in decision strategy to interrogate fMRI activity. We find that distinct 100 

cortico-striatal mechanisms mediate the two strategies: matching engages occipito-temporal 101 

regions (including the hippocampus) and ventral caudate, while maximizing engages 102 

dorsolateral prefrontal, cingulate, sensory-motor regions and basal ganglia (dorsal caudate, 103 

putamen). This provides evidence for differentiated cortico-striatal mechanisms that support 104 

learning of behaviorally-relevant statistics for making predictions.  105 

Figure 1 106 

 107 

 108 
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Methods 109 

Observers 110 

Thirty-four participants (mean age = 21.8 years, male and female) participated in the 111 

experiments (main experiment: n=23; control experiment: n=11). The data from two 112 

participants were excluded from further imaging analysis due to excessive head movement 113 

(greater than 3mm). All observers were naïve to the aim of the study, had normal or 114 

corrected-to-normal vision and gave written informed consent. This study was approved by 115 

the University of Birmingham Ethics Committee.  116 

Stimuli 117 

Stimuli comprised four symbols chosen from Ndjuká syllabary (Turk-Browne et al., 118 

2009)(Figure 1a). These symbols were highly discriminable from each other and were 119 

unfamiliar to the observers. Each symbol subtended 8.5o of visual angle and was presented in 120 

black on mid-grey background.  Experiments were controlled using Matlab and the 121 

Psychophysics toolbox 3 (Brainard, 1997; Pelli, 1997). For the behavioral training sessions, 122 

stimuli were presented on a 21-inch CRT monitor (ViewSonic P225f 1280 x1024 pixel, 85 123 

Hz frame rate) at a distance of 45 cm. For the pre- and post-training fMRI scans, stimuli were 124 

presented using a projector and a mirror set-up (1280 x 1024 pixel, 60 Hz frame rate) at 125 

viewing distance of 67.5 cm. The physical size of the stimuli was adjusted so that angular 126 

size was constant during behavioral and scanning sessions.  127 

Sequence design 128 

To generate probabilistic sequences of different complexity, we used a temporal Markov 129 

model and manipulated the memory order of the sequence, which we refer to as the context 130 

length. 131 

The Markov model consists of a series of symbols, where the symbol at time i is determined 132 
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probabilistically by the previous ‘k’ symbols. We refer to the symbol presented at time i, s(i), 133 

as the target and to the preceding k-tuple of symbols  (s(i-1) , s(i-2), …, s(i-k)) as the context. 134 

The value of ‘k’ is the order or level of the sequence: 135 

P (s(i) | s(i-1), s(i-2), … , s(1)) = P (s(i) | s(i-1), s(i-2), … , s(i-k)), k<i  136 

The simplest k=0th order model is a random memory-less source. This generates, at each time 137 

point i, a symbol according to symbol probability P(s), without taking account of the 138 

previously generated symbols.  139 

The order k=1 Markov model generates symbol s(i) at each time i conditional on the 140 

previously generated symbol s(i-1). This introduces a memory in the sequence; that is, the 141 

probability of a particular symbol at time i strongly depends on the preceding symbol s(i-1). 142 

Unconditional symbol probabilities P(s(i)) for the case k=0 are replaced with conditional 143 

ones, P(s(i) | s(i-1)).  144 

At each time point, the symbol that follows a given context is determined probabilistically, 145 

making the Markov sequences stochastic. The underlying Markov model can be represented 146 

through the associated context-conditional target probabilities. We used 4 symbols that we 147 

refer to as stimuli A, B, C and D. The correspondence between stimuli and symbols was 148 

counterbalanced across participants.  149 

For level-0, the Markov model was based on the probability of symbol occurrence: one 150 

symbol had a high probability of occurrence, one low probability, while the remaining two 151 

symbols appeared rarely (Figure 1b). For example, the probabilities of occurrence for the 152 

four symbols A, B, C, and D were 0.18, 0.72, 0.05 and 0.05, respectively. Presentation of a 153 

given symbol was independent of the stimuli that preceded it.  154 

For level-1, the target depended on the immediately preceding stimulus (Figure 1b). Given a 155 

context (the last seen symbol) only one of two targets could follow; one had a high 156 

probability of being presented and the other a low probability (e.g., 80% vs. 20%). For 157 
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example, when Symbol A was presented, only symbols B or C were allowed to follow, and B 158 

had a higher probability of occurrence than C.  159 

Task design 160 

We tested learning of temporal structures that differed in their complexity; that is, sequences 161 

determined by simple frequency statistics (level-0) and more complex sequences defined by 162 

context-based statistics (level-1). To define the complexity of our sequences, we quantified 163 

the average past-future mutual information in the sequences generated by stochastic sources 164 

(Grassberger, 1986), providing a statistic that has been applied in a number of probabilistic 165 

contexts (e.g., (Shaw, 1984; Li, 1991)). For Markov models of order 0 or 1, complexity is 166 

expressed as the difference between the entropy of the marginal symbol distribution and the 167 

entropy rate of the Markov chain (Li, 1991). This measure quantifies the average reduction in 168 

uncertainty of the next symbol in a sequence when the memory of the generating source is 169 

taken into account. For 0-order Markov models, the complexity is 0, as the source itself is 170 

memory-less. For Markov models of order 1, conditioning on the last symbol will reduce the 171 

uncertainty. For example, for the 1st order Markov model we used, the marginal symbol 172 

probabilities are equal, resulting in entropy close to the maximum value of 2 bits. However, 173 

conditional on the last symbol, only two symbols are allowed with unequal probabilities, 174 

resulting in lower entropy rate and therefore higher complexity (1.28).  175 

To investigate whether participants adapt to changes in the temporal structure, we ensured 176 

that the sequences across levels were matched for properties (i.e. number or identify of 177 

symbols) other than complexity. Further, we designed the stochastic sources from which the 178 

sequences were generated so that the context-conditional uncertainty remained highly similar 179 

across levels. In particular, for the zero-order source, only two symbols were likely to occur 180 

most of the time; the remaining two symbols had very low probability (0.05); this was 181 

introduced to ensure that there was no difference in the number of symbols presented across 182 
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levels. Of the two dominant symbols, one was more probable (probability 0.72) than the other 183 

(probability 0.18). This structure is preserved in Markov chain of order 1, where conditional 184 

on the previous symbols, only two symbols were allowed to follow, one with higher 185 

probability (0.80) than the other (0.20). This ensures that the structure of the generated 186 

sequences across levels differed predominantly in memory order (i.e. context length) rather 187 

than context-conditional probability.  188 

Procedure 189 

Observers were initially familiarized with the task through a brief practice session (8 190 

minutes) with random sequences (i.e. all four symbols were presented with equal probability 191 

25% in a random order). Following this, observers participated in multiple behavioral training 192 

and fMRI scanning sessions that were conducted on different days (Figure 1c). Participants 193 

were trained with structured sequences and tested with both structured and random sequences 194 

to ensure that training was specific to the trained sequences.  195 

In the first scanning session, participants were presented with zero- and first-order sequences 196 

and random sequences. Observers were then trained with zero-order sequences, and 197 

subsequently with first-order sequences. For each level, observers completed a minimum of 3 198 

and a maximum of 5 training sessions (840-1400 trials). Training at each level ended when 199 

participants reached plateau performance (i.e. performance did not change significantly for 200 

two sessions). A post-training scanning session followed training per level (i.e. on the 201 

following day after completion of training) during which observers were presented with 202 

structured sequences determined by the statistics of the trained level and random sequences. 203 

The mean time interval (±standard error) between the pre-training session and the final test 204 

session was 23.5±0.5days. 205 

Psychophysical training 206 

Each training session comprised five blocks of structured sequences (56 trials per block) and 207 
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lasted one hour. To ensure that sequences in each block were representative of the Markov 208 

model order per level, we generated 10,000 Markov sequences per level comprising 672 209 

stimuli per sequence. We then estimated the Kullback-Leibler divergence (KL divergence) 210 

between each example sequence and the generating source. In particular, for level-0 211 

sequences this was defined as: 212 ܮܭ = ∑ ೂ(ೌೝ)ು(ೌೝ)௧௧) ݈݃ (ݐ݁݃ݎܽݐ)ܳ ), 213 

and for level-1 sequences this was defined as:  214 ܮܭ = ∑ ௧௫௧ (ݐݔ݁ݐ݊ܿ)ܳ ∑ ೂ(ೌೝ|ೣ)ು(ೌೝ|ೣ)௧௧) ݈݃ (ݐݔ݁ݐ݊ܿ|ݐ݁݃ܽݐ)ܳ ), 215 

where P( ) refers to probabilities or conditional probabilities derived from the presented 216 

sequences, and Q( ) refers to those specified by the source. We selected fifty sequences with 217 

the lowest KL divergence (i.e. these sequences matched closely the Markov model per level). 218 

The sequences presented to the participants during the experiments were selected randomly 219 

from this sequence set.  220 

For each trial, a sequence of 8-14 stimuli appeared in the center of the screen, one at a time in 221 

a continuous stream, each for 300ms followed by a central white fixation dot (ISI) for 500ms 222 

(Figure 1a). This variable trial length ensured that observers maintained attention during the 223 

whole trial. Each block comprised equal number of trials with the same number of stimuli. 224 

The end of each trial was indicated by a red dot cue that was presented for 500ms. Following 225 

this, all four symbols were shown in a 2x2 grid. The positions of test stimuli were 226 

randomized from trial to trial. Observers were asked to indicate which symbol they expected 227 

to appear following the preceding sequence by pressing a key corresponding to the location 228 

of the predicted symbol. Observers learned a stimulus-key mapping during the familiarization 229 

phase: key ‘8’, ‘9’, ‘5’ and ‘6’ in the number pad corresponded to the four positions of the 230 

test stimuli - upper left, upper right, lower left and lower right, respectively. After the 231 

observer’s response, a white circle appeared on the selected stimulus for 300ms to indicate 232 
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the observer’s choice, followed by a fixation dot for 150ms (ITI) before the start of the next 233 

trial. If no response was made within 2s, a null response was recorded and the next trial 234 

started. Participants were given feedback (i.e. score in the form of Performance Index, see 235 

Data Analysis) at the end of each block – rather than per-trial error feedback– that motivated 236 

them to continue with training. 237 

Scanning sessions 238 

The pre-training scanning session (Pre) included six runs (i.e. three runs per level) the order 239 

of which was randomized across participants. Scanning sessions after training per level 240 

(denoted as Post 0, Post 1) included nine runs of structured sequences determined by the 241 

same statistics as the corresponding trained level and random sequences. Each run comprised 242 

five blocks of structured and five blocks of random sequences presented in a random 243 

counterbalanced order (2 trials per blocks; a total of 10 structured and 10 random trials per 244 

run), with an additional two 16-s fixation blocks, one at the beginning and one at the end of 245 

each run. Each run comprised 110 stimuli for structured sequences and 110 stimuli for 246 

random sequences. Each trial comprised a sequence of 10 stimuli that were presented for 247 

250ms each, separated by a blank interval during which a white fixation dot was presented 248 

for 250ms. Following the sequence, a fixation screen (central red dot) appeared for 4s before 249 

the test display (comprising four test stimuli) appeared for 1.5s. Observers were asked to 250 

indicate which symbol they expected to appear following the preceding sequence by pressing 251 

a key corresponding to the location of the predicted symbol. A white fixation was then 252 

presented for 5.5s before the start of the next trial. In contrast to the training sessions, no 253 

feedback was given during scanning.  254 

fMRI data acquisition  255 

The experiments were conducted at the Birmingham University Imaging Centre using a 3-T 256 

Philips Achieva MRI scanner. T2*-weighted functional and T1-weighted anatomical (1 × 1 × 257 
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1 mm resolution, slices=175) data were collected with a 32-channel SENSE head coil. Echo 258 

planar imaging data (gradient echo-pulse sequences) were acquired from 32 slices (whole 259 

brain coverage; TR = 2000 ms; TE = 35 ms; 2.5 × 2.5 × 4-mm resolution). 260 

Behavioral data analysis 261 

Performance index:  262 

We assessed participant responses in a probabilistic manner. For each context, we computed 263 

the absolute Euclidean distance between the distribution of participant responses and the 264 

distribution of presented targets estimated across 56 trials per block: 265 

AbDist(context) = ∑target |Presp(target|context) − Ppres(target|context)| 266 

where the sum is over targets from the symbol set A, B, C and D. We estimate AbDist per 267 

context for each block. We quantified the minimum overlap between these two distributions 268 

by computing a performance index per context: 269 

PI(context) = ∑target min (Presp(target|context), Ppres(target|context)) 270 

Note that PI(context) = 1 − AbDist(context)/2. The overall performance index is then 271 

computed as the average of the performance indices across contexts, PI(context), weighted by 272 

the corresponding stationary context probabilities: 273 

PI =  ∑context PI(context) · P(context) 274 

To compare across different levels, we defined a normalized PI measure that quantifies 275 

participant performance relative to random guessing. We computed a random guess baseline; 276 

i.e. performance index PIrand that reflects participant responses to targets with a) equal 277 

probability of 25% for each target per trial for level-0, (PIrand = 0.53); b) equal probability for 278 

each target for a given context for level-1 (PIrand = 0.45). To correct for differences in 279 

random-guess baselines across levels, we subtracted the random guess baseline from the 280 

performance index (PInormalized = PI − PIrand). 281 
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Strategy choice and strategy Index: To quantify each observer’s strategy, we compared 282 

individual participant response distributions (response-based model) to two baseline models: 283 

(i) probability matching, where probability distributions are derived from the Markov models 284 

that generated the presented sequences (Model-matching) and (ii) a probability maximization 285 

model, where only the single most likely outcome is allowed for each context (Model-286 

maximization). We used Kullback-Leiber (KL) divergence to compare the response 287 

distribution to each of these two models. KL is defined as follows: 288 ܮܭ =  ெ(௧௧)ோ(௧௧)௧௧) ݈݃ (ݐ݁݃ݎܽݐ)ܯ ) 

for level-0 model and 289 ܮܭ =  ௧௫௧ (ݐݔ݁ݐ݊ܿ)ܯ  ெ(௧௧|௧௫௧)ோ(௧௧)|௧௫௧௧௧) ݈݃ (ݐݔ݁ݐ݊ܿ|ݐ݁݃ݎܽݐ)ܯ ) 

for level-1 model where R( ) and M( ) denote the probability distribution or conditional 290 

probability distribution derived from the human responses and the models (i.e. probability 291 

matching or maximization) respectively, across all the conditions. 292 

We quantified the difference between the KL divergence from Model-matching to the 293 

response-based model and the KL divergence from Model-maximization to the response-294 

based model. We refer to this quantity as strategy choice indicated by ∆KL(Model-295 

maximization, Model-matching). Negative strategy choice values indicate a strategy closer to 296 

matching, while positive values indicate a strategy closer to maximization. We computed 297 

strategy choice per training block, resulting in a strategy curve across training for each 298 

individual participant. We then derived an individual strategy index by calculating the 299 

integral of each participant’s strategy curve and subtracting it from the integral of the exact 300 

matching curve, as defined by Model-matching across training. We defined the integral curve 301 

difference (ICD) between individual strategy and exact matching as the individual strategy 302 
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index. We used this index to investigate the relationship of individual strategy and fMRI 303 

signals.  304 

fMRI data analysis 305 

Data pre-processing: MRI data were processed using Brain Voyager QX (Brain Innovation). 306 

T1-weighted anatomical data were used for co-registration, three-dimensional cortex 307 

reconstruction, inflation, and flattening. Preprocessing of the functional data involved slice-308 

scan time correction, head motion correction, temporal high-pass filtering (3 cycles), and 309 

removal of linear trends. Spatial smoothing (Gaussian filter; 5-mm FWHM kernel) was 310 

performed for group random-effect analysis. The functional images were aligned to 311 

anatomical data, and the complete data were transformed into Talairach space. For each 312 

observer, the functional imaging data between sessions were co-aligned by registering all 313 

volumes of each observer to the first functional volume acquired during the first session.  314 

Whole-Brain General Linear Model: BOLD responses for each trial comprising structured or 315 

random sequences were modeled separately for each session using a general linear model 316 

(GLM). To search for brain regions that showed learning-dependent changes across sessions, 317 

we constructed a multiple regression design matrix that included the two stimulus conditions 318 

(structured vs. random sequences) for each of the scanning sessions (Pre, Post 0, Post 1) as 319 

regressors. Each regressor was time-locked to trial onset and included a range of volumes 320 

(Figures 3, 4: 5 volumes, Figure 5b: 3 volumes). To remove residual motion artefacts, the six 321 

zero-centered head movement parameters were also included as regressors. Serial 322 

correlations were corrected using a second order autoregressive model AR(2). The resulting 323 

parameter estimates (β value) were used in a voxel-wise mixed design ANOVA with 324 

sequence (structured vs. random) and scanning session (Pre, Post 0, Post 1). Statistical maps 325 

were cluster threshold corrected (p<0.005) using Monte Carlo simulations (5000 iterations) 326 

(Forman et al., 1995; Goebel et al., 2006) for multiple comparison correction that confirmed 327 
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FWE (family wise error) threshold of p=0.05. Note that our results also hold for a more 328 

conservative threshold (p<0.001)—as recommended by recent studies (Woo et al., 2014; 329 

Eklund et al., 2016)—but small volume correction is required for small structures (i.e. 330 

putamen) at this threshold. 331 

Covariance analysis: To examine the relationship between brain activation and observers’ 332 

performance, we conducted a voxel-wise covariance analysis. In particular, we used 333 

individual strategy index as covariate in a GLM model of fMRI responses. That is, for each 334 

voxel, we correlated fMRI signal difference between structured and random sequences before 335 

vs. after training with the strategy index. We calculated a Pearson correlation coefficient (R) 336 

for each voxel across the whole brain and identified voxel clusters showing significant 337 

correlations (p < 0.05, cluster threshold corrected). Positive correlations indicate increased 338 

activations after training that relate to maximization, while negative correlations indicate 339 

increased activations after training that relate to matching, as negative strategy index 340 

indicates matching. 341 

 342 

Results  343 

Behavioral results 344 

Previous studies have compared learning of different spatiotemporal contingencies in 345 

separate experiments across different participant groups (Fiser and Aslin, 2002, 2005). Here, 346 

to investigate whether individuals extract changes in structure, we presented the same 347 

participants with sequences that changed in complexity unbeknownst to them (Figure 1a). 348 

We parameterized sequence complexity based on the memory-order of the Markov models 349 

used to generate the sequences (see Methods); that is, the degree to which the presentation of 350 

a symbol depended on the history of previously presented symbols (Figure 1b). We first 351 

presented participants with simple zero-order sequences (level-0) followed by more complex 352 
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first-order sequences (level-1) (Figure 1c), as previous work has shown that temporal 353 

dependencies are more difficult to learn as their length increases (van den Bos and Poletiek, 354 

2008) and training with simple dependencies may facilitate learning of more complex 355 

contingencies (Antoniou et al., 2016). Zero-order sequences (level-0) were context-less; that 356 

is, the presentation of each symbol depended only on the probability of occurrence of each 357 

symbol. For first-order sequences (level-1), the presentation of a particular symbol was 358 

conditionally dependent on the previously presented symbol (i.e. context length of one).  359 

As the sequences we employed were probabilistic, we developed a probabilistic measure to 360 

assess participants’ performance in the prediction task. Specifically, we computed a 361 

Performance index (PI) that indicates how closely the distribution of participant responses 362 

matched the probability distribution of the presented symbols. This is preferable to a simple 363 

measure of accuracy because the probabilistic nature of the sequences means that the 364 

‘correct’ upcoming symbol is not uniquely specified; thus, designating a particular choice as 365 

correct or incorrect is often arbitrary.  366 

Comparing normalized performance (i.e. after subtracting performance based on random 367 

guessing) before and after training per level (Figure 2) showed that observers improved 368 

substantially and learnt the probabilistic structures (i.e. mean improvement higher than 20% 369 

for both levels). A repeated measures ANOVA with Session (pre, post) and Level (Level-0, 370 

Level-1) showed a significant effect of session (F(1,20)=82.0, p<0.001) but no significant 371 

effect of level (F(1,20)<1, p=0.358) nor a significant interaction (F(1,20)<1 p=0.664), 372 

indicating that observers improved similarly at both levels through training. Interestingly, 373 

performance during the pre-training test session was higher than random guessing 374 

(F(1,20)=42.8, p<0.001), suggesting fast learning of structured sequences consistent with the 375 

learning time course reported in previous perceptual learning studies (Karni and Sagi, 1993). 376 

However, improvement continued during training across blocks; that is mean performance for 377 
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the last two training blocks was significantly higher than mean performance for the first two 378 

training blocks (F(1,20)=12.8, p=0.002).  379 

We then tested whether this learning-dependent improvement was specific to the trained 380 

structured sequences. First, we compared performance accuracy (i.e. proportion of correctly 381 

predicted trials based on the pre-defined sequences) for structured and random sequences. A 382 

repeated-measures ANOVA showed a significant interaction of Session (pre, post), and 383 

sequence type (structured vs. random) for level-0 (F(1,20)=24.1, p<0.001) and level-1 384 

(F(1,20)=54.5, p<0.001), suggesting that learning improvement was specific to structured 385 

sequences. Second, we conducted a no-training control experiment, during which participants 386 

(n=11) were tested in two separate behavioral sessions but did not participate in any training 387 

sessions. The two test sessions were spaced apart by a period (mean of 27.9±1.9 days) 388 

comparable to the main experiment (23.3 days on average). Our results showed that there 389 

were no significant differences in performance between the two test sessions. In particular, a 390 

repeated measures ANOVA with Session (session 1, session 2) and Level (Level-0, Level-1) 391 

did not show any significant effect of session (F(1,10)<1, p=0.736) or level (F(1,10)=1.84, 392 

p=0.205), nor a significant interaction (F(1,10)=1.16, p=0.308). These results suggest that the 393 

improvement we observed in the main experiment was specific to training rather than simply 394 

due to repeating the test session twice (before and after training). Comparing performance 395 

index between experiments (main vs. no-training control experiment) showed a significant 396 

interaction between Experiment and Session (Level-0: F(1,30)=15.1, p=0.001, Level-1: 397 

F(1,30)=7.95, p=0.008), consistent with training-induced behavioral improvement. 398 

Figure 2 399 

fMRI analysis: Learning-dependent activation changes  400 
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To investigate the brain mechanisms that mediate our ability to adapt to changes in temporal 401 

statistics, we performed fMRI on participants before and after training on each level with 402 

structured and random sequences. To assess learning-dependent changes in fMRI signals, we 403 

conducted a whole brain voxel-wise GLM analysis (RFX group analysis). In particular, we 404 

tested for brain regions that showed a significant interaction (p<0.005, cluster threshold 405 

corrected) between sequence (structured vs. random) and scanning session (Pre, Post 0, Post 406 

1). This analysis revealed a network of dorsal frontal, cingulate, posterior parietal and 407 

temporal regions, as well as subcortical (basal ganglia), and cerebellar regions (Figure 3a, 408 

Table 1). 409 

We next asked whether functional signals in these regions change from learning frequency 410 

(level-0) to learning context-based statistics (level-1) over time. In particular, we compared 411 

fMRI responses for structured and random sequences before and after training for each level 412 

(level-0 vs. level-1) separately. For each participant and brain region identified by the GLM 413 

analysis, we calculated normalized fMRI responses (i.e. percent signal change (PSC) index); 414 

that is, we subtracted mean fMRI responses to random sequences from mean fMRI responses 415 

to structured sequences and divided by the average fMRI responses to random sequences. 416 

Note that this PSC analysis is complementary to the GLM analysis used to define regions of 417 

interest; it was conducted separately for each level, whereas the GLM tested for differences 418 

across sessions (i.e. Pre, Post 0, Post 1) rather than levels.  419 

Comparing normalized fMRI responses before and after training for level-0 (Figure 3b) 420 

showed that bilateral dorsal frontal regions (medial: SFG: superior frontal gyrus; MeFG: 421 

medial frontal gyrus, lateral: MFG: middle frontal gyrus, PrG: precentral gyrus and IFG: 422 

inferior frontal gyrus) and right posterior parietal regions (IPL: inferior parietal lobule, AnG; 423 

Angular gyrus, SMG: supramarginal gyrus) were involved in learning frequency-based 424 

statistics. These regions showed increased fMRI responses to structured sequences during the 425 
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pre-training scanning session in contrast to decreased responses after training (i.e. post-426 

training scanning session). In particular, a repeated measures ANOVA with session (pre, 427 

post) and ROI (regions of interest) showed a significant main effect of session in frontal 428 

(F(1,20)=7.59, p=0.012) and posterior parietal (F(1,20)=6.58, p=0.018) regions.  429 

In contrast, learning context-based statistics (level-1) engaged dorsal medial frontal (SFG and 430 

MeFG), limbic (CG: cingulate gyrus, ACC: anterior cingulate cortex) and subcortical (Pu: 431 

putamen) areas (Figure 3b). Similar to the fMRI activation patterns for Level-0, dorsal 432 

frontal regions showed enhanced responses to structured compared to random sequences for 433 

the pre-training scan that decreased after training. This was supported by a repeated measures 434 

ANOVA that showed a significant session effect (frontal: F(1,20)=6.36, p=0.020; limbic: 435 

F(1,20)=5.36, p=0.031). In contrast, we observed the opposite pattern of results in putamen 436 

(paired t-test, t(20)=-3.31, p=0.003), that is, enhanced activations for structured sequences 437 

after training. Activation patterns differed significantly between putamen and frontal-limbic 438 

regions (i.e. significant interactions of Region and Session: frontal vs. putamen, 439 

F(1,20)=16.22, p<0.001; limbic vs. Putamen, F(1,20)=16.34 , p<0.001).  In a complementary 440 

analysis to the GLM analysis, comparing activations across levels showed significant 441 

differences in prefrontal regions (interaction of session and level, F(1,20)=4.83, p=0.040), 442 

right posterior parietal regions (main effect of level, F(1,20)=7.41, p=0.013) and putamen 443 

(main effect of level, F(1,20)=4.56, p=0.045). Consistent with the GLM analysis, these 444 

results support differential involvement of fronto-parietal and striatal regions in learning 445 

frequency compared to context-based statistics. 446 

Interestingly, the GLM analysis showed activation changes across sessions in the visual 447 

cortex (IOG: inferior occipital gyrus, MOG: middle occipital gyrus, LiG: lingual gyrus). 448 

Comparing fMRI responses in these regions across sessions did not show any significant 449 

differences for either of the two levels (level-0: F(1,20)<1, p=0.429; level-1: F(1,20)<1, 450 
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p=0.531), suggesting that fMRI responses for structured sequences did not change 451 

significantly with training in the visual cortex. For learning frequency statistics (level-0) 452 

visual cortex showed stronger activations for random than structured sequences (i.e. negative 453 

PSC index values) both before (main effect of sequence, F(1,20)=6.04, p=0.023) and after 454 

(F(1,20)=32.7, p<0.001) training, suggesting decreased activation due to repetition (i.e. 455 

repetition suppression) of symbols that appeared more frequently in structured than random 456 

sequences (Summerfield and Egner, 2009). This effect was not observed for first-order 457 

sequences (level-1) (before training, F(1,20)<1, p=0.981; after training, F(1,20)=1.87, 458 

p=0.187), consistent with higher repetition of single symbols in zero-order than first-order 459 

sequences. 460 

Figure 3 461 

Next, we asked whether the differences we observed in the activation patterns between levels 462 

were due to differences in sequence predictability. To measure sequence predictability, we 463 

computed the entropy rate of the probability distribution of all possible sequences. For level-464 

0, the entropy rate is defined as the entropy of the stationary distribution of symbols in the 465 

sequence. For level-1, the entropy rate is a weighted sum of the entropies of all context-466 

conditional distributions where the weights are given by the stationary distribution of 467 

contexts. We calculated the entropy rate for each sequence; we then conducted the whole 468 

brain voxel-wise GLM analysis using entropy rate as regressor. This analysis showed 469 

significant interactions (p<0.001, cluster threshold corrected) between sequence (structured 470 

vs. random) and scanning session (Pre, Post 0, Post 1) in similar regions as the main analysis 471 

(Figure 4a), making it unlikely that our results were confounded by differences in sequence 472 

predictability between levels. 473 

Comparing normalized fMRI responses before and after training (Figure 4b) for level-0, we 474 

observed increased fMRI responses to structured sequences before than after training 475 
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(F(1,20)=5.18, p=0.034) in bilateral frontal regions (SFG: superior frontal gyrus; PrG: 476 

precentral gyrus and IFG: inferior frontal gyrus). In contrast, learning context-based statistics 477 

(level-1) engaged dorsal frontal (SFG), limbic (ACC: anterior cingulate cortex) and 478 

subcortical (Pu: putamen) areas. Dorsal frontal and limbic regions showed enhanced 479 

responses to structured compared to random sequences for the pre-training scan that 480 

decreased after training (F(1,20)=5.76, p=0.026). In contrast, putamen showed enhanced 481 

activations for structured sequences after training (paired t-test, t(20)=-2.78, p=0.012). 482 

Activation patterns differed significantly between putamen and frontal-limbic regions (i.e. 483 

significant interactions of Region and Session: F(1,20)=13.9, p<0.001) in support of 484 

differential involvement of frontal and striatal regions in learning temporal statistics. 485 

Figure 4 486 

Our results so far suggest that dorsal cortico-striatal mechanisms mediate learning of 487 

behaviorally-relevant statistics. In particular, fronto-parietal and cingulate regions showed 488 

higher fMRI responses for structured than random sequences during the pre-training scan. 489 

This is consistent with the role of dorsal prefrontal cortex in decision making (Heekeren et 490 

al., 2008; Rushworth and Behrens, 2008) and predictive coding (Monchi et al., 2001; Bar, 491 

2009); that is, processes that are involved in both learning of frequency and context-based 492 

statistics. Further, our results show that cingulate cortex is involved in learning more complex 493 

context-based statistics that may relate to its involvement in learning under increased 494 

uncertainty (Kahnt et al., 2011; Nastase et al., 2014). Higher fMRI responses for structured 495 

sequences in these regions at the beginning of training may reflect processing of novel 496 

structures (i.e. temporal regularities in the form of single- or paired-item repetition). 497 

Significantly higher performance for structured sequences than random guessing during the 498 

first scanning session suggests that participants extract these statistics early in the training. 499 

Interestingly, fMRI responses for structured sequences decreased as these sequences became 500 
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familiar with training. This decreased signals can be understood in the context of repetition 501 

suppression previously observed for predictable events (Raichle et al., 1994; Den Ouden et 502 

al., 2009; Summerfield and Egner, 2009; Alink et al., 2010; Kok et al., 2012). In contrast, 503 

dorsal striatal regions (i.e. putamen) – that have been implicated in learning probabilistic 504 

associations (Rauch et al., 1997; Poldrack and Packard, 2003)– showed higher fMRI 505 

responses for structured compared to random sequences after training with first-order 506 

sequences, suggesting representations of context-target contingencies acquired through 507 

training. 508 

Control analyses 509 

We conducted a number of additional analyses and experiments to help rule out alternative 510 

explanations of our results. 511 

First, we asked whether the differences we observed in fMRI responses between structured 512 

and random sequences were due to the participants attending more to the structured 513 

sequences either as the novel stimulus before training or the familiar stimulus after training. 514 

Comparing response times to structured and random sequences in the pre- and post-training 515 

session (3 way mixed design ANOVA: session X sequence X level) showed decreased 516 

response times after training (main effect of session: F(1,20) = 8.63, p = 0.008), but no 517 

significant differences between structured and random sequences (main effect of sequence, 518 

F(1,20) = 0.152, p = 0.700), suggesting that participants engaged with the task when both 519 

structured and random sequences were presented. Importantly, there was no significant 520 

interaction between session, sequence and level (F(1,20) = 1.72, p = 0.205), suggesting that 521 

differences in activation patterns across levels could not be simply due to differences in 522 

attention or task difficulty. Further, analysis of eye movement data collected during scanning 523 

did not show any significant differences between structured and random sequences for level-0 524 
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or level-1. There were no significant interactions observed (p > 0.10), suggesting that it is 525 

unlikely that our findings were significantly confounded by eye movements. 526 

Second, we tested whether the learning-dependent fMRI changes we observed could be 527 

confounded by differences in the number of training sessions across participants. Training 528 

duration varied from 3-5 sessions per level across participants, with most participants 529 

completing four training sessions (level 0, n = 12; level 1, n = 17) before reaching plateau 530 

performance. An ANCOVA analysis on the behavioral data using the number of training 531 

sessions as covariate did not show any significant interactions between session and number of 532 

training sessions (level-0: F(1,19) = 0.479, p = 0.497; level-1: F(1,19) = 0.089, p = 0.768). 533 

Similar analysis on the fMRI data did not show any significant interaction between session 534 

and number of training sessions (level 0: frontal, F(1,19) = 0.001, p = 0.874, parietal, F(1,19) 535 

= 0.447, p = 0.512; level 1: frontal, F(1,19) = 0.473, p = 0.500, limbic, F(1,19) = 0.705, p = 536 

0.412, subcortical regions, F(1,19) = 3.53, p = 0.076). Taken together these analyses suggest 537 

that it is unlikely that our fMRI results were confounded by differences in training duration 538 

across participants.  539 

Third, we asked whether the activation patterns we observed relate to learning-dependent 540 

changes in the representation of the trained sequences or simply the participants’ responses. 541 

In our design, the inter-stimulus interval jitter in each trial is too short to isolate the fMRI 542 

signal per stimulus in the sequence. However, the design of the paradigm allows us to 543 

analyze our fMRI data for sequence presentation separately from participant prediction. First, 544 

we compared PSC for the first two volumes related to the presented sequences and the fourth 545 

and fifth volume related to the participants’ prediction (i.e. the third volume was not included 546 

in this analysis, as the sequences lasted 2.5 volumes). This analysis (Figure 5a) showed that 547 

activation patterns for fMRI signals related to the sequence presentation and the participants’ 548 

prediction were similar to those observed in our main analysis (Figure 3b, 4b). In particular, 549 
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we observed a significant effect of Session (i.e. pre- vs. post-training) (level-0: frontal: 550 

F(1,20)=4.97, p=0.037; level-1: frontal-limbic: F(1,20)=5.95, p=0.024, putamen: 551 

F(1,20)=7.29, p=0.014), but no significant effect of processing stage (i.e. sequence vs. 552 

prediction) (level-0: frontal: F(1,20)=0.004, p=0.951: level-1: frontal-limbic:  F(1,20)=0.399, 553 

p=0.535: putamen: F(1,20)=3.29, p=0.085). There was no significant interaction of session 554 

and processing stage (level-0: frontal: F(1,20)=0.003, p=0.954; level-1: frontal-limbic: 555 

F(1,20)=0.496, p=0.490; putamen: F(1,20)=1.68, p=0.209).  Second, a whole brain voxel-556 

wise GLM analysis using only the volumes that corresponded to the sequence presentation 557 

showed significant interactions (p<0.001, cluster threshold corrected) between sequence 558 

(structured vs. random) and scanning session (Pre, Post 0, Post 1) in similar regions as the 559 

main analysis (Figure 5b). Taken together, these analyses of fMRI signals related to the 560 

sequence presentation showed similar activation patterns as the main analysis (Figure 3a) 561 

that included fMRI signals from both the sequence presentation and the participant 562 

prediction. Thus, the learning-dependent changes we observed in the main analysis relate to 563 

the sequence structure and could not be simply driven by the participants’ prediction or 564 

response, as fMRI signals related to the sequence presentation were recorded before the 565 

participants responded to the test stimulus.  566 

Figure 5 567 

Response strategies: matching vs. maximization 568 

Previous work (Shanks et al., 2002; Rieskamp and Otto, 2006; Eckstein et al., 2013; Acerbi et 569 

al., 2014; Fulvio et al., 2014; Murray et al., 2015) on probabilistic learning and decision-570 

making has proposed that individuals use two possible response strategies when making a 571 

choice: matching vs. maximization. Observers have been shown to either match their choices 572 

stochastically according to the underlying input statistics or to maximize their reward by 573 



 

 25

selecting the most probable positively rewarded outcomes. In the context of our task, as the 574 

Markov models that generated stimulus sequences were stochastic, participants needed to 575 

learn the probabilities of different outcomes to succeed in the prediction task. It is possible 576 

that participants used probability maximization whereby they always select the most probable 577 

outcome in a particular context. Alternatively, participants might learn the relative 578 

probabilities of each symbol (e.g. p(A)=0.18; p(B)=0.72, p(C)=0.05; p(D)=0.05) and respond 579 

so as to reproduce this distribution, a strategy referred to as probability matching.  580 

To quantify the participants’ strategies, we computed a strategy index that indicates 581 

participant’s preference (on a continuous scale) for responding using probability matching vs. 582 

maximization. Figure 6 illustrates individual strategy at the beginning (first two blocks) and 583 

end of training (last two blocks). Comparing individual strategy across levels showed 584 

significantly higher values after training for level-1 compared to level-0 (F(1,20)=26.2, 585 

p<0.001). This shift in individual strategy was evident mainly after training (F(1,20)=35.8, 586 

p<0.001); that is participants shifted more towards maximization when learning context-587 

based rather than frequency statistics. Note, that this relationship was not confounded by 588 

differences in performance, as there were no significant correlations (Level 0: r=0.31, 589 

p=0.17; Level 1: r=0.22, p=0.34) of performance index at the end of training (mean PI for the 590 

last two blocks of training) and strategy index. Interestingly, despite greater maximization for 591 

more complex structures than frequency statistics, we note that participants did not achieve 592 

optimal maximization performance. Maximization is typically observed under supervised or 593 

reinforcement learning paradigms (Shanks et al., 2002), so it is perhaps not surprising that 594 

our participants did not achieve exact maximization as trial-by-trial feedback was not 595 

provided. 596 

Figure 6 597 
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fMRI covariance analysis with strategy 598 

To investigate the relationship between brain activations and individual strategy, we 599 

conducted a voxel-wise GLM covariance analyses. In particular, we correlated learning-600 

dependent changes in fMRI signal (post-pre training PSC) for structured (compared to 601 

random) sequences with individual strategy. We calculated a Pearson correlation coefficient 602 

(R) for each voxel across the whole brain and identified voxel clusters showing significant 603 

correlations (p<0.05) for learning frequency (level-0) and context-based statistics (level-1), 604 

respectively. Positive correlations indicate increased activations after training that relate to 605 

maximization, while negative correlations indicate increased activations after training that 606 

relate to matching, as negative strategy values indicate strategy towards matching. 607 

First, we observed negative correlations between learning-dependent fMRI changes and 608 

strategy index in occipito-temporal (including hippocampal regions), basal ganglia (ventral 609 

caudate) and thalamic regions (Figure 7). These correlations indicate that increased 610 

activations for structured sequences after training in these regions relate to matching. Further, 611 

these correlations were observed for both levels suggesting that learning frequency or 612 

context-based statistics by matching involves regions in visual cortico-striatal circuits that 613 

have been previously implicated in the implicit learning of temporal sequences (Hindy et al., 614 

2016; Rosenthal et al., 2016) and novel categories (Ashby and Maddox, 2005; Seger, 2013). 615 

In particular, previous work has implicated the striatum and the medial temporal lobe (i.e. 616 

hippocampus) (Rauch et al., 1997; Poldrack and Packard, 2003; Schendan et al., 2003; Cools 617 

et al., 2004; Gheysen et al., 2011; Rose et al., 2011; Schapiro et al., 2012; Hsieh et al., 2014) 618 

in learning probabilistic associations. Further, medial temporal cortex has been implicated in 619 

explicit rule-based categorization, whereas caudate in categorization based on information 620 

integration (Nomura et al., 2007). 621 
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Figure 7 622 

In contrast, we observed positive correlations between learning-dependent fMRI changes and 623 

strategy index, indicating that increased activations for structured sequences after training 624 

relate to maximizing (Figure 8). In particular, for Level 0, we observed positive correlations 625 

in dorsolateral prefrontal areas (MFG/IFG), the dorsal caudate and the cingulate (including 626 

anterior cingulate) cortex. For Level 1, we observed positive correlations in dorsolateral 627 

prefrontal  (MFG/IFG), and posterior parietal regions, as well as cingulate and temporal 628 

cortex. Interestingly, we also observed positive correlations for sensory-motor cortex (pre-629 

central and post-central gyrus) and basal ganglia (putamen). Our results are consistent with 630 

the role of prefrontal and cingulate cortex in decision-making, monitoring performance, 631 

correcting errors, and switching between associations and strategies. Previous work on 632 

humans and animals emphasizes the role of the caudate in switching between strategies 633 

(Monchi et al., 2001; Cools et al., 2004; Seger and Cincotta, 2006), and learning after a rule 634 

reversal (Cools et al., 2002; Pasupathy and Miller, 2005). This tonic and fast learning in the 635 

caudate is thought to train slower learning mechanisms in the frontal cortex that may 636 

facilitate generalization and abstraction of learned associations. Finally, putamen—known to 637 

be involved in skilled and habitual performance (Daw et al., 2005; Balleine and O'Doherty, 638 

2010)—may facilitate learning by maximizing.  That is, once participants have extracted the 639 

most probable outcome for a given context they may then habitually select it as the predicted 640 

outcome.  641 

Figure  8 642 

Discussion 643 

Here, we investigate the brain mechanisms that medicate our ability to adapt to changes in the 644 

environment’s statistics and make predictions. To test how individuals extract structure 645 
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changes, we manipulate the complexity of temporal sequences during training from simple 646 

frequency to context-based statistics. Our results provide evidence for dissociated cortico-647 

striatal mechanisms that mediate our ability to extract behaviorally-relevant statistics. We 648 

find that fronto-parietal activity decreases for frequency-based learning, while context-based 649 

learning is associated with decreased fronto-cingulate activity and increased striatal activity. 650 

Decreased fMRI signals in fronto-parietal circuits can be understood in the context of 651 

predictive coding as repetition suppression for predictable events (Raichle et al., 1994; Den 652 

Ouden et al., 2009; Summerfield and Egner, 2009; Alink et al., 2010; Kok et al., 2012). In 653 

contrast, increased fMRI signals in putamen –that is implicated in learning probabilistic 654 

associations (Rauch et al., 1997; Poldrack and Packard, 2003)– suggest representations of 655 

predictive structures acquired through training. 656 

Importantly, our approach allows us to track participants’ predictions and their decision 657 

strategies during training. We demonstrate that learning predictive structures relates to 658 

decision strategies; that is, learning complex structures relates to extracting the most probable 659 

target per context (i.e. maximizing) than matching the exact sequence statistics. Importantly, 660 

these decision strategies engage distinct cortico-striatal circuits: performance based on 661 

probability matching engages occipito-temporal and basal ganglia (ventral caudate) regions, 662 

while performance based on maximizing engages dorsolateral prefrontal, cingulate, sensory-663 

motor regions and basal ganglia (dorsal caudate, putamen). Recent work has focused on the 664 

role of hippocampus in learning temporal sequences (Hsieh et al., 2014; Rosenthal et al., 665 

2016) and predictive associations (Hindy et al., 2016). Our findings suggest an alternate route 666 

to learning via maximizing that is implemented by interactions between executive and motor 667 

cortico-striatal mechanisms rather than visual cortico-striatal circuits (including hippocampal 668 

cortex) that support learning by matching.  669 
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Previous studies have implicated these cortico-striatal circuits in reinforcement learning (e.g. 670 

for reviews (Robbins, 2007; Balleine and O'Doherty, 2010)). We show that learning 671 

predictive statistics may proceed without explicit trial-by-trial feedback and involve 672 

interactions between cortico-striatal circuits similar to those known to support reward-based 673 

learning (Alexander et al., 1986; Lawrence et al., 1998). In particular, we show that dorsal 674 

fronto-parietal regions are involved in extracting novel regularities, monitoring and adjusting 675 

strategy throughout training. In contrast, striatal regions represent context-based statistics 676 

learned through bootstrap training (i.e. multiple sessions of exposure to structured sequences) 677 

that may optimize the selection of the most probable outcome in a given context. Previous 678 

work investigating learning of sequential contingencies in the context of the serial reaction 679 

time task suggests that striatal vs. hippocampal circuits relate to distinct error-driven learning 680 

processes and operate at different learning rates (Bornstein and Daw, 2012).  In particular, 681 

fast learning was shown to engage striatal regions (i.e. putamen), whereas slow learning the 682 

hippocampus. Although our paradigm does not dissociate learning time course from structure 683 

complexity, it is possible that learning of temporal structures proceeds from cortico-striatal to 684 

hippocampal circuits. 685 

Further, we considered whether the learning we observed occurred in an incidental manner or 686 

involved explicit knowledge of the underlying sequence structure. Previous studies have 687 

suggested that learning of regularities may occur implicitly in a range of tasks: visuomotor 688 

sequence learning (Nissen and Bullemer, 1987; Seger, 1994; Schwarb and Schumacher, 689 

2012), artificial grammar learning (Reber, 1967), probabilistic category learning (Knowlton 690 

et al., 1994), and contextual cue learning (Chun and Jiang, 1998). This work has focused on 691 

implicit measures of sequence learning, such as familiarity judgments or reaction times. In 692 

contrast, our paradigm allows us to directly test whether exposure to temporal sequences 693 

facilitates the observers’ ability to explicitly predict the identity of the next stimulus in a 694 
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sequence. Although, our experimental design makes it unlikely that the participants 695 

memorized specific stimulus positions or the full sequences, debriefing the participants 696 

suggests that most extracted some high probability symbols or context-target combinations. 697 

Thus, it is possible that prolonged exposure to probabilistic structures (i.e. multiple sessions 698 

in contrast to single exposure sessions typically used in statistical learning studies) in 699 

combination with prediction judgments (Dale et al., 2012) may evoke some explicit 700 

knowledge of temporal structures, in contrast to implicit measures of anticipation typically 701 

used in statistical learning studies. 702 

Finally, previous work has implicated additional brain regions related to learning modality-703 

specific regularities (Nastase et al., 2014); that is visual cortex is implicated in learning visual 704 

statistical regularities (Aizenstein et al., 2004; Turk-Browne et al., 2010; Meyer and Olson, 705 

2011), while inferior frontal and temporal regions in learning temporal regularities related to 706 

music and language (Bahlmann et al., 2009; Leaver et al., 2009; Karuza et al., 2013; Koelsch 707 

et al., 2013). Our results provide evidence for cortico-striatal mechanisms that mediate 708 

learning of predictive statistics. We speculate that these mechanisms may mediate domain-709 

general learning of complex structures that can be specialized to support higher cognitive 710 

functions such as, learning music or language. 711 

 712 

  713 

 714 

Figures 715 

Figure 1. Trial and sequence design. (a) The trial design: 8-14 stimuli were presented 716 

sequentially followed by a cue and the test display. (b) Sequence design: Markov models 717 



 

 31

comprising two levels of complexity. For the zero-order model (level-0): different states (A, 718 

B, C, D) are assigned to four symbols with different frequencies. For the first order model 719 

(level-1), a diagram indicates states (circles) and transitional probabilities (black arrow: high 720 

probability (e.g. 80%); grey arrow: low probability (e.g. 20%)). Transitional probabilities are 721 

shown in a four-by-four conditional probability matrix, with rows indicating temporal context 722 

and columns indicating the corresponding target. (c) Experimental protocol. Observers 723 

underwent multiple days of behavioral training first with zero-order sequences and then with 724 

first-order sequences. For each level, observers completed 3-5 training sessions (an average 725 

of 4 sessions is shown for illustration purposes). Three fMRI scanning sessions were 726 

conducted before (Pre) and immediately following training per level (Post0, Post1).  727 

Figure 2. Behavioral performance. (a) Mean performance index (PI) across participants for 728 

test (open symbols) and training (solid symbols) blocks for level-0 and level-1. Data is fitted 729 

(least squares non-linear fit) across training blocks. Random guess baseline is indicated by 730 

dotted lines. (b) Normalized performance index during scanning. Data is shown before (grey 731 

bars) and after (black bars) training for each level. Error bars indicate standard error of the 732 

mean. 733 

Figure 3. fMRI results. (a) GLM maps for the 2-way interaction between Scanning session 734 

(Pre, Post0, Post1) and Sequence (structured vs. random), at p < 0.005 (cluster threshold 735 

corrected). Only the first 5 volumes were included in the analysis that correspond to the 736 

presentation of sequence, the participants’ prediction and the test display presentation, to 737 

avoid confounding the results by the participants’ response. Similar results were observed at a 738 

more conservative threshold (p<0.001) but small volume correction was necessary for small 739 

structures (i.e. putamen) at this threshold. (b) PSC index (percent signal change for structured 740 

sequences compared to random sequences) before and after training for level-0 and level-1. 741 

Data is shown for ROIs that showed a significant interaction between Session (pre- vs. post-742 
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training) and Sequence (structured vs. random). SFG: superior frontal gyrus; MeFG: medial 743 

frontal gyrus; MFG: middle frontal gyrus; IFG: inferior frontal gyrus; PrG: precentral gyrus; 744 

IPL: inferior parietal lobule; AnG: Angular gyrus; SMG: supramarginal gyrus;CG: cingulate 745 

gyrus; ACC: anterior cingulate cortex; Pu: putamen; IOG: inferior occipital gyrus; MOG: 746 

middle occipital gyrus; LiG: lingual gyrus. Error bars denote SEM. Note that different 747 

number of runs were scanned before and after training (i.e. pre-training scan comprised 3 748 

runs per level while post-training scans comprised nine runs per level). To compare equal 749 

amount of data before and after training, we selected three out of the nine runs from each 750 

post-training scan; that is, we divided each session into two time periods and selected 751 

randomly one run per time period to match the order in which data was collected during the 752 

pre-training scan. Whole brain voxel-wise GLM analysis showed significant interactions for 753 

sequence (structured vs. random) and scanning session (Pre, Post0, Post1) in frontal, parietal 754 

and subcortical regions, consistent with our main result. 755 

Figure 4. fMRI results controlled for differences in sequence entropy across levels. (a) GLM 756 

maps (p < 0.001, cluster threshold corrected) for 2-way interaction between Scanning session 757 

(Pre, Post0, Post1) and Sequence (structured vs. random) including entropy rate as regressor. 758 

(b) PSC index before and after training for level-0 and level-1. Error bars denote SEM. Data 759 

is shown for ROIs that showed a significant interaction between Session (pre- vs. post-760 

training) and Sequence (structured vs. random). SFG: superior frontal gyrus; IFG: inferior 761 

frontal gyrus; PrG: precentral gyrus; ACC: anterior cingulate cortex; Pu: putamen. 762 

Figure 5. fMRI results for sequence presentation and participants’ prediction. (a) PSC index 763 

for sequence presentation (volumes 1-2), and participant prediction (volumes 4-5) before and 764 

after training for level-0 and level-1. Data are shown for the representative ROIs from Figure 765 

4b. Error bars denote SEM. (b) GLM maps for the 2-way interaction between Scanning 766 
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session and Sequence, at p < 0.005 (cluster threshold corrected) using only the volumes that 767 

correspond to sequence presentation. 768 

Figure 6. Strategy choice. Strategy choice is shown at the beginning (first two runs) and end 769 

(last two runs) of training for level-0 (squares) and level-1 (circles). Open symbols indicate 770 

individual participant data; closed symbols indicate mean date per level. Strategy choice was 771 

measured by comparing participant responses to two possible strategies: matching (i.e. 772 

predicting the presented target distribution) vs. maximization (i.e. predicting the high 773 

probability targets per context). Negative values indicate a strategy closer to matching, 774 

whereas positive values indicate a strategy closer to maximization. Error bars indicate 775 

standard error of the mean.  776 

Figure 7. Brain activations correlating with matching. Covariance analysis showing 777 

significant (p< 0.05, cluster threshold corrected) negative correlations (R correlation 778 

coefficient) between individual strategy index and learning-dependent fMRI change (i.e. after 779 

vs. before training) for (a) level-0 and (b) level-1. Whole brain maps and plots showing 780 

negative correlations between strategy index and PSC (percent signal change) index change 781 

(post- vs. pre-training) for representative ROIs, as derived from the covariance analysis (note 782 

that these correlation plots are only presented for demonstration purposes; no additional 783 

statistical analysis was performed in these ROIs following the covariance analysis to avoid 784 

circularity). Cd: caudate: (b) and (t) indicating body and tail, respectively; Th: thalamus; 785 

PHG: parahippocampal gyrus; Hipp: hippocampus; LiG: lingual gyrus. 786 

Figure 8. Brain activations correlating with maximization. Covariance analysis showing 787 

significant (p< 0.05, cluster threshold corrected) positive correlations (R correlation 788 

coefficient) between individual strategy index and learning-dependent fMRI change (i.e. after 789 

vs. before training) for (a) level-0 and (b) level-1. Whole brain maps and plots showing 790 
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positive correlations between strategy index and PSC (percent signal change) index change 791 

(post- vs. pre-training) for representative ROIs, as derived from the covariance analysis (note 792 

that these correlation plots are only presented for demonstration purposes; no additional 793 

statistical analysis was performed in these ROIs following the covariance analysis to avoid 794 

circularity). MFG/IFG: middle/inferior frontal gyrus; CG: cingulate gyrus; ACC: anterior 795 

cingulate cortex; PrG: precentral gyrus; IPL: inferior parietal lobule; MTG: middle temporal 796 

gyrus; Cd: caudate; Pu: putamen.  797 
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Table 1. Brain regions showing significant interaction between scanning session (pre, post-0, post-1) and 
sequence (structured vs. random), p < 0.005, cluster corrected. 

ROI Hem Vol(mm3) X Y Z F P 

Frontal    

Superior Frontal Gyrus (SFG) R 1633 36 16 46 15.49539 0.00001

Medial Frontal Gyrus (MeFG) R 922 6 32 37 9.33239 0.00047

Middle Frontal Gyrus (MFG) L 251 -45 0 37 13.73743 0.00003

Middle Frontal Gyrus (MFG) R 4352 45 14 40 17.07472 0.00000

Inferior Frontal Gyrus (IFG) L 273 -45 2 31 11.74197 0.00010

Inferior Frontal Gyrus (IFG) R 510 48 14 19 10.29143 0.00025

Precentral Gyrus (PrG) L 1462 -45 -4 40 17.85552 0.00000

Precentral Gyrus (PrG) R 272 43 15 40 12.12258 0.00008

Insula (Ins) L 182 -39 -4 -2 13.93199 0.00003

Insula (Ins) R 81 44 14 17 7.47606 0.00174

Parietal    

Precuneus (PCu) L 1381 -21 -64 40 9.97693 0.00031 

Superior Parietal Lobule (SPL) L 506 -24 -58 40 11.28717 0.00013 

Inferior Parietal Lobule (IPL) R 859 39 -50 34 11.30387 0.00013 

Angular Gyrus (AnG) R 365 39 -58 34 10.92339 0.00016 

Supramarginal Gyrus (SMG) R 148 39 -49 34 11.47595 0.00012 

Occipital    

Middle Occipital Gyrus (MOG) L 2574 -27 -82 -5 19.95821 0.00000 

Middle Occipital Gyrus (MOG) R 1263 35 -80 1 12.63784 0.00006 

Inferior Occipital Gyrus (IOG) L 929 -36 -73 -8 21.95450 0.00000 

Inferior Occipital Gyrus (IOG) R 497 37 -79 1 13.67147 0.00003 

Lingual Gyrus (LiG) L 1346 -35 -70 -6 17.45473 0.00000 

Lingual Gyrus (LiG) R 759 30 -76 1 11.94279 0.00009 

Cuneus (Cun) L 293 -24 -82 10 9.99664 0.00030 

Cuneus (Cun) R 154 24 -79 16 8.28265 0.00098 
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Fusiform Gyrus (FG) L 1901 -36 -73 -9 21.95450 0.00000 

Fusiform Gyrus (FG) R 650 36 -63 -5 12.01979 0.00008 

Temporal    

Middle Temporal Gyrus (MTG) L 662 -41 -58 -4 17.05987 0.00000 

Inferior Temporal Gyrus (ITG) L 516 -44 -58 -5 15.70175 0.00001 

Sub Gyral (SGL) L 81 -42 -51 -3 8.82149 0.00067 

Parahippocampal Gyrus (PHG) L 149 -39 -50 1 9.78701 0.00035 

Parahippocampal Gyrus (PHG) R 98 33 -55 -5 11.96719 0.00008 

Limbic    

Cingulate Gyrus (CG) R 188 24 11 43 9.27872 0.00049 

Anterior Cingulate (ACC) R 160 15 32 22 8.12427 0.00109 

Subcortical    

Claustrum (Cl) L 132 -37 -4 -2 11.50993 0.00011 

Putamen (Pu) L 93 -24 -16 4 8.27780 0.00098 

Thalamus (Th) L 266 -12 -19 7 8.50720 0.00084 

Cerebellum (Cb)    

Culmen L 61 -1 -61 -22 7.37876 0.00187 

Culmen R 611 19 -58 -19 11.72096 0.00010 

Nodule L 505 0 -53 -26 16.10464 0.00001 

Nodule R 582 0 -52 -26 16.60786 0.00001 

Pyramis L 197 0 -67 -26 12.81382 0.00005 

Pyramis R 252 6 -70 -26 14.53668 0.00002 

Declive L 586 -36 -61 -11 15.01214 0.00001 

Declive R 1752 18 -58 -17 12.49729 0.00006 

Uvula L 266 0 -68 -27 12.27454 0.00007 

Uvula R 372 6 -70 -29 14.59243 0.00002 

Cerebellar Tonsil L 195 -6 -52 -32 9.38866 0.00045 

Cerebellar Tonsil R 113 3 -59 -31 8.41985 0.00089  
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